
GALOP, POPL 2024 IET (LONDON, UK)Yotam Dvir, Ohad Kammar, Ori Lahav

A DENOTATIONAL APPROACH TO
RELEASE/ACQUIRE CONCURRENCY

GOAL

Design a standard, monad-based
denotational semantics (Moggi [1991])

Using Brookes-style [1996],
totally-ordered traces

For weak,
shared-

memory model

2

RELEASE/ACQUIRE

WHY RELEASE/ACQUIRE?
RA is an important fragment of
C/C++, enables decentralized
architectures (POWER)

First adaptation of Brookes’s
traces to a software model
(compositional parallelism)

Intricate causal semantics,
not overwhelmingly detailed

Threads can disagree about the order of writes
(non-multi-copy-atomic)

Supports flag-based synchronization
(e.g. for signaling a data structure is ready)

Supports important transformations
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity

3

Main ingredient: linearly-ordered traces of
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS

4

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS

4

⟨ϱ1, ϱ′ 1⟩ ⟨ϱ2, ϱ′ 2⟩ … ⟨ϱn, ϱ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS

4

⟨ϱ1, ϱ′ 1⟩ ⟨ϱ2, ϱ′ 2⟩ … ⟨ϱn, ϱ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

SEQUENCE

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS

5

⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩⟨ϱ1, ϱ′ 1⟩ ⟨ϱ2, ϱ′ 2⟩ … ⟨ϱn, ϱ′ n⟩…

INTERLEAVE

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS

Denotational semantics for concurrency

Idealized model - Sequential Consistency (SC)

Follows operational semantics

[| − |]

Adapts traces to TSO (hardware model)

Follows operational semantics too

Relatively close to SC

Brookes [1996]

Jagadeesan, Petri, Riely [2012]

6

Adapts traces to RA (software model)

Kang et al. [2017] operational presentation

Much more complex notion of state

This work

CONTRIBUTION
Directionally Adequate
denotational semantics for RA based on linearly-ordered traces

[|M |] ⊇ [|K |] ⟹ M ↠ K

Standard (CbV) semantics [Moggi 1991]
enables structural transformations (e.g.)
has higher-order functions for free
etc.

[|K; (M; N) |] = [| (K; M); N |]

Abstract enough to justify every transformation discussed
in the literature that we know of (but no full-abstraction)

New challenge — non-operational interpretation:
each trace represents a possible behavior as a Rely/Guarantee sequence

7

Refinement Transformation

RELEASE/ACQUIRE

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

9

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

9

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

9

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

9

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

9

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

9

TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation respects causality

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

9

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

10

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)

Populated with immutable messages (e.g. x0, y0, z0)

Each thread’s view points to a msgs on each timeline (e.g. T1)

Thread’s cannot read from “the past”

Each msg’s view points to a msg on each other timelines (e.g. y1)

Message views are used for enforcing causal propagation

T1 T2

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

10

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)

Populated with immutable messages (e.g. x0, y0, z0)

Each thread’s view points to a msgs on each timeline (e.g. T1)

Thread’s cannot read from “the past”

Each msg’s view points to a msg on each other timelines (e.g. y1)

Message views are used for enforcing causal propagation

x

y

z

T1 T2

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

10

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)

Populated with immutable messages (e.g. x0, y0, z0)

Each thread’s view points to a msgs on each timeline (e.g. T1)

Thread’s cannot read from “the past”

Each msg’s view points to a msg on each other timelines (e.g. y1)

Message views are used for enforcing causal propagation

x0

x

y

z

y0

z0

T1 T2

x1

y1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

10

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)

Populated with immutable messages (e.g. x0, y0, z0)

Each thread’s view points to a msgs on each timeline (e.g. T1)

Thread’s cannot read from “the past”

Each msg’s view points to a msg on each other timelines (e.g. y1)

Message views are used for enforcing causal propagation

x0

x

y

z

y0

z0

T1 T2

x1

y1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

10

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)

Populated with immutable messages (e.g. x0, y0, z0)

Each thread’s view points to a msgs on each timeline (e.g. T1)

Thread’s cannot read from “the past”

Each msg’s view points to a msg on each other timelines (e.g. y1)

Message views are used for enforcing causal propagation

x0

x

y

z

y0

z0

T1 T2

x1

y1

x0

x

y

z

y0

z0

T1 T2

T1

x := 𝗑𝟣

x0

x

y

z

y0

z0

T1 T2

x1

must be placed after thread’s view

may be placed before others

copies thread’s view

11

When writing, the message:

x0

x

y

z

y0

z0

T1 T2

x1 T1

y := 𝗒𝟣

x0

x

y

z

y0

z0

T1 T2

x1

y1

12

must be placed after thread’s view

may be placed before others

copies thread’s view

When writing, the message:

x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

x := 𝗑𝟤

13

must be placed after thread’s view

may be placed before others

copies thread’s view

When writing, the message:

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

y?

14

cannot be before thread’s view

may be before others

When reading, the message:

inherits the copy of the view

and the thread:

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

x?

