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A DENOTATIONAL APPROACH TO 
RELEASE/ACQUIRE CONCURRENCY



GOAL

Design a standard, monad-based 
denotational semantics à la Moggi [1991]

Using Brookes-style [1996], 
totally-ordered traces

For weak, 
shared-

memory model
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RELEASE/ACQUIRE



WHY RELEASE/ACQUIRE?
RA is an important fragment of 
C11, enables decentralized 
architectures (POWER)

First adaptation of Brookes’s 
traces to a relaxed-memory 
software model

Intricate causal semantics, 
not overwhelmingly detailed

Threads can disagree about the order of writes 
(non-multi-copy-atomic)

Supports flag-based synchronization 
(e.g. for signaling a data structure is ready)

Supports important transformations 
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity 
(e.g. atomic compare-and-swap)
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(𝚙𝚘 ∪ 𝚛𝚏)+ |loc ∪ 𝚖𝚘 ∪ 𝚛𝚋acyclic



The core language remains 
exactly the same

Program effects added 
modularly

WHY MONAD-BASED?

Standard

Higher-order programming 
built-in

Rich toolkit of definitions, 
theorems, and techniques

4

if Kpure then M; P1 else M; P2

Structural transformations

Logical relations

Substitution lemma

etc

≅ M; if Kpure then P1 else P2

“related inputs go to related outputs”

syntax substitution ~ semantic context

etc
etc



DENOTATIONAL SEMANTICS

[| let x = M1 in M2 |] [|M1 |] ⟩⟩= λx . [|M2 |]

[|M1 ∥ M2 |] [|M1 |] ||| [|M2 |]

Δ=
Δ=

For example:
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[| − |] : Term → Deno

Monadic bind

A modular effect extension

compose from subterms’ denotations



ADEQUACY

[|M |] ≥ [|K |] M ↠ K⟹
 denotationally refines K M  contextually refines  

safe to replace within any context
K M

[| − |] : Term → Deno
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Abstraction: 
We want this to hold 
as much as possible



ADEQUACY

[|M |] ⊇ [|K |] M ↠ K⟹
Deno = 𝒫(Behavior)

With non-determinism as sets

Every possible behavior of  

is a possible behavior of 

K
M
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 contextually refines  
safe to replace within any context

K M

Abstraction: 
We want this to hold 
as much as possible



GOAL

Design a standard, monad-based 
denotational semantics à la Moggi [1991]

Using Brookes-style [1996], 
totally-ordered traces

For weak, 
shared-

memory model
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RELEASE/ACQUIRE



⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS
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⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

Brookes [1996]

linearly-ordered traces 

of local state-transitions 

that sequence and interleave

Main ingredient:
No interference Possible interference
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No interference Possible interference



⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS
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⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩…

INTERLEAVE

Brookes [1996]

Main ingredient:

linearly-ordered traces 

of local state-transitions 

that sequence and interleave

No interference Possible interference



Standard denotational semantics 

Adequate for Release/Acquire 

Abstract enough to verify every known RA-valid transformation in the 
literature (but no full-abstraction theorem) 

Subtlety: Rely/Guarantee interpretation of traces 
(our traces do not correspond directly to interrupted executions)

CONTRIBUTION

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩
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RELEASE/ACQUIRE



INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;
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INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;
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INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation respects causality

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

13



x1

RELEASE/ACQUIRE VIEW-BASED 
OPERATIONAL SEMANTICS
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Kang et al. [2017]

Memory:   Timeline per location 

Populated with immutable messages holding values 

Each view points to msgs on each timeline 

Threads have views — cannot read from “the past” 

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant



x1

RELEASE/ACQUIRE VIEW-BASED 
OPERATIONAL SEMANTICS
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Kang et al. [2017]

Memory:   Timeline per location 

Populated with immutable messages holding values 

Each view points to msgs on each timeline 

Threads have views — cannot read from “the past” 

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant



SUPPORTING FIRST-CLASS PARALLELISM
In the operational semantics
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[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

[|M |] = [| (⟨⟩ ∥ M).snd |]
Laws of Parallel Programming,  e.g. Left Neutrality

Write-Read Deorder (Crucial RA refinement)

Traditional op-sem: static view-array

Extended op-sem: dynamic view-tree

L

T;

M;
U;

D
R

B



RELEASE/ACQUIRE 
TRACES



TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

Initial View Final View

Returns
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x
y

z

x
y

x
y

z

x
…

Sequence of Transitions

xx
y

z

x
y



TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions
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Before or || ||

Rely On μ1

To Guarantee ρ1

Rely On μ2

To Guarantee ρ2

Then Then…

||

Guarantee to the 
sequential environment to 

return r

After



TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions
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Before After

Rely on the 
sequential environment to 

reveal messages

Guarantee to the 
sequential environment to 

reveal messages

Avoid including whole state in transitions



RA DENOTATIONS
[| − |] : Term → Deno



MEMORY ACCESS

α ⟨μ, μ⟩ α ⊔ β ∴ v ∈ [|x? |]

