
ESOP, ETAPS 2024 PARC HOTEL (LUXEMBOURG)Yotam Dvir, Ohad Kammar, Ori Lahav

A DENOTATIONAL APPROACH TO
RELEASE/ACQUIRE CONCURRENCY

GOAL

Design a standard, monad-based
denotational semantics à la Moggi [1991]

Using Brookes-style [1996],
totally-ordered traces

For weak,
shared-

memory model

2

RELEASE/ACQUIRE

WHY RELEASE/ACQUIRE?
RA is an important fragment of
C11, enables decentralized
architectures (POWER)

First adaptation of Brookes’s
traces to a relaxed-memory
software model

Intricate causal semantics,
not overwhelmingly detailed

Threads can disagree about the order of writes
(non-multi-copy-atomic)

Supports flag-based synchronization
(e.g. for signaling a data structure is ready)

Supports important transformations
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity
(e.g. atomic compare-and-swap)

3

(𝚙𝚘 ∪ 𝚛𝚏)+ |loc ∪ 𝚖𝚘 ∪ 𝚛𝚋acyclic

The core language remains
exactly the same

Program effects added
modularly

WHY MONAD-BASED?

Standard

Higher-order programming
built-in

Rich toolkit of definitions,
theorems, and techniques

4

if Kpure then M; P1 else M; P2

Structural transformations

Logical relations

Substitution lemma

etc

≅ M; if Kpure then P1 else P2

“related inputs go to related outputs”

syntax substitution ~ semantic context

etc
etc

DENOTATIONAL SEMANTICS

[| let x = M1 in M2 |] [|M1 |] ⟩⟩= λx . [|M2 |]

[|M1 ∥ M2 |] [|M1 |] ||| [|M2 |]

Δ=
Δ=

For example:

5

[| − |] : Term → Deno

Monadic bind

A modular effect extension

compose from subterms’ denotations

ADEQUACY

[|M |] ≥ [|K |] M ↠ K⟹
 denotationally refines K M contextually refines

safe to replace within any context
K M

[| − |] : Term → Deno

6

Abstraction:
We want this to hold
as much as possible

ADEQUACY

[|M |] ⊇ [|K |] M ↠ K⟹
Deno = 𝒫(Behavior)

With non-determinism as sets

Every possible behavior of

is a possible behavior of

K
M

7

 contextually refines
safe to replace within any context

K M

Abstraction:
We want this to hold
as much as possible

GOAL

Design a standard, monad-based
denotational semantics à la Moggi [1991]

Using Brookes-style [1996],
totally-ordered traces

For weak,
shared-

memory model

8

RELEASE/ACQUIRE

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

9

⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

Brookes [1996]

linearly-ordered traces

of local state-transitions

that sequence and interleave

Main ingredient:
No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

9

⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

SEQUENCE

Brookes [1996]

linearly-ordered traces

of local state-transitions

that sequence and interleave

Main ingredient:
No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

10

⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩…

INTERLEAVE

Brookes [1996]

Main ingredient:

linearly-ordered traces

of local state-transitions

that sequence and interleave

No interference Possible interference

Standard denotational semantics

Adequate for Release/Acquire

Abstract enough to verify every known RA-valid transformation in the
literature (but no full-abstraction theorem)

Subtlety: Rely/Guarantee interpretation of traces
(our traces do not correspond directly to interrupted executions)

CONTRIBUTION

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

11

RELEASE/ACQUIRE

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

13

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

13

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation respects causality

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

13

x1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

14

Kang et al. [2017]

Memory: Timeline per location

Populated with immutable messages holding values

Each view points to msgs on each timeline

Threads have views — cannot read from “the past”

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant

x1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

15

Kang et al. [2017]

Memory: Timeline per location

Populated with immutable messages holding values

Each view points to msgs on each timeline

Threads have views — cannot read from “the past”

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant

SUPPORTING FIRST-CLASS PARALLELISM
In the operational semantics

16

[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

[|M |] = [| (⟨⟩ ∥ M).snd |]
Laws of Parallel Programming, e.g. Left Neutrality

Write-Read Deorder (Crucial RA refinement)

Traditional op-sem: static view-array

Extended op-sem: dynamic view-tree

L

T;

M;
U;

D
R

B

RELEASE/ACQUIRE
TRACES

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

Initial View Final View

Returns

18

x
y

z

x
y

x
y

z

x
…

Sequence of Transitions

xx
y

z

x
y

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

19

Before or || ||

Rely On μ1

To Guarantee ρ1

Rely On μ2

To Guarantee ρ2

Then Then…

||

Guarantee to the
sequential environment to

return r

After

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

20

Before After

Rely on the
sequential environment to

reveal messages

Guarantee to the
sequential environment to

reveal messages

Avoid including whole state in transitions

RA DENOTATIONS
[| − |] : Term → Deno

MEMORY ACCESS

α ⟨μ, μ⟩ α ⊔ β ∴ v ∈ [|x? |]

