A Denotational Approach to Release/Acquire Concurrency

YOTAM DVIR, Tel Aviv University, Israel
OHAD KAMMAR, University of Edinburgh, Scotland
ORI LAHAV, Tel Aviv University, Israel

We present a compositional denotational semantics for a functional language with first-class parallel composition and shared-memory operations whose operational semantics follows the Release/Acquire weak memory model (RA). The semantics is formulated in Moggi’s monadic approach, and is based on Brookes-style traces. To do so we adapt Brookes’s traces to Kang et al.’s view-based machine for RA, and supplement Brookes’s mumble and stutter closure operations with additional operations, specific to RA. The latter provides a more nuanced understanding of traces that uncouples them from operational interrupted executions. We show that our denotational semantics is adequate and use it to validate various program transformations of interest. This is the first work to put weak memory models on the same footing as many other programming effects in Moggi’s standard monadic approach.

Additional Key Words and Phrases: Weak memory models, Release/Acquire, Shared state, Shared memory, Concurrency, Denotational semantics, Monads, Program refinement, Program equivalence, Compiler optimizations

ACM Reference Format:
Yotam Dvir, Ohad Kammar, and Ori Lahav. 2024. A Denotational Approach to Release/Acquire Concurrency. 1, 1 (April 2024), 80 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Denotational semantics defines the meaning of programs compositionally, where the meaning of a program term is a function of the meanings assigned to its immediate syntactic constituents. This key feature makes denotational semantics instrumental in understanding the meaning a piece of code independently of the context under which the code will run. This style of semantics contrasts with standard operational semantics, which only executes closed/whole programs. A basic requirement of such a denotation function \([\cdot]\) is for it to be adequate w.r.t. a given operational semantics: plugging program terms \(M\) and \(N\) with equal denotations—i.e. \([M] = [N]\)—into some program context \(\Xi [\cdot]\) that closes over their variables, results in observationally indistinguishable closed programs in the given operational semantics. Moreover, assuming that denotations have a defined order \((\leq)\), a “directed” version of adequacy ensures that \([M] \leq [N]\) implies that all behaviors exhibited by \(\Xi [M]\) under the operational semantics are also exhibited by \(\Xi [N]\).

For shared-memory concurrent programming, Brookes’s seminal work [13] defined a denotational semantics, where the denotation \([M]\) is a set of totally ordered traces of \(M\) closed under certain operations, called stutter and mumble. Traces consist of sequences of memory snapshots that \(M\) guarantees to provide while relying on its environment to make other memory snapshots.
Brookes [12] used the insights behind this semantics to develop a semantic model for separation logic, and Turon and Wand [48] used them to design a separation logic for refinement. Additionally, Xu et al. [50] used traces as a foundation for the Rely/Guarantee approach for verification of concurrent programs, and Liang et al., Liang et al. [36, 37] used a trace-based program logic for refinement.

A memory model decides what outcomes are possible from the execution of a program. Brookes established the adequacy of the trace-based denotational semantics w.r.t. the operational semantics of the strongest model, known as sequential consistency (SC), where every memory access happens instantaneously and immediately affects all concurrent threads. However, SC is too strong to model real-world shared memory, whether it be of modern hardware, such as x86-TOO [42, 46] and ARM, or of programming languages such as C/C++ and Java [4, 39]. These runtimes follow weak memory models that allow performant implementations, but admit more behaviors than SC.

Do weak memory models admit adequate Brookes-style denotational semantics? This question has been answered affirmatively once, by Jagadeesan et al. [25], who closely followed Brookes to define denotational semantics for x86-TOO. Other weak memory models, in particular, models of programming languages, and non-multi-copy-atomic models, where writes can be observed by different threads in different orders, have so far been out of reach of Brookes’s totally ordered traces, and were only captured by much more sophisticated models based on partial orders [15, 19, 24, 26, 29, 43].

In this paper we target the Release/Acquire memory model (RA, for short). This model, obtained by restricting the C/C++11 memory model to Release/Acquire atomics, is a well-studied fundamental memory model weaker than x86-TOO, which, roughly speaking, ensures "causal consistency" together with "per-location-SC" and "RMW (read-modify-write) atomicity" [30, 31]. These assurances make RA sufficiently strong for implementing common synchronization idioms. RA allows more performant implementations than SC, since, in particular, it allows the reordering of a write followed by a read from a different location, which is commonly performed by hardware, and it is non-multi-copy-atomic, thus allowing less centralized architectures like POWER [47].

Our first contribution is a Brookes-style denotational semantics for RA. As Brookes’s traces are totally ordered, this result may seem counterintuitive. The standard semantics for RA is a declarative (a.k.a. axiomatic) memory model, in the form of acyclicity consistency constraints over partially ordered candidate execution graphs. Since these graphs are not totally ordered, one might expect that Brookes’s traces are insufficient. Nevertheless, our first key observation is that an operational presentation of RA as an interleaving semantics of a weak memory system lends itself to Brookes-style semantics. For that matter, we develop a notion of traces compatible with Kang et al.’s “view-based” machine [28], an operational semantics that is equivalent to RA’s declarative formulation. Our main technical result is the (directed) adequacy of the proposed Brookes-style semantics w.r.t. that operational semantics of RA.

A main challenge when developing a denotational semantics lies in making it sufficiently abstract. While full abstraction is often out of reach, as a yardstick, we want our semantics to be able to justify various compiler transformations/optimizations that are known to be sound under RA [49]. Indeed, an immediate practical application of a denotational semantics is the ability to provide local formal justifications of program transformations, such as those performed by optimizing compilers. In this setting, to show that an optimization $N \rightarrow M$ is valid amounts to showing that replacing N by M anywhere in a larger program does not introduce new behaviors, which follows from $[M] \leq [N]$ given a directionally adequate denotation function $[-]$.

