A DENOTATIONAL APPROACH TO RELEASE/ACQUIRE CONCURRENCY

GOAL

RELEASE/ACQUIRE

For weak, sharedmemory model

Using Brookes-style [1996], totally-ordered traces

Design a standard, monad-based denotational semantics (Moggi [1991])

WHY RELEASE/ACQUIRE?

RA is an important fragment of C/C++, enables decentralized architectures (POWER)

Threads can disagree about the order of writes (non-multi-copy-atomic)

First adaptation of Brookes's traces to a software model (compositional parallelism)

Supports flag-based synchronization (e.g. for signaling a data structure is ready)

Supports important transformations (e.g. thread sequencing, write-read-reorder)

Intricate causal semantics, not overwhelmingly detailed

Supports read-modify-write atomicity

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$\langle \mu_1, \varrho_1 \rangle \langle \mu_2, \varrho_2 \rangle ... \langle \mu_{n-1}, \varrho_{n-1} \rangle \langle \mu_n, \varrho_n \rangle$$

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$\langle \mu_1, \varrho_1 \rangle \langle \mu_2, \varrho_2 \rangle \dots \langle \mu_{n-1}, \varrho_{n-1} \rangle \langle \mu_n, \varrho_n \rangle$$

$$\langle \mu_1, \mu_1' \rangle \langle \mu_2, \mu_2' \rangle \dots \langle \mu_n, \mu_n' \rangle$$
 $\langle \varrho_1, \varrho_1' \rangle \langle \varrho_2, \varrho_2' \rangle \dots \langle \varrho_n, \varrho_n' \rangle$

$$\langle \varrho_1, \varrho_1' \rangle \langle \varrho_2, \varrho_2' \rangle \dots \langle \varrho_n, \varrho_n' \rangle$$

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$\langle \mu_1, \varrho_1 \rangle \langle \mu_2, \varrho_2 \rangle \dots \langle \mu_{n-1}, \varrho_{n-1} \rangle \langle \mu_n, \varrho_n \rangle$$

$$\langle \mu_1, \mu_1' \rangle \langle \mu_2, \mu_2' \rangle \dots \langle \mu_n, \mu_n' \rangle \langle \varrho_1, \varrho_1' \rangle \langle \varrho_2, \varrho_2' \rangle \dots \langle \varrho_n, \varrho_n' \rangle$$

SEQUENCE

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$\langle \mu_1, \varrho_1 \rangle \langle \mu_2, \varrho_2 \rangle \dots \langle \mu_{n-1}, \varrho_{n-1} \rangle \langle \mu_n, \varrho_n \rangle$$

$$\langle \varrho_1, \varrho_1' \rangle \langle \mu_1, \mu_1' \rangle \langle \mu_2, \mu_2' \rangle \langle \varrho_2, \varrho_2' \rangle \dots \langle \mu_n, \mu_n' \rangle \langle \varrho_n, \varrho_n' \rangle$$

INTERLEAVE

- ▶ Denotational semantics [] for concurrency
- > Idealized model Sequential Consistency (SC)
- > Follows operational semantics

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$\langle \mu_1, \varrho_1 \rangle \langle \mu_2, \varrho_2 \rangle \dots \langle \mu_{n-1}, \varrho_{n-1} \rangle \langle \mu_n, \varrho_n \rangle$$

- > Adapts traces to TSO (hardware model)
- > Follows operational semantics too
 - > Relatively close to SC

- Adapts traces to RA (software model)
- Kang et al. [2017] operational presentation
 - > Much more complex notion of state

CONTRIBUTION

denotational semantics for RA based on linearly-ordered traces

Standard (CbV) semantics [Moggi 1991] enables structural transformations (e.g. [K; (M; N)] = [K; M; N] has higher-order functions for free etc.

Abstract enough to justify every transformation discussed in the literature that we know of (but no full-abstraction)

New challenge — non-operational interpretation: each trace represents a possible behavior as a Rely/Guarantee sequence

RELEASE/ACQUIRE

Store Buffering x := 0; y := 0; $x := 1; \quad y := 1;$ y?

