A DENOTATIONAL APPROACH TO RELEASE/ACQUIRE CONCURRENCY

ESOP, ETAPS 2024

Yotam Dvir, Ohad Kammar, Ori Lahav

PARC HOTEL (LUXEMBOURG)

_

RELEASE/ACQUIRE For weak, sharedmemory model

Using Brookes-style [1996], totally-ordered traces

Design a standard, monad-based denotational semantics à la Moggi [1991]

GOAL

WHY RELEASE/ACQUIRE?

RA is an important fragment of C11, enables decentralized architectures (POWER)

First adaptation of Brookes's traces to a relaxed-memory software model

Intricate causal semantics, not overwhelmingly detailed

acyclic $(po \cup rf)^+|_{loc} \cup mo \cup rb$

Threads can disagree about the order of writes (non-multi-copy-atomic)

Supports flag-based synchronization (e.g. for signaling a data structure is ready)

Supports important transformations (e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity (e.g. atomic compare-and-swap)

WHY MONAD-BASED?

Standard

Program effects added modularly

The core language remains exactly the same

Higher-order programming built-in

Rich toolkit of definitions, theorems, and techniques

Structural transformations if K_{pure} then M; P_1 else M; P_2 $\cong M$; if K_{pure} then P_1 else P_2

Logical relations

"related inputs go to related outputs"

syntax substitution ~ semantic context

etc etc etc

DENOTATIONAL SEMANTICS

compose from subterms' denotations

For example:

$\| - \|$: Term \rightarrow Deno

Monadic bind $[|\det x = M_1 \operatorname{in} M_2|] \stackrel{\Delta}{=} [|M_1|] \stackrel{\sim}{\succ} \lambda x \cdot [|M_2|]$ $[M_1 | M_2] \stackrel{\Delta}{=} [M_1 | M_2]$ A modular effect extension

Abstraction: We want this to hold as much as possible

K denotationally refines M

$[-]: Term \rightarrow Deno$

$[M] \ge [K] \implies M \twoheadrightarrow K$

K contextually refines M safe to replace within any context

Abstraction: We want this to hold as much as possible

Every possible behavior of K

is a possible behavior of M

With non-determinism as sets

Deno = $\mathcal{P}(Behavior)$

$[M] \supseteq [K] \implies M \twoheadrightarrow K$

K contextually refines M safe to replace within any context

Using Brookes-style [1996], totally-ordered traces

GOAL

Release/Acquire

For weak, sharedmemory model

Design a standard, monad-based denotational semantics à la Moggi [1991]

TRACE-BASED SEMANTICS **Brookes** [1996]

Main ingredient:

- **V** linearly-ordered traces
- **of local state-transitions**
- that sequence and interleave

 $\langle \mu_1, \mu'_1 \rangle \langle \mu_2, \mu'_2 \rangle \dots \langle \mu_n, \mu'_n \rangle$

 $\langle \mu_1, \rho_1 \rangle \langle \mu_2, \rho_2 \rangle \dots \langle \mu_{n-1}, \rho_{n-1} \rangle \langle \mu_n, \rho_n \rangle$

 $\langle \rho_1, \rho_1' \rangle \langle \rho_2, \rho_2' \rangle \dots \langle \rho_n, \rho_n' \rangle$

TRACE-BASED SEMANTICS Brookes [1996]

Main ingredient:

- **V** linearly-ordered traces
- **of local state-transitions**
- that sequence and interleave

 $\langle \mu_1, \mu'_1 \rangle \langle \mu_2, \mu'_2 \rangle \dots \langle \mu_n, \mu'_n \rangle \langle \rho_1, \rho'_1 \rangle \langle \rho_2, \rho'_2 \rangle \dots \langle \rho_n, \rho'_n \rangle$

No interference Possible interference $\langle \mu_1, \rho_1 \rangle \langle \mu_2, \rho_2 \rangle \dots \langle \mu_{n-1}, \rho_{n-1} \rangle \langle \mu_n, \rho_n \rangle$

SEQUENCE

TRACE-BASED SEMANTICS Brookes [1996]

Main ingredient:

- > linearly-ordered traces
- > of local state-transitions
- **that sequence and interleave**

 $\langle \rho_1, \rho'_1 \rangle \langle \mu_1, \mu'_1 \rangle \langle \mu_2, \mu'_2 \rangle \langle \rho_2, \rho'_2 \rangle \dots \langle \mu_n, \mu'_n \rangle \langle \rho_n, \rho'_n \rangle$