To support various compiler transformations, we close our denotations under certain operations, including analogs to Brookes’s stutter and mumble, but also several RA-specific operations, that allow us to relate programs which would naively correspond to rather different sets of traces.
Given these closure operations, our semantics validates standard program transformations, including structural transformations, algebraic laws of parallel programming, and all known thread-local RA-valid compiler optimizations. Thus, the denotational semantics is instrumental in formally establishing validity of transformations under RA, which is a non-trivial task \cite{19, 49}.

Our second contribution is to connect the core semantics of parallel programming languages exhibiting weak behaviors to the more standard semantic account for programming languages with effects. Brookes presented his semantics for a simple imperative WHILE language, but Benton et al., Dvir et al. \cite{6, 20} later recast it atop Moggi’s monad-based approach \cite{40} which uses a functional, higher-order core language. In this approach the core language is modularly extended with effect constructs to denote program effects. In particular, we define parallel composition as a first-class operator. This is in contrast to most of the research of weak memory models that employ imperative languages and assume a single top-level parallel composition.

A denotational semantics given in this monadic style comes ready-made with a rich semantic toolkit for program denotation \cite{7}, transformations \cite{5, 8–10, 23}, reasoning \cite{2, 38}, etc. We challenge and reuse this diverse toolkit throughout the development. We follow a standard approach and develop specialized logical relations to establish the compositionality property of our proposed semantics; its soundness, which allows one to use the denotational semantics to show that certain outcomes are impossible under RA; and adequacy. This development puts weak memory models, which often require bespoke and highly specialized presentations, on a similar footing to many other programming effects.

Outline. In §2 we overview the Release/Acquire operational semantics and the trace-based denotational semantics that we use and extend in this paper. In §3 we summarize our contributions.

The rest of the paper goes into further detail. In §4 we present the programming language syntax and typing system, which in §5 we equip with an extended presentation of the RA operational semantics, along with observations that will support our definition of traces. In §6 we define our trace-based denotational semantics for RA, and in §7 we work up to and establish our main results. Finally, we conclude and discuss related work in §8.

Comparing to the conference version. The conference version of this paper \cite{21} is covered here by §§1-3 and 8, roughly speaking. The rest of this paper extends the conference version. Here, definitions and theorems are formally specified and fully proven. This account also provides a more detailed discussion and more examples. By expanding in breadth and depth, we state (and prove) some results in a stronger form here, such as the denotational semantics supporting transformations involving arbitrary RMWs; and a tighter characterization of the commutativity of rewrite rules, which is one of the main technical challenges in the development of the metatheory.

2 PRELIMINARIES

We overview previous work and our slight variations on it to facilitate the abridged discussion of our contribution (§3). Particularly, we partially present the language and its operational semantics under the Sequential Consistency (SC) memory model (§2.1), Brookes’s denotational semantics for SC (§2.2), and Kang et al.’s operational presentation of the RA memory model (§2.3). See §4 for the full language, and §5 for a detailed account of the RA operational semantics.

2.1 Language and Operational Semantics

The programming language we use is an extension of a functional language with shared-state constructs. Program terms \(M \) and \(N \) can be composed sequentially explicitly as \(M \join N \) or implicitly by left-to-right evaluation in the pairing construct \((M, N) \). They can be composed in parallel as \(M \parallel N \). We assume preemptive scheduling, thus imposing no restrictions on the interleaving
execution steps between parallel threads. To introduce the memory-access constructs, we present
the well-known message passing litmus test, adapted to the functional setting:

\[(x := 1; y := 1) \parallel (y?, x?)\]

Here, \(x\) and \(y\) refer to distinct shared memory locations. Assignment \(\ell := v\) stores the value \(v\) at
location \(\ell\) in memory, and dereference \(\ell?\) loads a value from \(\ell\). The language also includes atomic
read-modify-write (RMW) constructs. For example, assuming integer storable values, \(\text{FAA}(\ell, v)\)
(Fetch-And-Add) atomically adds \(v\) to the value stored in \(\ell\). In contrast, interleaving is permitted
between the dereferencing, adding, and storing in \(\ell := (\ell + v)\). The underlying memory model
dictates the behavior of the memory-access constructs more specifically.

In the functional setting, execution results in a returned value: \(\ell := v\) returns the unit value \(\langle\rangle\),
i.e. the empty tuple; \(\ell?\), and the RMW constructs such as \(\text{FAA}(\ell, v)\), return the loaded value; \(M; N\)
returns what \(N\) returns; and \(\langle M, N\rangle\), as well as \(M \parallel N\), return the pair consisting of the return
value of \(M\) and the return value of \(N\). We assume left-to-right execution of pairs, so in the (MP)
example \(\langle y?, x?\rangle\) steps to \(\langle v, x\rangle\) for a value \(v\) that can be loaded from \(y\), and \(\langle v, x?\rangle\) steps to \(\langle v, w\rangle\)
for a value \(w\) that can be loaded from \(x\). In between, the left side of the parallel composition (\(\parallel\))
can take steps.

We can use intermediate results in subsequent computations via \text{let} binding: \text{let} \(a = M\ in \ N\)
binds the result of \(M\) to \(a\) in \(N\). Thus, we execute \(M\) first, and substitute the resulting value \(V\) for \(a\) in \(N\)
before executing \(N[a \mapsto V]\). Similarly, we deconstruct pairs by matching: \text{match} \(M\ with \ (a, b)\). \(N\)
binds the components of the pair that \(M\) returns to \(a\) and \(b\) respectively in \(N\). The first and second
projections \text{fst} and \text{snd}, as well as the operation \text{swap} that swaps the pair constituents, are defined
using \text{match} standardly.

Traditionally, weak memory models are contrasted by finding litmus test programs, such as
\(\text{MP}\), with which one model supports a specific observable behavior that the other does not. Since
different models feature quite different notions of internal state, and observing the memory di-
rectly is not considered feasible anyway, internal interactions are ignored. We do not consider
infinite executions in this paper, so we conflate observable behaviors with \textit{outcomes}: values that
the program may evaluate to from given initial memory values. Litmus tests are traditionally de-
signed with all initial memory values set to \(0\) in mind.