α ⟨μ, ρ⟩ α[𝗑↦t] ∴ ⟨⟩ ∈ [|x := v |]

Read the extended paper 

٩(^‿^)۶
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x t

v βα(x) ≤ t ∈ μ

x t

v α[𝗑↦t]ρ = μ ⊎{ }

Read

Write

RMW

α(x) < t



COMPOSITION
α ξ1 κ ∴ r1 ∈ [|M1 |] κ ξ2 ω ∴ r2 ∈ [|M2 |][x ↦ r1]

α ξ1ξ2 ω ∴ r2 ∈ [| let x = M1 in M2 |]
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Sequential

α ξi ω ∴ ri ∈ [|Mi |]∀i ∈ {1,2} . ξ ∈ ξ1 ∥ξ2

α ξ ω ∴ ⟨r1, r2⟩ ∈ [|M1 ∥ M2 |]

Parallel
INTERLEAVING TRANSITIONS

SEQUENCING TRANSITIONS

⟩⟩=

|||



REWRITE CLOSURE RULES

α ξη ω α ξ⟨μ, μ⟩η ωstutter

Propagate Reliance 
as a Guarantee

α ξ⟨μ, ρ⟩⟨ρ, θ⟩η ωmumbleα ξ⟨μ, θ⟩η ω
Rely on an 

omitted Guarantee

Brookes

Close denotations under 
rewrite rules

π ∴ r ∈ [|M |]
x-Rewrite Closure

τ ∴ r ∈ [|M |]

Never introduced externally 
observable behavior

π τx
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REWRITE CLOSURE RULES

π ∴ r ∈ [|M |]
x-Rewrite Closure

π τ
τ ∴ r ∈ [|M |]

x

rewind

forward

RA

Close denotations under 
rewrite rules α ξ ωα′ ≤ α α′ ξ ω

α ξ ωω ≤ ω′ α ξ ω′ 

Never introduced externally 
observable behavior

Relying on more 
being revealed

Guaranteeing less 
being revealed
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STRUCTURAL AND PARALLEL LAWS
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Monad laws — structural equivalences for free, e.g. Hoisting

[| if Kpure then M; P1 else M; P2 |] = [|M; if Kpure then P1 else P2 |]

[| (M1; M2) ∥ (K1; K2) |] ⊇ [| (M1 ∥ K1); (M2 ∥ K2) |]

Interleaving — properties of parallel composition, e.g. generalized sequencing



ABSTRACTION



SOPHISTICATION REQUIRED
Some transformations are valid due to more complicated reasons, e.g.:
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y?; M ↠ M
Redundant Read Elimination

holds due to 
delicate semantic invariants

holds even though 
state diverges

Overwritten Write Elimination
x := 0; x := 1 ↠ x := 1



DELICATE 
SEMANTIC 

INVARIANTS

y?; M ↠ M
Redundant Read Elimination
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x1x0

x

y

z

y0

z0

x2

y1

we identify operational invariants 
and impose them as denotational requirements   

κ ⟨μ, μ⟩ κ ∴ ⟨⟩ ∈ [|⟨⟩ |] ⟹ ∃v . κ ⟨μ, μ⟩ κ ∴ v ∈ [|y? |]



DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

∈



DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100

∈
∈



DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

∈
∈



DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

absorb

∈
∈



NO CORRESPONDENCE 
WITH INTERRUPTED 

EXECUTIONS
α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

⟨μ2, − ⟩, M1 →* ⟨ρ2, − ⟩, M2⋯ ⋯ 10 1Absorb



ALL REWRITE RULES

ϵν ϵν.𝚒
𝚒

Absorb

32



1. We first define a denotational semantics  but without the abstract rules 

2. We show it is adequate — easier: traces correspond to interrupted executions 
                                                                                                  (with an admissible view-advancing rule) 

3. We show it is enough to apply the abstract closure  on top         

• This is the main technical challenge — complicated commutativity property  

4. We show that the abstract rewrites preserve observable results 
                                                                                                  (rather than interrupted executions) 

[|M |]

† [|M |] = [|M |]†

NEW ADEQUACY PROOF IDEA
Traces are not operational — adequacy proof is significantly more challenging:
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Standard, adequate and fully-compositional 
denotational semantic for RA 

Sufficiently abstract: validates all RA 
transformations that we know of                                                        
(memory access, laws of parallel 
programming, structural transformations) 

More nuanced, complicated traces  

interpreted as Rely/Guarantee sequences  

denotations closed under 10 rewrite rules 

Extended RA view-based machine with 
compositional (i.e. first-class) parallelism                                                        
(weak-memory models are usually studied 
with top-level parallelism)

CONCLUSION
Language features (e.g. recursion) 

Type-and-effect system (e.g. regions) 

Algebraic presentation (refines monad approach) 

Full C11 model (e.g. non-atomics) 

Full abstraction theorem (for first-order)?

OPPORTUNITIES
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