Message Passing
$$x := 0; y := 0;$$

$$x := 1; \quad y?;$$

$$y := 1 \quad x?$$

Store Buffering x := 0; y := 0; x := 1; || y := 1; y? //0 || x? //0

Message Passing
$$x := 0; y := 0;$$

$$x := 1; \quad y?;$$

$$y := 1 \quad x?$$

Message Passing
$$x := 0; y := 0;$$

$$x := 1; \quad y?;$$

$$y := 1 \quad x?$$

Message Passing
$$x := 0; y := 0;$$

$$x := 1; \quad y?;$$

$$y := 1 \quad x?$$

Message Passing
$$x := 0; y := 0;$$
 $x := 1; y?; //1$
 $y := 1 / x? //0$

- Memory: Timeline per location (e.g. x, y, z)
- Populated with immutable messages (e.g. x0, y0, z0)
- Each thread's view points to a msgs on each timeline (e.g. T1)
- > Thread's cannot read from "the past"
- Each msg's view points to a msg on each other timelines (e.g. y1)
- Message views are used for enforcing causal propagation

Kang et al. [2017]

- Memory: Timeline per location (e.g. x, y, z)
- Populated with immutable messages (e.g. x0, y0, z0)
- Each thread's view points to a msgs on each timeline (e.g. T1)
- Thread's cannot read from "the past"
- Each msg's view points to a msg on each other timelines (e.g. y1)
- Message views are used for enforcing causal propagation

Z

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

- Memory: Timeline per location (e.g. x, y, z)
- Populated with immutable messages (e.g. x0, y0, z0)
- Each thread's view points to a msgs on each timeline (e.g. T1)
- > Thread's cannot read from "the past"
- Each msg's view points to a msg on each other timelines (e.g. y1)
- Message views are used for enforcing causal propagation

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

- Memory: Timeline per location (e.g. x, y, z)
- Populated with immutable messages (e.g. x0, y0, z0)
- Each thread's view points to a msgs on each timeline (e.g. T1)
- > Thread's cannot read from "the past"
- Each msg's view points to a msg on each other timelines (e.g. y1)
- Message views are used for enforcing causal propagation

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

- Memory: Timeline per location (e.g. x, y, z)
- Populated with immutable messages (e.g. x0, y0, z0)
- Each thread's view points to a msgs on each timeline (e.g. T1)
- > Thread's cannot read from "the past"
- Each msg's view points to a msg on each other timelines (e.g. y1)
- Message views are used for enforcing causal propagation

When writing, the message:

- > must be placed after thread's view
- > may be placed before others
- copies thread's view

When writing, the message:

- > must be placed after thread's view
- may be placed before others
- > copies thread's view

When writing, the message:

- > must be placed after thread's view
- may be placed before others
- > copies thread's view

When reading, the message:

- cannot be before thread's view
- > may be before others

and the thread:

> inherits the copy of the view

CAUSALITY AND COMPOSITION

With first class parallelism

$$L \parallel \left(T; \left((U; M; D) \parallel R\right); B\right)$$

Generalized Sequencing

$$(M_1; M_2) \parallel (K_1; K_2) \twoheadrightarrow (M_1 \parallel K_1); (M_2 \parallel K_2)$$