\textbf{Remark} (Imperative vs. Functional). \textit{Presentations of litmus tests for weak-memory models are
usually presented imperatively using local registers \(a, b\). This is subsumed in the functional setting by
systematically replacing registers with let-bindings.}

\textit{For example, we can apply this process to the imperative message passing litmus test:}

<table>
<thead>
<tr>
<th>\textbf{Style}</th>
<th>\textbf{Imperative}</th>
<th>\textbf{Functional}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>(x := 1; y := y)</td>
<td>(x := 1;) \text{let } a = y? \text{ in}\</td>
</tr>
<tr>
<td></td>
<td>(y := 1)</td>
<td>(y := 1)</td>
</tr>
<tr>
<td>Outcome</td>
<td>An execution that ends with (a = 1 \land b = 0)</td>
<td></td>
</tr>
<tr>
<td>of interest</td>
<td>(\langle \langle\rangle, \langle 1, 0\rangle)</td>
<td>An evaluations that returns</td>
</tr>
</tbody>
</table>

\textit{Up to standard, memory-model agnostic equivalences, this is our functional presentation (MP).}

In the strongest memory model of Sequential Consistency (SC), every value stored is imme-
diately made available to every thread, and every dereference must load the latest stored value.
Thus the underlying memory model uses maps from locations to values for the memory state that
evolves during program execution. Given an initial state, the behavior of a program in SC depends
only on the choice of interleaving of steps. In (MP) the order of the two stores and the two loads
ensures that \(\langle \langle\rangle, \langle 0, 0\rangle\), \(\langle \langle\rangle, \langle 0, 1\rangle\), and \(\langle \langle\rangle, \langle 1, 1\rangle\) are observable, but \(\langle \langle\rangle, \langle 1, 0\rangle\) is not.
Observable behavior as defined for whole programs is too crude to study program terms that can interact with the program context within which they run. Indeed, compare M_1 defined as $x := 1; y := 1; y?$ versus M_2 defined as $x := 1; y := y?; y?$. Under SC, the difference between them as whole programs is unobservable: starting from any initial state both return 1. Now consider them within the program context – $\parallel x := 2$. That is, compare $M_1 \parallel x := 2$ versus $M_2 \parallel x := 2$. In the first, M_1 still always returns 1; but in the second, M_2 can also return 2 by interleaving the store of 2 in x immediately after the store of 1 in x. Thus, if $[M]$, i.e., M’s denotation, were to simply map initial states to possible results according to executions of M, we could not define $[M \parallel N]$ in terms of $[M]$ and $[N]$ alone, because we would have $[M_1] = [M_2]$ but also $[M_1 \parallel x := 2] \neq [M_2 \parallel x := 2]$. We conclude that $[M]$ must contain more information on M than an “input-output” relation; it must account for interference by the environment.

2.2 Brookes’s Trace-based Semantics for Sequential Consistency

A prominent approach to define compositional semantics for concurrent programs is due to Brookes [13], who defined a denotational semantics for SC by taking $[M]$ to be a set of traces of M closed under certain rewrite rules as we detail below. Brookes established a (directional) adequacy theorem: if $[M] \supseteq [N]$ then the transformation $M \rightarrow N$ is valid under SC. The latter means that, when assuming SC-based operational semantics, M can be replaced by N within a program without introducing new observable behaviors for it. Thus, adequacy formally grounds the intuition that the denotational semantics soundly captures behavior of program terms.

As a particular practical benefit, formal and informal simulation arguments which are used to justify transformations in operational semantics can be replaced by cleaner and simpler proofs based on the denotational semantics. For example, a simple argument shows that $[x := v; x := w] \supseteq [x := w]$ holds in Brookes’s semantics. Thanks to adequacy, this justifies Write-Write Elimination (WW-Elim) $x := v; x := w \rightarrow x := w$ in SC.

Traces in SC. In Brookes’s semantics, a program term is denoted by the set of traces, each trace consisting of a sequence of transitions. Each transition is of the form $\langle \mu, \rho \rangle$, where μ and ρ are memories, i.e., maps from locations to values. A transition describes a program term’s execution relying on a memory state snapshot μ in order to guarantee the memory state snapshot ρ.

For example, $[x := w]$ includes all traces of the form $\langle \rho, \rho \vert x := w \rangle$, where $\rho \vert x := w$ is equal to ρ except for mapping x to w. The definition is compositional: the traces in $[x := v; x := w]$ are obtained from sequential compositions of traces from $[x := v]$ with traces from $[x := w]$, obtaining all traces of the form $\langle \mu, \mu \vert x := v \rangle \langle \rho, \rho \vert x := w \rangle$. Such a trace relies on μ in order to guarantee $\mu \vert x := v$, and then relies on ρ in order to guarantee $\rho \vert x := w$. Allowing $\rho \neq \mu \vert x := v$ reflects the possibility of environment interference between the two store instructions. Indeed, when denoting parallel composition $[M \parallel N]$ we include all traces obtained by interleaving transitions from a trace from $[M]$ with transitions from a trace from $[N]$. By sequencing and interleaving, one subterm’s guarantee can fulfill the requirement which another subterm relies on. They may also relegate reliances and guarantees to their mutual context.

In the functional setting, executions not only modify the state but also return values. In this setting, traces are pairs, which we write as $[\xi] : r$, where ξ is the sequence of transitions and r represents the final value that the program term guarantees to return [6]. For example, the semantics of dereference $[x?]$ includes all traces of the form $\langle \mu, \mu \vert x := v \rangle$. Indeed, the execution of $x?$ does not change the memory and returns the value loaded from x. In the semantics of assignment $[x := v]$, instead of $\langle \mu, \mu \vert x := v \rangle$ we have $\langle \mu, \mu \vert x := v \rangle : \langle \rangle$.