INTERLEAVE

CONTRIBUTION

- **Standard denotational semantics**
- **Adequate** for Release/Acquire
- **literature (but no full-abstraction theorem)**
- **Subtlety: Rely/Guarantee interpretation of traces** (our traces do not correspond directly to interrupted executions)

Abstract enough to verify every known RA-valid transformation in the

3.....ž

RELEASE/ACQUIRE

INTUITION VIA LITMUS TESTS

Store Buffering

$\begin{array}{l} x := 0; y := 0; \\ x := 1; \\ y? \end{array} \begin{array}{l} y := 1; \\ x? \end{array}$

Message Passing

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS Kang et al. [2017]

- **<u>Memory</u>: Timeline per location**
- **Populated with immutable messages holding values**
- Each view points to msgs on each timeline
- **Threads have views cannot read from "the past"**
- **Msgs have views for enforcing causal propagation**

Kang et al. [2017]

- **Memory: Timeline per location**
- Each view points to msgs on each timeline
- **Threads have views cannot read from "the past"**
- **Msgs have views for enforcing causal propagation**

SUPPORTING FIRST-CLASS PARALLELISM In the operational semantics

Traditional op-sem: static view-array

Laws of Parallel Programming, e.g. Left Neutrality $[|M|] = [|\langle \rangle || M).snd[]$

Write-Read Deorder (Crucial RA refinement) $[|x := 1; y?[] \supseteq [|(x := 1 || y?).snd[]$

Extended op-sem: dynamic view-tree

RELEASE/ACQUIRE TRACES

TRACE-BASED SEMANTICS IN RA **Final View** $\langle \mu_2, \rho_2 \rangle \dots \langle \mu_{n-1}, \rho_{n-1} \rangle \langle \mu_n, \rho_n \rangle \omega \therefore r$ **Sequence of Transitions** Returns

Initial View

TRACE-BASED SEMANTICS IN RA

TRACE-BASED SEMANTICS IN RA

Rely on the sequential environment to reveal messages

Guarantee to the sequential environment to reveal messages

RA DENOTATIONS $[] - [] : Term \rightarrow Deno$

Read V $\alpha(x) \leq t$ $\in \mu$ X $\alpha\langle \mu, \mu \rangle \alpha \sqcup \beta \therefore \nu \in [x?]$ Write $\alpha(x) < t \quad \rho = \mu \, \uplus \, \{$ $\alpha\langle \langle \mu, \rho \rangle | \alpha[\mathsf{x} \mapsto t] : : \langle \rangle \in [] x := v[]$

COMPOSITION

$$\kappa \xi_2 \omega \therefore r_2 \in [M_2][x \mapsto r_1]$$

$\alpha [\xi_1 \xi_2] \omega :. r_2 \in [[let x = M_1 in M_2]]$

$\xi \in \xi_1 \| \xi_2$ $\alpha[\xi]\omega: \langle r_1, r_2 \rangle \in [M_1 \parallel M_2]$

Never introduced externally observable behavior

 $\alpha \xi \eta \omega \stackrel{\text{stutter}}{\longmapsto} \alpha \xi \langle \mu, \mu \rangle \eta \omega$

Propagate Reliance as a Guarantee

 $\alpha \xi \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta \omega \xrightarrow{\mathsf{mumble}} \alpha \xi \langle \mu, \theta \rangle \eta \omega$

Rely on an omitted Guarantee

STRUCTURAL AND PARALLEL LAWS

Monad laws — structural equivalences for free, e.g. Hoisting

- $[[if K_{pure} then M; P_1 else M; P_2]] = [[M; if K_{pure} then P_1 else P_2]]$

- Interleaving properties of parallel composition, e.g. generalized sequencing
 - $[(M_1; M_2) || (K_1; K_2)] \supseteq [(M_1 || K_1); (M_2 || K_2)]$

ABSTRACTION

SOPHISTICATION REQUIRED

Some transformations are valid due to more complicated reasons, e.g.:

Redundant Read Elimination $y?; M \twoheadrightarrow M$

Overwritten Write Elimination $x := 0; x := 1 \rightarrow x := 1$

DELICATE SEMANTIC INVARIANTS Redundant Read Elimination $y?; \mathcal{M} \twoheadrightarrow \mathcal{M}$

we identify operational invariants and impose them as denotational requirements

$$\kappa \langle \langle \mu, \mu \rangle \kappa \therefore \langle \rangle \in [] \langle \rangle [] \implies \exists v . \kappa \langle \mu, \mu \rangle$$

