A DENOTATIONAL APPROACHTO
RELEASE/ACQUIRE CONCURRENCY

PPPPPPPPPPPPPP Yotam Dvir, Ohad Kammar, Ori Lahav IET (LONDON, UK)

GOAL

RELEASE/ACQUIRE

For weak,
shared-
memory model

Using Brookes-style [1996],
totally-ordered traces

Design a standard, monad-based
denotational semantics (Moggi [1991])

WHY RELEASE/ACQUIRE?

C/C++, enables decentralized

architectures (POWER)

E RA is an important fragment of Threads can disagree about the order of writes
(non-multi-copy-atomic)

Supports flag-based synchronization
(e.g. for signaling a data structure is ready)

traces to a software model
(compositional parallelism) . Supports important transformations

(e.g. thread sequencing, write-read-reorder)

‘fn > Intricate causal semantics,
not overwhelmingly detailed Supports read-modify-write atomicity

7 First adaptation of Brookes'’s

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that and interleave

~A ~A ~A ~—A
<ﬂ19 Q1><ﬂ29 Qz) (ﬂn—la Qn—1><ﬂn9 Qn>

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that and interleave

~A ~A ~A ~—A
<ﬂ19 Q1><ﬂ29 Qz) (ﬂn—la Qn—1><ﬂn9 Qn>

(ﬂlﬂ‘i) (ﬂbﬂé) (ﬂmﬂé)

T— ——

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that and interleave

~A ~A ~A ~—A
<ﬂ19 Q1><ﬂ29 Qz) (ﬂn—la Qn—1><ﬂn9 Qn>

(ﬂlaﬂD (ﬂbﬂé) <ﬂn9ﬂ;z>

SEQUENCE

A

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of
state-transitions that and interleave

~A ~A ~A ~—A
<ﬂ19 Q1><ﬂ29 Qz) (ﬂn—la Qn—1><ﬂn9 Qn>

(s 1) Hosis) e S)

INTERLEAVE

TRACE-BASED SEMANTICS

=
(=== Brookes [1996] Main ingredient: linearly-ordered traces of
= state-transitions that and interleave
> Denotational semantics [| — || for concurrency
~— A ~— A ~— A A

) Idealized model - Sequential Consistency (SC) (Hys Ql) (Hos Q2> cee <ﬂn—19 Qn—1> (ﬂn, Qn>

) Follows operational semantics

=
(== _Jagadeesan, Petri, Riely [2012] 9 This work
==
) Adapts traces to TSO (hardware model)) Adapts traces to RA (software model)
) Follows operational semantics too) Kang et al. [2017] operational presentation

) Relatively close to SC) Much more complex notion of state

CONTRIBUTION

Refinement Transformation

Directionally Adequate :[|M| 2 [|K|]]| = M » K
denotational semantics for RA based on linearly-ordered traces

Standard (CbV) semantics [Moggi 1991}

enables structural transformations (e.g. || K; (M;N) || = || (K;M); N |])
has higher-order functions for free
etc.

Abstract enough to justify every transformation discussed
in the literature that we know of (but no full-abstraction)

New challenge — non-operational interpretation:
each trace represents a possible behavior as a Rely/Guarantee sequence

RELEASE/ACQUIRE

TYPICAL EXAMPLES

_|Store Bufferin ~ |Message Passing

TYPICAL EXAMPLES

_|Store Bufferin ~ |Message Passing

X =O,y = 0; I x:=0;y:=0; l
X = y=1 || x:=11] ¥
y‘7 //O x? JO || y:=1 || x? l

TYPICAL EXAMPLES

_|Store Bufferin ~ |Message Passing

y_'= ‘ x:=1;
X2 10| | yi=1

TYPICAL EXAMPLES

y‘7 //O x‘7 //O

TYPICAL EXAMPLES

y‘7 //O x‘7 //O

TYPICAL EXAMPLES

y‘7 //O x‘7 //O

TYPICAL EXAMPLES

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

) Memory: Timeline per location (e.g. x, vy, z)

) Populated with immutable messages (e.g. x0, yO, zO)

) Each thread’s view points to a msgs on each timeline (e.g. T1)

) Thread'’s cannot read from “the past”

) Each msg’s view points to a msg on each other timelines (e.g. y1)

) Message views are used for enforcing causal propagation

10

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

) Memory: Timeline per location (e.g. x, vy, z)

) Populated with immutable messages (e.g. x0, yO, zO)

) Each thread’s view points to a msgs on each timeline (e.g. T1)

) Thread'’s cannot read from “the past”

) Each msg’s view points to a msg on each other timelines (e.g. y1)