, Vol. 1, No. 1, Article . Publication date: April 2024.
Rewrite rules in SC. Were denotations in Brookes’s semantics defined to only include the traces explicitly mentioned above, it would not be abstract enough to justify (WW-Elim), which eliminates redundant writes. Indeed, we only saw traces with two transitions in \([x := v ; x := w]\), but in \([x := w]\) we saw traces with one. The semantics would still be adequate, but it would lack abstraction. This is where Brookes’s second main idea comes into play, making the denotations more abstract by closing under two operations that rewrite traces:

Stutter adds a transition of the form \(\langle \mu, \mu \rangle\) anywhere in the trace. Intuitively, a program term can always guarantee what it relies on.

Mumble combines a couple of subsequent transitions of the form \(\langle \mu, \rho \rangle \langle \rho, \theta \rangle\) into a single transition \(\langle \mu, \theta \rangle\) anywhere in the trace. Intuitively, a program term can always omit a guarantee to the environment, and rely on its own omitted guarantee instead of relying on the environment.

Denotations in Brookes’s semantics are defined to be sets of traces closed under rewrite rules: applying a rewrite to a trace in the set results in a trace that is also in the set. For example, \([x := w]\) is the least closed set with all traces of the form \((\rho, \rho [x := w]) : \langle \rangle\), and \([x := v ; x := w]\) is the least closed set with all sequential compositions of traces from \([x := v]\) with traces from \([x := w]\).

Closure under these rules makes traces in \([M]\) correspond precisely to interrupted executions of \(M\), which are executions of \(M\) in which the memory can arbitrarily change between steps of execution. Each transition \(\langle \mu, \rho \rangle\) in a trace in \([M]\) corresponds to multiple execution steps of \(M\) that transition \(\mu\) into \(\rho\), and each gap between transitions accounts for possible environment interruption. The rewrite rules maintain this correspondence: stutter corresponds to taking \(0\) steps, and mumble corresponds to taking \(n + m\) steps instead of taking \(n\) steps and then \(m\) steps when the environment did not change the memory in between. Brookes’s adequacy proof is based on this precise correspondence. In particular, the single-pair traces in \([M]\) correspond to the (uninterrupted) executions, the “input-output” relation, of \(M\).

2.3 Overview of Release/Acquire Operational Semantics

Memory accesses in RA are more subtle than in SC. To address this we adopt Kang et al.’s “view-based” machine [28], an operational presentation of RA proven to be equivalent to the original declarative formulation of RA [e.g. 31]. In this model, rather than the memory holding only the latest value written to every variable, the memory accumulates a set of memory update messages for each location. Each thread maintains its own view that captures which messages the thread can observe, and is used to constrain the messages that the thread may read and write. The messages in the memory carry views as well, which are inherited from the thread that wrote the message, and passed to any thread that reads the message. Thus views indirectly maintain a causal relationship between messages in memory throughout the evolution of the system.

More concretely, causality is enforced by timestamping messages, thus placing them on their location’s timeline. A view \(\kappa\) associates a timestamp \(\kappa_t\) to each location \(t\), obscuring the portion of \(t\)’s timeline before \(\kappa_t\). The view points to a message at \(t\) with timestamp \(\kappa_t\). Messages point to messages via the view they carry, and must point to themselves.

To capture the atomicity of RMWs, each message occupies a half-open segment \((q, t]\) on their location’s timeline, where \(t\) is the message’s timestamp. A message with segment \((q, t]\) dovetails with a message at the same location with timestamp \(q\), if there is one. When an RMW writes it must “modify” the message from which it read by dovetailing with it.

We explain our notation for messages by example. Assuming of two location, \(x\) and \(y\), we denote by \(x:1@(.5, 1.7] \langle y@3.5 \rangle\) the message at location \(x\) that carries the value 1, occupies the segment
A Denotational Approach to Release/Acquire Concurrency

Fig. 1. Illustrations of a memory (top) and a trace (bottom), in the setting of two memory locations, \(x \) and \(y \). \textbf{Top:} A memory holding six messages. The timelines are purposefully misaligned and not to scale to emphasize that timestamps for different locations are incomparable and that only the order between them is relevant. The graph structure that the view imposes is illustrated by arrows pointing between messages. Messages that are not dovetailed are set apart, e.g. \(v_3 \) dovetails with \(v_2 \), which does not dovetail with \(v_1 \). \textbf{Bottom:} A trace with two transitions: \(\alpha \langle \mu_1, p_1 \rangle \langle \mu_2, p_2 \rangle \omega .5 \). The memory illustrated on top is \(p_2 \). Messages and edges that are not part of a previous memory are highlighted. The local messages are \(v_2 \) and \(v_3 \), and the rest are environment messages.

(0.5, 1.7] on \(x \)'s timeline, and carries the view \(\kappa \) such that \(\kappa_x = 1.7 \) and \(\kappa_y = 3.5 \) (every message points to itself). An example memory is depicted at the top of Figure 1.

When a thread writes to a location \(\ell \), it must increase the timestamp its view associates with \(\ell \) and use its new view as the message's view. The message's segment must not overlap with any other segment on \(\ell \)'s timeline. In particular, only one message can ever dovetail with a given message. A thread can only read from revealed messages, and when it reads, its view increases as needed to dominate the view of the loaded message, where a view \(\omega \) dominates a view \(\alpha \), written \(\alpha \leq \omega \), if \(\alpha \ell \leq \omega \ell \) for every \(\ell \). Increasing the view in this way may obscure messages at the location of the read as well as other locations.

Revisiting the (MP) litmus test, starting with a memory with a single message holding 0 at each location, and with all views pointing to the timestamps of these message, suppose the right thread loaded 1 from \(y \), as depicted on the left side of Figure 2. Such a message can only be available if the left thread stored it. Before storing 1 to \(y \), the left thread stored 1 to \(x \), obscuring the initial \(x \) message. The right thread inherits this limitation through the causal relationship, so it will not be able to load 0 from \(x \). Therefore, RA forbids the outcome \(\langle \langle \rangle , (1, 0) \rangle \).