TRACE-BASED SEMANTICS IN RA

Terms denote sets of traces

Each trace represents a possible behavior as a Rely/Guarantee sequence

TRACE-BASED SEMANTICS IN RA

TRACE-BASED SEMANTICS IN RA

Rely on the sequential environment to reveal messages before α

Guarantee to the sequential environment to reveal messages before ω

Analogous to Brookes's TRANSITION CLOSURES

Stutter

$$\alpha \xi \eta \omega : r \in [M]$$

$$\alpha[\xi\langle\mu,\mu\rangle\eta]\omega: r\in[M]$$

Propagate Reliance as a Guarantee

Mumble

$$\alpha[\xi(\mu,\rho)\langle\rho,\theta\rangle\eta\omega:r\in[M]$$

$$\alpha \left[\xi \langle \mu, \theta \rangle \eta \right] \omega : r \in [M]$$

Rely on an omitted Guarantee Specific to RA

VIEW CLOSURES

Rewind

$$\alpha' \leq \alpha$$

$$\alpha[\xi]\omega: r \in [M]$$

$$\alpha'[\xi]\omega$$
: $r\in[M]$

Relying on more being revealed being

Forward

$$\alpha \xi \omega : r \in [M]$$

$$\omega \leq \omega'$$

$$\alpha \xi \omega' : r \in [M]$$

Guaranteeing less being revealed

COMPOSITION

Sequential

$$\alpha \xi_1 \kappa : r_1 \in [M_1]$$

$$\kappa[\xi_2]\omega: r_2 \in [M_2][x \mapsto r_1]$$

$$\alpha[\xi_1\xi_2]\omega$$
 : $r_2 \in [|| let x = M_1 in M_2||]$

Parallel

$$\forall i \in \{1,2\} . \ \alpha[\xi_i]\omega : r_i \in [M_i]$$

$$\xi \in \xi_1 || \xi_2$$

$$\alpha[\xi]\omega: \langle r_1, r_2 \rangle \in [M_1 | M_2]$$

ABSTRACTION

WHAT WE CAN JUSTIFY

with Stutter, Mumble, Rewind, and Forward

 \geqslant Structural equivalences, e.g. if K is effect-free then

$$[\![\!]$$
 if K then M ; P_1 else M ; $P_2[\!]$ = $[\![\!]$ M ; if K then P_1 else $P_2[\!]$

Laws of Parallel Programming, e.g. Generalized Sequencing

$$[](M_1; M_2) \parallel (K_1; K_2) [] \supseteq [](M_1 \parallel K_1); (M_2 \parallel K_2) []$$

Some memory access related transformations, e.g. Read-Read Elimination

[
$$| \det a = x? \operatorname{in} | \det b = x? \operatorname{in} \langle a, b \rangle |] \supseteq [| \det c = x? \operatorname{in} \langle c, c \rangle |]$$

SEMANTIC INVARIANTS ON TRACES

Read Elimination

$$x?; M \rightarrow M$$

operational invariant becomes denotational requirement views point to messages that carry a smaller view

$$\kappa \langle \mu, \mu \rangle \kappa :: \langle \rangle \in [] \langle \rangle [] \implies \exists v . \kappa \langle \mu, \mu \rangle \kappa :: v \in [] x?[]$$

MORE CLOSURES

- Some transformations are valid even without preserving state
- Traces cannot strictly correspond to operational semantics (e.g. Transition ≡ exec. steps)

Write-Read Reorder

$$x := 1;$$
 $let a = y?$
 $let a = y?$

$$\alpha \langle \mu_1, \varrho_1 \rangle \langle \mu_2, \varrho_2 \rangle \dots \langle \mu_{n-1}, \varrho_{n-1} \rangle \langle \mu_n, \varrho_n \rangle \omega : r$$

$$\cdots \langle \mu_2, - \rangle, M_1 \to^* \langle \rho_2, - \rangle, M_2 \cdots$$

View in message at x

ABSTRACT CLOSURES

- Absorb a redundant local message into a following one (e.g. $[x := 0; x := 1] \supseteq [x := 1]$)
- Dilute a message by a redundant local message (e.g. $[x?] \supseteq [FAA[x](0)]$)
- Tighten the encumbering view that a local message carries (e.g. $[|x:=1;y?|] \supseteq [|(x:=1||y?)]$.snd [])

Rewrite

$$\pi \in [\![M]\!] \quad \pi \longmapsto \tau$$

$$\tau \in [\![M]\!]$$

ABSTRACT REWRITE RULES

<u>Write-Read Deorder</u> + LoPP + Struct ⇒ Write-Read Reorder

NEW ADEQUACY PROOF IDEA

- **Because** traces are not operational, the adequacy proof is more nuanced:
 - \blacktriangleright We define a similar denotational semantics [] M [] but without the abstract rules
 - We show it is adequate (easier because it has an operational interpretation)
 - We show $[M] = [M]^{\dagger}$ it is enough to apply the closure on top
 - > We show that the abstract closures preserve observations

Laws of Parallel Programming

Symmetry $M \parallel N \twoheadrightarrow \mathbf{match} N \parallel M \mathbf{with} \langle y, x \rangle. \langle x, y \rangle$

Generalized Sequencing

 $(\operatorname{let} x = M_1 \operatorname{in} M_2) \parallel (\operatorname{let} y = N_1 \operatorname{in} N_2) \quad \twoheadrightarrow \quad \operatorname{match} M_1 \parallel N_1 \operatorname{with} \langle x, y \rangle. M_2 \parallel N_2$

Eliminations

Irrelevant Read ℓ ?; $\langle \rangle \rightarrow \langle \rangle$

Write-Write $\ell := v \; ; \ell := w \stackrel{\mathsf{Ab}}{\twoheadrightarrow} \quad \ell := w$