) Message views are used for enforcing causal propagation

10

-

-

X1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

) Memory: Timeline per location (e.g. x, vy, z) X
) Populated with immutable messages (e.g. x0, yO, zO)

) Each thread’s view points to a msgs on each timeline (e.g. T1)

P Thread’s cannot read from “the past” y

) Each msg’s view points to a msg on each other timelines (e.g. y1)

z0

) Message views are used for enforcing causal propagation

10

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

) Memory: Timeline per location (e.g. x, vy, z) X
) Populated with immutable messages (e.g. x0, yO, zO)

) Each thread’s view points to a msgs on each timeline (e.g. T1)

P Thread’s cannot read from “the past” y

) Each msg’s view points to a msg on each other timelines (e.g. y1)
z0

) Message views are used for enforcing causal propagation

10

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

) Memory: Timeline per location (e.g. x, vy, z)

) Populated with immutable messages (e.g. x0, yO, zO)

) Each thread’s view points to a msgs on each timeline (e.g. T1)

) Thread'’s cannot read from “the past”

) Each msg’s view points to a msg on each other timelines (e.g. y1)

) Message views are used for enforcing causal propagation

10

z0

When writing, the message:

) must be placed after thread'’s view
) may be placed before others

) copies thread'’s view

11

y =y .

When writing, the message:

) must be placed after thread'’s view

) may be placed before others

z0 2 copies thread's view

12

z0

When writing, the message:

) must be placed after thread'’s view
) may be placed before others

) copies thread'’s view

13

z0

y? X

yO y1 When reading. the message:

) cannot be before thread'’s view

) may be before others

and the thread:
z0 z0

) inherits the copy of the view

14

x?

When reading. the message:

) cannot be before thread'’s view

) may be before others

and the thread:

z0

) inherits the copy of the view

15

CAUSALITY AND COMPOSITION

With first class parallelism

L (7: (WU:M;D) || R);B) .
Generalized Sequencing L M R
((Ml;Mz) | (K3 Ky) » (M || Ky); (M, || Kz)] D

B

TRACE-BASED SEMANTICS

TRACE-BASED SEMANTICS IN RA

sets of traces

Terms denote [I M I] 9 T Each trace represents a possible behavior

as a Rely/Guarantee sequence

(g, 01)(H2s 02) - - - {15 C1) \Pops Op) @ . T

o e e ——] —

InitiaI@View Sequence of Transitions FinaI@View Returns

0 ———> A
18

TRACE-BASED SEMANTICS IN RA

Rely On Then Rely On g, Then Guarantee to the
T B —— sequential environment to
To Guarantee @0, To Guarantee 9,
return r
Before or || After

PNAYN. ;

o <ﬂ1, Q1><ﬂza 03) - - (1> Op1) H Q) @ . T

=

Initial View Sequence of Transitions Final View Returns

19

TRACE-BASED SEMANTICS IN RA

Rely on the Guarantee to the
sequential environment to sequential environment to
reveal messages before reveal messages before @
Before After

| 4

(g, 01)(H2s 02) - - - {15 C1) \Pops Op) @ . T

e @ ee— o] —

Initial View Sequence of Transitions Final View Returns

20

——

Analod® T ANSITION CLOSURES

1o Brookes =

-

C

Stutter

a@a) .

Eu, p)n

re||M] -

w..re[M]|]

Mumble

-~

a &, p){p, Omw . r € [M]]

04

_

E(u, O)n

w..rel[|Ml|

Sge;“x VIEW CLOSURES
0
Forward
gga).'.re[lMl] W <o
adflw . relM
% i
Guaran‘ee‘“g ess
peing revea®d

COMPOSITION

Sequential
/agk r €| M| K@a) D) EHMQI][X'_)’”I]\
o 0‘?15230) S €llletx =M, M, | y
Parallel
QiE{l,Z}. 05360-'- r, € | M;]] € 51“52\

_

ag
—_/

w .. (r,h) €M || M|l

/

ABSTRACTION

WHAT WE CAN JUSTIFY

with Stutter, Mumble, Rewind, and Forward
¢ Structural equivalences, e.g. if K is effect-free then

Standary Semantip, | 1f K'then M; Py else M; P, [| = [| M;if K then P, else P, ||

¢ Laws of Parallel Programming, e.g. Generalized Sequencing

Firgf-e[
asgpal‘a”eligm [](MI’MZ) H (KI’KQ)I] :_> [I(M1 H Kl)a (M2 H KZ)I]

Some memory access related transformations, e.g. Read-Read Elimination
|leta = x?inletb = x?in{a,b) || 2 [[letc = x?in{c,c) ||

25

SEMANTIC INVARIANTS

ON TRACES
FRead Elimination\

x?T M > M
_ J

operational invariant becomes denotational requirement

views point to messages that carry a smaller view

z0

K[(,u,//t)JK.'. GelQl = 3V.K[</4,,M>JK.'.VE 1x?]