In contrast, consider the litmus test known as \textit{store buffering}:
\[
(x := 1 ; y)? \parallel (y := 1 ; x?)
\]
\[\text{(SB)}\]

By considering the possible interleavings, one can check that no execution in SC returns \(\langle 0, 0 \rangle \). However, in RA some do. Indeed, even if the left thread stores to \(x \) before the right thread loads from \(x \), the right thread’s view allows it to load 0, as depicted on the right side of Figure 2.

We can recover the SC behavior by interspersing fences between sequenced memory accesses, which we model with FAA (\(z, 0 \)) to a fresh location \(z \). Thus, compare (SB) to the \textit{store buffering with fences} litmus test:
\[
(x := 1 ; \text{FAA} (z, 0) ; y)? \parallel (y := 1 ; \text{FAA} (z, 0) ; x?)
\]
\[\text{(SB+F)}\]
Both of the FAA \((z, 0)\) instructions store messages that must dovetail with the message that they load from, and in that also inherit its view. They cannot both dovetail with the same message because their segments cannot intersect. Thus, one of them—say, the one on the right—will have to dovetail with the other. In this scenario, the view of the message that the left thread stores at \(z\) points to the message it previously stored at \(x\). When the right thread loads the message from \(z\) it inherits this view, obscuring the initial message to \(x\). Therefore, when it later loads from \(x\), it must load what the left thread stored. Thus, like in SC, no execution in RA returns \((0, 0)\).

3 CONTRIBUTION SUMMARY

We begin by showcasing our notion of a trace, which we adapt to RA both in the structure of the trace itself, as well as in the rewrite rules we impose (§3.1). We then briefly explain the way in which our semantics is standard, and a few beneficial consequences of this fact (§3.2). Finally, we connect our denotational semantics to the operational semantics of RA in (§3.3), showing both adequacy and sufficient abstraction.

3.1 Traces for Release/Acquire

As in Brookes’s SC-traces, our RA-traces include a sequence of transitions \(\xi\), each transition a pair of RA memories; and a return value \(r\). Intuitively, these play a similar role here, formally grounded in analogs to the stutter and mumble rewrite rules. Seeing that the operational semantics only adds messages and never modifies them, we require that every memory snapshot in the sequence \(\xi\) be contained in the subsequent one, whether it be within or across transitions. A message added within a transition is a local message; otherwise it is an environment message. We call the first memory in \(\xi\)’s first transition its opening memory, and the second memory in \(\xi\)’s last transition its closing memory. In addition, RA-traces include an initial view \(\alpha\), declaring which messages are relied upon to be revealed in \(\xi\)’s opening memory; and a final view \(\omega\), declaring which messages are guaranteed to be revealed in \(\xi\)’s closing memory. We write the trace as \(\alpha [\xi] \omega \vdash r\). See bottom of Figure 1 for an illustrated example.

RA specific rewrite-rules. We add several more bespoke RA-specific rewrite rules to close denotations under, making the denotational semantics more abstract. For example, (WW-Elim) is also valid under RA. The reasoning we have used to justify it under SC, by showing \([x := v ; x := w] \supseteq [x := w]\) in Brookes’s semantics, will only get us so far here. Replicating the process, the trace we end up with in \([x := v ; x := w]\) after rewriting with mumble has two local messages, whereas traces from \([x := w]\) only have a single local message. Roughly speaking, the equality concerning SC memories \(\mu [x := v] [x := w] = \mu [x := w]\) does not transfer to RA where memory, by accumulating messages, is more concrete. We resolve this by adding the absorb rewrite rule, which

![Figure 2](image-url)
replaces two dovetailed local messages with one that carries the second message's value. Thus, in
the proof for RA we follow the mumble rewrite with an absorb rewrite.

Internalized operational invariants. We further increase abstraction in our denotations by point-
ing out and internalizing properties of the operational semantics. Without restrictions, traces
may represent behaviors that include operationally unreachable states. Forbidding such redundant
traces eliminates a source of differentiation between denotations, thus increasing their abstraction.

Specifically, consider the transformation $x?; y? \rightarrow y?$, a consequence of the RA-valid Irrelevant
Read Elimination (R-Elim) $x?; \langle \rangle \rightarrow \langle \rangle$ and structural equivalences. Consider the state S that
consists of the memory at the top of Figure 1 and the view that points to v_3 and e_2. The only step
$x?; y?$ can take from the state S is to load v_3, inheriting the view that v_3 carries, which changes
the thread’s view to point to e_3. Only e_3 is available in the following step, which means the term
returns 3. In contrast, starting from S, the term $y?$ can load from e_2 to return 7. This analysis does
not invalidate the transformation because the state S is unreachable by an execution starting from
an initial state, and should therefore be ignored when determining observable behaviors.

Just as we ignore unreachable states in the operational semantics, we discard “unreachable”
traces to refine our denotational semantics. This move allows us to justify (R-Elim): we have
$[[x?; \langle \rangle]] \geq [[\langle \rangle]]$.

3.2 Compositionality and the Monadic Presentation

One of the contributions of this work is to bridge research of weak-memory models with Moggi’s
monad-based approach [40] to denotational semantics. This approach also comes with practical
benefits, such as a built-in semantic framework for the effect-free fragment of the language, to
which effect constructs can be modularly added. Reasoning about the effect-free fragment stays
valid through modular expansions with effects. For instance, if K is effect-free, then:

$$[[\text{if } K \text{ then } M \text{ else } N \text{ else } N'] = [[M \text{ if } K \text{ then } N \text{ else } N']]$$

So-called structural equivalences may otherwise require challenging ad-hoc proofs [e.g. 24, 26].

Higher order. An important aspect of a programming language is its facilitation of abstraction.
Higher-order programming is a flexible instance of this, in which programmable functions can
take functions as input and return functions as output. Moggi’s approach supports this feature
out-of-the-box in such a way that does not complicate the rest of the semantics, as the first-order
fragment of the semantics need not change to include it.

Every value returned by an execution has a semantic presentation which we use as the return
value in traces. The semantic and syntactic values are identified in the first-order fragment, but
different syntactic functions may have the same semantics, so the identification does not extend
to higher-order.