15

cannot be before thread’s view

may be before others

When reading, the message:

inherits the copy of the view

and the thread:

CAUSALITY AND COMPOSITION

L

T

M
U

D
R

B

L ∥ (T; ((U; M; D) ∥ R); B)

With first class parallelism

16

T1 T2

(M1; M2) ∥ (K1; K2) ↠ (M1 ∥ K1); (M2 ∥ K2)
Generalized Sequencing

TRACE-BASED SEMANTICS

TRACE-BASED SEMANTICS IN RA

[|M |] ∋ τTerms denote
sets of traces

Each trace represents a possible behavior
as a Rely/Guarantee sequence

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

18

RARA

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

19

Before or || ||

Rely On μ1

To Guarantee ϱ1

Rely On μ2

To Guarantee ϱ2

Then Then…

||

Guarantee to the
sequential environment to

return r

After

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

20

Before After

Rely on the
sequential environment to

reveal messages before α

Guarantee to the
sequential environment to

reveal messages before ω

TRANSITION CLOSURES

α ξη ω ∴ r ∈ [|M |]
Stutter

α ξ⟨μ, μ⟩η ω ∴ r ∈ [|M |]

Analogous

to Brookes’s

Propagate Reliance

as a Guarantee

Mumble
α ξ⟨μ, ρ⟩⟨ρ, θ⟩η ω ∴ r ∈ [|M |]

α ξ⟨μ, θ⟩η ω ∴ r ∈ [|M |]

Rely on an

omitted Guarantee

21

VIEW CLOSURES

α ξ ω ∴ r ∈ [|M |]α′ ≤ α

α′ ξ ω ∴ r ∈ [|M |]

α ξ ω ∴ r ∈ [|M |] ω ≤ ω′

α ξ ω′ ∴ r ∈ [|M |]

22

Rewind Forward

Guaranteeing less

being revealedRelying on more

being revealed

Specific
to RA

COMPOSITION
α ξ1 κ ∴ r1 ∈ [|M1 |] κ ξ2 ω ∴ r2 ∈ [|M2 |][x ↦ r1]

α ξ1ξ2 ω ∴ r2 ∈ [| let x = M1 in M2 |]

23

Sequential

α ξi ω ∴ ri ∈ [|Mi |]∀i ∈ {1,2} . ξ ∈ ξ1 ∥ξ2

α ξ ω ∴ ⟨r1, r2⟩ ∈ [|M1 ∥ M2 |]

Parallel

ABSTRACTION

WHAT WE CAN JUSTIFY

[| let a = x? in let b = x? in ⟨a, b⟩ |] ⊇ [| let c = x? in ⟨c, c⟩ |]
Some memory access related transformations, e.g. Read-Read Elimination

25

Structural equivalences, e.g. if is effect-free thenK
[| if K then M; P1 else M; P2 |] = [|M; if K then P1 else P2 |]Standard Semantics

[| (M1; M2) ∥ (K1; K2) |] ⊇ [| (M1 ∥ K1); (M2 ∥ K2) |]
Laws of Parallel Programming, e.g. Generalized SequencingFirst-class parallelism

with Stutter, Mumble, Rewind, and Forward

x?; M ↠ M
Read Elimination

26

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

SEMANTIC INVARIANTS
ON TRACES

operational invariant becomes denotational requirement
views point to messages that carry a smaller view

κ ⟨μ, μ⟩ κ ∴ ⟨⟩ ∈ [|⟨⟩ |] ⟹ ∃v . κ ⟨μ, μ⟩ κ ∴ v ∈ [|x? |]

MORE CLOSURES

27

Write-Read Reorder
x := 1; let a = y?

let a = y? ↠ in x := 1;
in M M

Some transformations are valid
even without preserving state

Traces cannot strictly correspond
to operational semantics
(e.g. Transition ≡ exec. steps)

View in message at x

≤α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r

⟨μ2, − ⟩, M1 →* ⟨ρ2, − ⟩, M2⋯ ⋯

RA Specific Compiler Optimization

Absorb a redundant local message into a following one
(e.g.)

Dilute a message by a redundant local message
(e.g.)

Tighten the encumbering view that a local message carries
(e.g.)

[|x := 0; x := 1 |] ⊇ [|x := 1 |]

[|x? |] ⊇ [|FAA[x](0) |]

[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

ABSTRACT
CLOSURES

π ∈ [|M |]
Rewrite

π τ

τ ∈ [|M |]

Specific
to RA

28

ABSTRACT REWRITE RULES

Tighten1 1

29

[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

GUARANTEE IS WEAKER
BECAUSE LOADING THIS

MESSAGE OBSCURES MORE

Write-Read Deorder + LoPP + Struct Write-Read Reorder⇒

Because traces are not operational, the adequacy proof is more nuanced:

We define a similar denotational semantics but without the abstract rules

We show it is adequate (easier because it has an operational interpretation)

We show — it is enough to apply the closure on top

We show that the abstract closures preserve observations

[|M |]

[|M |] = [|M |]†

NEW ADEQUACY PROOF IDEA

31

CONCLUSION

Standard, adequate and fully-compositional denotational semantic for RA

More nuanced traces

Sufficiently abstract: validates all RA transformations that we know of
(memory access, laws of parallel programming, structural transformations)

Extended RA view-based machine with compositional (i.e. first-class) parallelism
(weak-memory models are usually studied with top-level parallelism)

CONCLUSION

Parsimonious in features (e.g. no recursion)

No type-and-effect system

No algebraic presentation

No non-atomics, not the full C/C++ model

No full abstraction theorem even for first-order

LIMITATIONS

Address the mentioned limitations, e.g. promising semantics to cover more of C/C++

Algebraic effects as Rely/Guarantee traces

FUTURE DIRECTIONS

ADEQUACY
PROOF

10 1Ab

1 11Di

1 Ti 1

ABSTRACT
CLOSURES

x

y

z
OPERATIONAL

SEMANTICS

L

T

M
U

D
R

B

1ST-CLASS
PARALLELISM

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

RELY/GUARANTEE TRACES

REWRITE RULE: ABSORB

Write Eliminations

x := 0; x := 1 ↠ x := 1

x := 0; CAS[x](0,1) ↠ x := 1
10 1Ab

Eliminate redundant message

REWRITE RULE: DILUTE

38

1 11Di

Write Eliminations

x? ↠ CAS[x](1,1)

CAS[x](1,1) ↠ FAA[x](0)

Introduce redundant message