α ⟨μ, ρ⟩ α[𝗑↦t] ∴ ⟨⟩ ∈ [|x := v |]

Read the extended paper

٩(^‿^)۶

22

x t

v βα(x) ≤ t ∈ μ

x t

v α[𝗑↦t]ρ = μ ⊎{ }

Read

Write

RMW

α(x) < t

COMPOSITION
α ξ1 κ ∴ r1 ∈ [|M1 |] κ ξ2 ω ∴ r2 ∈ [|M2 |][x ↦ r1]

α ξ1ξ2 ω ∴ r2 ∈ [| let x = M1 in M2 |]

23

Sequential

α ξi ω ∴ ri ∈ [|Mi |]∀i ∈ {1,2} . ξ ∈ ξ1 ∥ξ2

α ξ ω ∴ ⟨r1, r2⟩ ∈ [|M1 ∥ M2 |]

Parallel
INTERLEAVING TRANSITIONS

SEQUENCING TRANSITIONS

⟩⟩=

|||

REWRITE CLOSURE RULES

α ξη ω α ξ⟨μ, μ⟩η ωstutter

Propagate Reliance
as a Guarantee

α ξ⟨μ, ρ⟩⟨ρ, θ⟩η ωmumbleα ξ⟨μ, θ⟩η ω
Rely on an

omitted Guarantee

Brookes

Close denotations under
rewrite rules

π ∴ r ∈ [|M |]
x-Rewrite Closure

τ ∴ r ∈ [|M |]

Never introduced externally
observable behavior

π τx

24

REWRITE CLOSURE RULES

π ∴ r ∈ [|M |]
x-Rewrite Closure

π τ
τ ∴ r ∈ [|M |]

x

rewind

forward

RA

Close denotations under
rewrite rules α ξ ωα′ ≤ α α′ ξ ω

α ξ ωω ≤ ω′ α ξ ω′

Never introduced externally
observable behavior

Relying on more
being revealed

Guaranteeing less
being revealed

25

STRUCTURAL AND PARALLEL LAWS

26

Monad laws — structural equivalences for free, e.g. Hoisting

[| if Kpure then M; P1 else M; P2 |] = [|M; if Kpure then P1 else P2 |]

[| (M1; M2) ∥ (K1; K2) |] ⊇ [| (M1 ∥ K1); (M2 ∥ K2) |]

Interleaving — properties of parallel composition, e.g. generalized sequencing

ABSTRACTION

SOPHISTICATION REQUIRED
Some transformations are valid due to more complicated reasons, e.g.:

28

y?; M ↠ M
Redundant Read Elimination

holds due to
delicate semantic invariants

holds even though
state diverges

Overwritten Write Elimination
x := 0; x := 1 ↠ x := 1

DELICATE
SEMANTIC

INVARIANTS

y?; M ↠ M
Redundant Read Elimination

29

x1x0

x

y

z

y0

z0

x2

y1

we identify operational invariants
and impose them as denotational requirements

κ ⟨μ, μ⟩ κ ∴ ⟨⟩ ∈ [|⟨⟩ |] ⟹ ∃v . κ ⟨μ, μ⟩ κ ∴ v ∈ [|y? |]

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

∈

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100

∈
∈

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

∈
∈

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

absorb

∈
∈

NO CORRESPONDENCE
WITH INTERRUPTED

EXECUTIONS
α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

⟨μ2, − ⟩, M1 →* ⟨ρ2, − ⟩, M2⋯ ⋯ 10 1Absorb

ALL REWRITE RULES

ϵν ϵν.𝚒
𝚒

Absorb

32

1. We first define a denotational semantics but without the abstract rules

2. We show it is adequate — easier: traces correspond to interrupted executions
 (with an admissible view-advancing rule)

3. We show it is enough to apply the abstract closure on top

• This is the main technical challenge — complicated commutativity property

4. We show that the abstract rewrites preserve observable results
 (rather than interrupted executions)

[|M |]

† [|M |] = [|M |]†

NEW ADEQUACY PROOF IDEA
Traces are not operational — adequacy proof is significantly more challenging:

33

34

Standard, adequate and fully-compositional
denotational semantic for RA

Sufficiently abstract: validates all RA
transformations that we know of
(memory access, laws of parallel
programming, structural transformations)

More nuanced, complicated traces

interpreted as Rely/Guarantee sequences

denotations closed under 10 rewrite rules

Extended RA view-based machine with
compositional (i.e. first-class) parallelism
(weak-memory models are usually studied
with top-level parallelism)

CONCLUSION
Language features (e.g. recursion)

Type-and-effect system (e.g. regions)

Algebraic presentation (refines monad approach)

Full C11 model (e.g. non-atomics)

Full abstraction theorem (for first-order)?

OPPORTUNITIES

35