A term is a *program* if it is *closed* (every variable occurrence is bound) and of *ground type* (all
functions are applied to arguments). This definition is in line with the expectation that a program
should return a concrete result that the end-user can consume. Thus, we only consider observable
behaviors of programs. Transformations only need to be valid when applied within programs.
Programs degenerate to closed terms in the first-order fragment.

To deal with the need to prove properties “pointwise” that abstractions bring about we use
logical relations. Moggi’s toolkit provides a standard way to define these, thereby lifting properties
to their higher-order counterparts.

Compositionality. In its most basic form, this key feature of denotational semantics means that
a program term’s denotation is defined using the denotations of its immediate subterms. In our
case denotations are sets, where each elements represents a possible behavior of the term, we are interested in establishing a directional generalization of compositionality:

Compositionality (Thm. 7.7). For a program context $\Xi[-]$, if $[M] \subseteq [N]$ then $[\Xi[M]] \subseteq [\Xi[N]]$.

This is a consequence of the monadic design of the denotational semantics using monotonic operators, and is not substantially different from previous work [e.g. 20].

3.3 Relating the Denotational Semantics to the Operational Semantics

Kang et al. presentation assumes top-level parallelism, a common practice in studies of weak-memory models. This comes at the cost of the uniformity and compositionality. In particular, the denotation $[M \parallel N]$ cannot be defined. We resolve this by extending Kang et al.’s operational semantics to support first-class parallelism by organizing thread views in an evolving view-tree, a binary tree with view-labeled leaves, rather than in a fixed flat mapping. Thus, states that accompany executing terms consist of a memory and a view-tree. In discourse, we do not distinguish between a view-leaf and its label.

Remark. Handling parallel composition as a first-class construct allows us to decompose Write-Read Reordering (WR-Reord) $(x := v) ; y? \rightarrow \text{fst} (y?, (x := v))$, a crucial reordering of memory accesses valid under RA but not under SC, into a combination of Write-Read Deorder (WR-Deord) $(x := v) , y? \rightarrow (x := v) \parallel y?$ together with structural transformations and laws of parallel programming:

\[
\begin{align*}
(x := v) ; y? & \rightarrow \text{snd} ((x := v) , y?) \rightarrow \text{snd} ((x := v) \parallel y?) \\
\text{Par. Prog. Law: Symmetry} & \downarrow \quad \text{Structural} \\
\rightarrow \text{snd} (\text{swap} (y? \parallel (x := v))) & \rightarrow \text{fst} (y? \parallel (x := v)) \rightarrow \text{fst} (y?, (x := v)) \\
\text{Par. Prog. Law: Sequencing} & \uparrow
\end{align*}
\]

This provides a separation of concerns: the components of this decomposition are supported by our semantics using independent arguments. It also sheds a light on the interesting part, as they are all valid under SC except for (WR-Deord).

Observability correspondence. We call some of our rewrite rules abstract, such as absorb, and others concrete, such as stutter and mumble. We denote the basic denotation of a term M by $[M]$, which is the denotation were it defined using only the concrete rewrite rules. Traces in the basic denotations directly correspond to interrupted executions, but not so in the (regular) denotations. For example, in our analysis of (WW-Elim), by using absorb, we ended up with a trace in which only one message is added even though the program term adds two messages. Thus, the abstract rewrite rules break the direct correspondence.

Still, some indirect correspondence should remain to justify adequacy. In particular, we would like traces to correspond to observable behavior of programs. In one direction, an even stronger property holds, known as soundness:

Soundness (Thm. 7.8). For every execution of a program M in the operational semantics of RA, there exists $\alpha([\mu, \rho]) \omega :: r \in [M]$ that matches the execution: $\langle \alpha, \mu \rangle$ is the initial state, $\langle \omega, \rho \rangle$ is the final state, and r matches the value returned.

To prove soundness, we take a trace where transitions correspond to the memory-accessing execution steps, and then use mumble to obtain a single transition.

Ignoring the final state, the correspondence holds in the other direction too:

Evaluation Lemma (Lem. 7.10). For every program M and $\alpha([\mu, \rho]) \omega :: r \in [M]$ there is an observable behavior of M with initial state $\langle \alpha, \mu \rangle$ and return value matching r.

Yotam Dvir, Ohad Kammar, and Ori Lahav, Vol. 1, No. 1, Article. Publication date: April 2024.
The lack of correspondence with the final state is an artifact of the concreteness-abstraction divergence between the operational and denotational semantics. Due to this divergence, it is significantly more challenging to establish this direction of the correspondence than in previous work. The challenge lies primarily in proving that abstract rewrite rules can be applied retroactively, deferring them to the top-level. That is, denoting closure under the abstract rewrite rules by \(\neg \), we claim:

Retroactive Closure (Lem. 7.4). If \(M \) is a program, then \(\den{M} = \den{M} \).

Thus, to obtain all of the traces in the (regular) denotation of a term, it is enough to close only under the concrete rewrite rules as the denotation of a program is built-up from its subterms, applying the abstract rewrite rules only at the top level.

The intuition that guides the proof is that the abstract rewrite rules can be percolated outwards:

Rewrite Commutativity (Lem. 7.1). Let \(\pi \) and \(\rho \) be traces such that \(\pi \) can be rewritten to \(\rho \) using both concrete and abstract rewrite rules (denoted \(\pi \stackrel{\alpha}{\rightarrow} \rho \)). Then there exists a trace \(\pi \), such that \(\pi \) can be rewritten to \(\pi \) using only concrete rewrite rules (denoted \(\pi \stackrel{\gamma}{\rightarrow} \pi \)), and \(\pi \) can be rewritten to \(\rho \) using only abstract rewrite rules (denoted \(\pi \stackrel{\delta}{\rightarrow} \rho \)).