26

MORE CLOSURES

ﬁWrite-Read Reorder
X .=

) Some transformations are valid
even without preserving state

) Traces cannot strictly correspond
to operational semantics
(e.g. Transition = exec. steps)

1; lEtCl=y?)

leta=y? > 1Inx:=1;

in M M

a(ﬂl? Ql><ﬂ2’ Q2>°°°<//tn—19 Qn—1></’tn’ Qn>a) T S

’ e (g, —). My =% (py, —), M -+

27

View in message atx

ABSTRACT to RA
CLOSURES

) Absorb a redundant local message into a following one

(eg.[|lx:=0;x =1 2 [[x :=1]])

Rewrite
f

te [|M]

) Dilute a message by a redundant local message

(eg.llx?]] 2 [FAA[x](0)[])

) Tighten the encumbering view that a local message carries
(eg.llx :=1;9?2[2| (x:=1 || y?).snd |])

28

_

~

re||M| mr—7

/

ABSTRACT REWRITE RULES

Write-Read Deorder + LOPP + Struct = Write-Read Reorder

/77 «— GUARANTEE IS WEAKER
BECAUSE LOADING THIS
MESSAGE OBSCURES MORE

[x:=Ly?[2= 1] y?).snd]

29

NEW ADEQUACY PROOF IDEA

) Because traces are not operational, the adequacy proof is more nuanced:

? We define a similar denotational semantics [| M [] but without the abstract rules

) We show it is adequate (easier because it has an operational interpretation)

? We show IM]] =M I]Jf — itis enough to apply the closure on top

) We show that the abstract closures preserve observations

Laws of Parallel Programming ...
;Symmetry M| N — matchN || M with (y,z). (z,y) '
;Generalized Sequencing :
| (letx = My, in M) || (lety = N1in N,) — match M, || Ny with (z,y). My || No:

BLIIENAGIQIIS oo
Trrelevant Read 02;() — ()

gWrite-Write bi=vli=w A fa—

;Write-Read b:i=v;0? —» L:=v;v

‘Write-FAA l:=v;FAA (4, w) A 0= (v4+w) ;v

;Read-Write letx =47inl:=(x+v);z — FAA (L, v)

Read-Read (£7,4?7) — letx =/¢7in (z,x)

Read-FAA (67, FAA (£,v)) — letz = FAA (¢,v) in (z, z)
FAA-Read (FAA (4,v),£7) — letxz=FAA (4,v) in (z,x + v) :
FAAFAA (FAA(4v),FAA(Lw)) 3 lete = FAA (L v+w)in (5,2 +v)
s e e
EIrrelevant Read Introduction O = L7

Read to FAA (2 > FAA(£,0)

EWrite-Read Deorder (£:=w0),0'7) il (L:=w) || £'7 (£ A1)
‘Write-Read Reorder (£:=v),7) = letz=L7m(:=v)52 (L#L)

--

CONCLUSION

CONCLUSION

) Standard, adequate and fully-compositional denotational semantic for RA
) More nuanced traces

) Sufficiently abstract: validates all RA transformations that we know of
(memory access, laws of parallel programming, structural transformations)

) Extended RA view-based machine with compositional (i.e. first-class) parallelism
(weak-memory models are usually studied with top-level parallelism)

LIMITATIONS

) Parsimonious in features (e.g. no recursion)
) No type-and-effect system

) No algebraic presentation

) No non-atomics, not the full C/C++ model

) No full abstraction theorem even for first-order

FUTURE DIRECTIONS

) Address the mentioned limitations, e.g. promising semantics to cover more of C/C++

) Algebraic effects as Rely/Guarantee traces

—[) ; Term{L,U}X — Phin (TX)
z) ={0 .2

(
(
(Le <tU>v€Val[) = UUEVal {(Rewiit) x|t x € ()}
(Ug, 1) ={(Gyopit) x|t .z € ()}

.y <
1ST-CLASS
PARALLELISM S DEQUACY
OPERATIONAL PROOF
SEMANTICS ABSTRACT
CLOSURES

RELY/GUARANTEE TRACES

KWrite Eliminations

_

REWRITE RULE: ABSORB

x=0x=1->»>x:=1

x := 0; CAS|x](0,1) » x :=1

Eliminate redundant message

KWrite Eliminations

_

REWRITE RULE: DILUTE

x? > CAS|x|(1,1)
CAS|[x](1,1) » FAA[x](0)

/

Introduce redundant message