Write-Read $\ell := v ; \ell? \rightarrow \ell := v ; v$

Write-FAA $\ell := v \; ; \text{FAA} \; (\ell, w) \stackrel{\text{Ab}}{\to} \; \ell := (v + w) \; ; v$

Read-Write let $x = \ell$? in $\ell := (x + v)$; $x \rightarrow FAA(\ell, v)$

Read-Read $\langle \ell?, \ell? \rangle \rightarrow \det x = \ell? \text{ in } \langle x, x \rangle$

Read-FAA $\langle \ell?, \text{FAA}(\ell, v) \rangle \rightarrow \text{let } x = \text{FAA}(\ell, v) \text{ in } \langle x, x \rangle$

FAA-Read $\langle \text{FAA}(\ell, v), \ell? \rangle \rightarrow \text{let } x = \text{FAA}(\ell, v) \text{ in } \langle x, x + v \rangle$

FAA-FAA $\langle \operatorname{FAA}(\ell,v), \operatorname{FAA}(\ell,w) \rangle \stackrel{\mathsf{Ab}}{\twoheadrightarrow} \operatorname{let} x = \operatorname{FAA}(\ell,v+w) \text{ in } \langle x,x+v \rangle$

Others

Irrelevant Read Introduction $\langle \rangle \rightarrow \ell?; \langle \rangle$

Read to FAA ℓ ? $\stackrel{\text{Di}}{\Rightarrow}$ FAA $(\ell, 0)$

Write-Read Deorder $\langle (\ell := v), \ell'? \rangle \stackrel{\mathsf{Ti}}{\twoheadrightarrow} (\ell := v) \parallel \ell'?$ $(\ell \neq \ell')$

Write-Read Reorder $\langle (\ell := v), \ell'? \rangle \stackrel{\mathsf{Ti}}{\twoheadrightarrow} \mathbf{let} \ x = \ell'? \mathbf{in} \ (\ell := v) \ ; \ x \ (\ell \neq \ell')$

CONCLUSION

CONCLUSION

- > Standard, adequate and fully-compositional denotational semantic for RA
- More nuanced traces
- Sufficiently abstract: validates all RA transformations that we know of (memory access, laws of parallel programming, structural transformations)
- Extended RA view-based machine with compositional (i.e. first-class) parallelism (weak-memory models are usually studied with top-level parallelism)

LIMITATIONS

- > Parsimonious in features (e.g. no recursion)
- No type-and-effect system
- > No algebraic presentation
- No non-atomics, not the full C/C++ model
- No full abstraction theorem even for first-order

FUTURE DIRECTIONS

- Address the mentioned limitations, e.g. promising semantics to cover more of C/C++
- > Algebraic effects as Rely/Guarantee traces

```
 \begin{array}{ll} ( - ) & : \mathbf{Term}_{\{\mathtt{L},\mathtt{U}\}} X \to \mathcal{P}_{\mathrm{fin}} \left( \mathtt{T} X \right) \\ ( |x| ) & \coloneqq \{ \langle \rangle \mathrel{\dot{.}} \mathrel{\dot{.}} x \} \\ ( |\mathtt{L}_{\ell} \langle t_v \rangle_{v \in \mathbf{Val}} ) \coloneqq \{ ( ( ( \mathsf{R}_{\ell,v} :: \mathtt{t}) \mathrel{\dot{.}} \mathrel{\dot{.}} x \mid \mathtt{t} \mathrel{\dot{.}} \mathrel{\dot{.}} x \in ( \!\! | t_v \!\! | ) \} \\ ( |\mathtt{U}_{\ell,v} t |) & \coloneqq \{ ( ( \mathsf{G}_{\ell,v} :: \mathtt{t}) \mathrel{\dot{.}} \mathrel{\dot{.}} x \mid \mathtt{t} \mathrel{\dot{.}} \mathrel{\dot{.}} x \in ( \!\! | t \!\! | ) \} \\ \end{aligned}
```


RELY/GUARANTEE TRACES

REWRITE RULE: ABSORB

Write Eliminations

$$x := 0; x := 1 \Rightarrow x := 1$$

$$x := 0; CAS[x](0,1) \Rightarrow x := 1$$

Eliminate redundant message

REWRITE RULE: DILUTE

Write Eliminations

$$x? \Rightarrow CAS[x](1,1)$$

$$CAS[x](1,1) \Rightarrow FAA[x](0)$$

Introduce redundant message