The central result is (directional) adequacy, stating that denotational approximation corresponds to refinement of observable behaviors:

Adequacy (Thm. 7.9). If \(\den{M} \subseteq \den{N} \), then for all program contexts \(\Xi \), every observable behavior of \(\Xi \den{M} \) is an observable behavior of \(\Xi \den{N} \).

In particular, \(\den{M} \subseteq \den{N} \) implies that \(N \rightarrow M \) is valid under RA, because the effect of applying it is unobservable. Adequacy follows immediately from the above results. Indeed, using soundness, an observable behavior of \(\Xi \den{M} \) corresponds to a single-transition \(\tau \in \Xi \den{M} \); by the assumption and compositionality \(\tau \in \Xi \den{N} \); and using the evaluation lemma, \(\tau \) corresponds to an observable behavior of \(\Xi \den{N} \).

Abstraction. Brookes’s semantics is fully abstract, meaning that the converse to adequacy also holds: if \(N \rightarrow M \) is valid under SC, then \(\den{N} \supseteq \den{M} \). However, Brookes’s proof relies on an artificial program construct, `await`, that permits waiting for a specified memory snapshot and then step (atomically) to a second specified memory snapshot. Thus, in realistic languages, when this construct is unavailable, Brookes’s full abstraction proof does not apply.

Nevertheless, even without full abstraction, one can still provide evidence that an adequate semantics is abstract by ensuring that it supports known transformations.

To the best of our knowledge, all transformations \(N \rightarrow M \) proven to be valid under RA in the existing literature are supported by our denotational semantics, i.e. \(\den{N} \supseteq \den{M} \). Structural transformations are supported by virtue of using Moggi’s standard semantics. Our semantics also validates “algebraic laws of parallel programming”, such as sequencing \(M \parallel N \rightarrow \langle M, N \rangle \) and its generalization that Hoare and van Staden [22] recognized, \((M_1 ; M_2) \parallel (N_1 ; N_2) \rightarrow (M_1 \parallel N_1) ; (M_2 \parallel N_2) \), which in the functional setting can take the more expressive form in which the values returned are passed on to the following computation. See Figure 3 for a partial list.

4 LANGUAGE AND TYPING

We consider a standard extension of Moggi’s [40] computational lambda calculus with products and variants (labeled sums) further extending it with shared-memory constructs. We parameterize our language, which we call \(A_{RA} \), by its globally available locations, the values we store in and
Laws of Parallel Programming

Symmetry

\[M \parallel N \rightarrow \text{swap} (N \parallel M) \]

Generalized Sequencing

\[(\text{let } a = M_1 \text{ in } M_2) \parallel (\text{let } b = N_1 \text{ in } N_2) \rightarrow \text{match } M_1 \parallel N_1 \text{ with } (a, b), M_2 \parallel N_2\]

Eliminations

Irrelevant Read

\[\ell? ; \langle \rangle \rightarrow \langle \rangle \]

Write-Write

\[\ell := v ; \ell := w \triangleleft \ell := w \]

Write-Read

\[\ell := v ; \ell? \rightarrow \ell := v ; v \]

Write-FAA

\[\ell := v ; \text{FAA} (\ell, w) \triangleleft \ell := (v + w) ; v \]

Read-Write

\[\text{let } a = \ell? \text{ in } \ell := (a + v) ; a \rightarrow \text{FAA} (\ell, v) \]

Read-Read

\[\langle \ell?, \ell? \rangle \rightarrow \text{let } a = \ell? \text{ in } \langle a, a \rangle \]

Read-FAA

\[\langle \ell?, \text{FAA} (\ell, v) \rangle \rightarrow \text{let } a = \text{FAA} (\ell, v) \text{ in } \langle a, a + v \rangle \]

FAA-Read

\[\text{FAA} (\ell, v), \ell? \rightarrow \text{let } a = \text{FAA} (\ell, v) \text{ in } \langle a, a + v \rangle \]

FAA-FAA

\[\langle \text{FAA} (\ell, v), \text{FAA} (\ell, w) \rangle \triangleleft \text{let } a = \text{FAA} (\ell, v + w) \text{ in } \langle a, a + v \rangle \]

Others

Irrelevant Read Introduction

\[\langle \rangle \rightarrow \ell? ; \langle \rangle \]

Read to FAA

\[\ell? \rightarrow \text{FAA} (\ell, 0) \]

Write-Read Deorder

\[\langle (\ell := v), \ell? \rangle \rightarrowf \langle (\ell := v) \parallel \ell? \rangle (\ell \neq \ell') \]

Write-Read Reorder

\[\langle (\ell := v), \ell? \rangle \rightarrowf \text{fst} \langle \ell?, (\ell := v) \rangle (\ell \neq \ell') \]

Fig. 3. A selective list of supported non-structural transformations. Along with Symmetry, the denotational semantics supports all symmetric-monoidal laws with the binary operator (\(\parallel\)) and the unit (\(\langle \rangle\)). Similar transformations, replacing FAA with other RMWs, are supported too. The abstract rewrite rules used to validate a transformation is mentioned, if there is one.

retrieve from these locations, and the primitives we use to atomically mutate these values through a unified read-modify-write construct.

Locations and Storable Values. We fix two finite sets of (shared memory) locations \(\text{Loc}\), ranged over by \(\ell, \ell'\); and (storable) values \(\text{Val}\), ranged over by \(v, w, u\). For example, we may take \(\text{Loc}\) and \(\text{Val}\) to be all 64-bit sequences. In concrete examples, we will use concrete names such as \(x, y, z\) for distinct locations, and numbers for values. For simplicity, we don’t include primitives (such as addition) explicitly, since they require standard minor changes.

Read-modify-write (RMW). These constructs atomically read a value from memory and possibly modify it to some other computed value. Typical languages include the following constructs, which are efficiently compiled to hardware: Compare-and-Swap: modify when stored value match a parameter; Fetch-and-Add: increase by a parameter; and Exchange: always modify to a parameter. For convenience, we include a single RMW construct that expresses all such operations, as well as standard loads. This generalization, especially bringing together loads with RMW operations, is non-standard, but makes our development more uniform.