Overwritten Write Elimination $x := 0; x := 1 \twoheadrightarrow x := 1$

$\alpha \langle \mu, \mu \forall \{ 1 \} \rangle \omega ... \langle \rangle$ $[x := 0; x := 1] \supseteq [x := 1]$

Overwritten Write Elimination $x := 0; x := 1 \twoheadrightarrow x := 1$

$\alpha \langle \mu, \mu \uplus \{ \circ \} \rangle \langle \mu \uplus \{ \circ \}, \mu \uplus \{ \circ 1 \} \rangle \omega \therefore \langle \rangle$

$\alpha \langle \mu, \mu \forall \{ 1 \} \rangle \omega :. \langle \rangle$ $[x := 0; x := 1] \supseteq [x := 1]$

DIVERGINGSTATE Overwritten Write Elimination $x := 0; x := 1 \twoheadrightarrow x := 1$

$\alpha \langle \mu, \mu \uplus \{ \circ \} \rangle \langle \mu \uplus \{ \circ \}, \mu \uplus \}$

$\alpha \langle \mu, \mu \uplus \{ 1 \} \rangle \omega ... \langle \rangle$ $[x := 0; x := 1] \supseteq [x := 1]$

Overwritten Write Elimination $x := 0; x := 1 \twoheadrightarrow x := 1$

NO CORRESPONDENCE WITH INTERRUPTED EXECUTIONS

 $\alpha \langle \mu_1, \rho_1 \rangle \langle \mu_2, \rho_2 \rangle \dots \langle \mu_{n-1}, \rho_{n-1} \rangle \langle \mu_n, \rho_n \rangle \omega \therefore r$ $\cdots \langle \mu_2, - \rangle, M_1 \rightarrow * \langle \rho_2, - \rangle, M_2 \cdots$

 ${\cal U}$ ϵ

Absorb
$$\epsilon_i^{\nu.i}$$

NEW ADEQUACY PROOF IDEA

Traces are not operational — adequacy proof is significantly more challenging:

- 1. We first define a denotational semantics [M] but without the abstract rules
- **2.** We show it is adequate easier: traces correspond to interrupted executions
- 4. We show that the abstract rewrites preserve observable results

(with an admissible view-advancing rule)

3. We show it is enough to apply the abstract closure \dagger on top $[M] = [M]^{\dagger}$

This is the main technical challenge — complicated commutativity property

(rather than interrupted executions)

 *	match $N \parallel M$ with $\langle y, x \rangle$. $\langle x, y \rangle$
	match $M_1 \parallel N_1$ with $\langle x, y \rangle . M_2 \parallel N_2$
	$\langle \rangle$
Ab →≫	$\ell := w$
	$\ell := v ; v$
Ab →≫	$\ell := (v + w); v$
	$\mathrm{FAA}\left(\ell,v ight)$
\rightarrow	let $x = \ell$? in $\langle x, x \rangle$
\rightarrow	let $x = FAA(\ell, v)$ in $\langle x, x \rangle$
\rightarrow	let $x = FAA(\ell, v)$ in $\langle x, x + v \rangle$
Ab →>>	let $x = FAA(\ell, v + w)$ in $\langle x, x + v \rangle$
\rightarrow	$\ell?;\langle angle$
Di →>	$\mathrm{FAA}\left(\ell,0 ight)$
⊤i →>	$(\ell := v) \parallel \ell'? \qquad (\ell \neq \ell')$
Ti →>	let $x = \ell'$? in $(\ell := v)$; $x (\ell \neq \ell')$
	$ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

CONCLUSION

- Standard, adequate and fully-compositional denotational semantic for RA
- **Sufficiently abstract: validates all RA** transformations that we know of (memory access, laws of parallel programming, structural transformations)
- **More nuanced, complicated traces**
 - interpreted as Rely/Guarantee sequences
 - denotations closed under 10 rewrite rules
- **Extended RA view-based machine with** compositional (i.e. first-class) parallelism (weak-memory models are usually studied with top-level parallelism)

OPPORTUNITIES

- Language features (e.g. recursion)
- > Type-and-effect system (e.g. regions)
 - **Algebraic** presentation (refines monad approach)
 - Full C11 model (e.g. non-atomics)
 - **Full abstraction theorem (for first-order)?**