Formally, a modifier is a partial function \(\Phi : \text{Val} \rightarrow \text{Val}\), which represents an RMW operation that reads a value \(v\) from memory; and if \(\Phi\) is defined on \(v\), atomically writes \(\Phi(v)\) instead. For supporting parameters, an \(n\)-ary modifier is a partial function \(\varphi_\cdot : \text{Val}^n \times \text{Val} \rightarrow \text{Val}\). Our language requires a family RMW, indexed by the natural numbers, consisting of sets \(\text{RMW}_n\) of \(n\)-ary
modifiers which we call \textit{primitive} modifiers. For example, the primitive modifiers for common operations, which have efficient implementations on hardware, are as follows, where \(\bot\) means ‘undefined’:

\begin{align*}
\text{Load} & \quad \text{load}(v) := \bot \\
\text{Compare-and-Swap} & \quad \text{cas}_{(w,u)}(v) := \text{if } v = w \text{ then } u \text{ else } \bot \\
\text{Exchange} & \quad \text{xchg}_{(w)}(v) := w \\
\text{Fetch-and-Add} & \quad \text{faa}_{(w)}(v) := v + w
\end{align*}

We omitted load’s 0-parameters (\(()\)); faa requires a semantic addition operator on values (+).

\textbf{Syntax.} Given parameters Loc, Val, and RMW, Figure 4(a) presents \(\lambda_{RA}\)’s syntax. The types are standard, comprising tuple, sum and function types. We draw constructor names for variants from a countably infinite set \(i \in \text{Lab}\). Assuming Lab contains Loc and Val, we identify them with sum types Val and Loc whose constructors are the locations and values, each labeling the empty tuple type.

The language’s terms are also standard other than the highlighted shared-memory constructs. We draw program variables from a countably infinite set \(a, b, c \in \text{PVar}\). For simplicity, we assume labels and variables are distinct: \(\text{PVar} \cap \text{Lab} = \emptyset\). Tuple and variant constructors are standard, and we require the total sum type to disambiguate each variant constructor, which we omit when this type can be inferred. The pattern matching constructs for tuples and variants are standard, with binding variables occurrences in each pattern. In the tuple case, we require the variables in the pattern to be distinct. Function abstraction and application are standard, and we annotate the bound variable with its type, again omitting the annotation when we can infer it. The operational semantics, defined in §5, follows a call-by-value evaluation strategy, and except for parallel composition \(M \parallel N\), evaluation follows a left-to-right convention.

We index the RMW construct with a primitive modifier \(\varphi \in \text{RMW}\), and its first argument is a location from which to read and possibly modify, followed by a tuple supplying the parameters.

\begin{align*}
A, B := & \quad \text{type} \\
A \rightarrow B & \quad \text{function} \\
(A_1 \cdots \ast A_n) & \quad \text{tupel/product} \\
\{i_1 \text{ of } A_1\} & \quad \text{variant/sum} \\
\{\cdots | i_n \text{ of } A_n\} & \\
M, N := & \quad \text{term} \\
a & \quad \text{variable/identifier} \\text{function} \\
\lambda a : A. M & \quad \text{abstraction} \\
\text{application} & \\
\langle M_1, \ldots, M_n \rangle & \quad \text{constructor} \\
\langle A_1, \ldots, M \rangle & \quad \text{tuple} \\
i. A M & \quad \text{variant} \\
\text{pattern matching} & \\
\text{match } M \text{ with } \langle a_1, \ldots, a_n \rangle. N & \\
\text{on variables} & \\
\text{on tuples} & \\
\text{match } M \text{ with } \{i_1 \text{ of } A_1| \cdots | i_n \text{ of } A_n\} & \\
\text{shared-state concurrency} & \\
\text{read-modify-write} & \\
\text{write} & \\
\text{parallel composition} & \\
\end{align*}

\begin{align*}
(a : A) \in \Gamma & \quad \text{ } \\
\Gamma \vdash a : A & \quad \text{ } \\
\Gamma \vdash \lambda a : A. M : A \rightarrow B & \\
\Gamma \vdash M : A & \quad \text{ } \\
\Gamma \vdash N : A \rightarrow B & \\
\Gamma \vdash NM : B & \\
\forall i, \Gamma \vdash M_i : A_i & \\
\Gamma \vdash \langle M_1, \ldots, M_n \rangle : (A_1 \ast \cdots \ast A_n) & \\
\Gamma \vdash M : \langle A_1 \ast \cdots \ast A_n \rangle & \\
\Gamma, a_1 : A_1, \ldots, a_n : A_n \vdash N : A & \\
\Gamma \vdash \text{match } M \text{ with } \langle a_1, \ldots, a_n \rangle. N : A & \\
\Gamma \vdash M : A_i & \quad A = \{i_1 \text{ of } A_1| \cdots | i_n \text{ of } A_n\} \\
\Gamma \vdash A_i. M_i & \\
\Gamma \vdash M : \{i_1 \text{ of } A_1| \cdots | i_n \text{ of } A_n\} & \\
\forall i, \Gamma, a_i : A_i \vdash N_i : A & \\
\Gamma \vdash \text{match } M \text{ with } \{i_1 a_1.N_1| \cdots | i_n a_n.N_n\} : A & \\
\varphi \in \text{RMW}_n & \\
\Gamma \vdash \text{rmw}_{\varphi}(M; N) & \\
\Gamma \vdash M : \text{Loc} & \quad \text{ } \\
\Gamma \vdash N : \text{Val} & \quad \text{ } \\
\Gamma \vdash \text{rmw}_{\varphi}(M; N) : \text{Val} & \\
\Gamma \vdash M : \text{Loc} & \quad \text{ } \\
\Gamma \vdash N : \text{Val} & \quad \text{ } \\
\Gamma \vdash M : A & \quad \text{ } \\
\Gamma \vdash N : B & \quad \text{ } \\
\Gamma \vdash M \parallel N : (A \ast B) & \\
\end{align*}

\begin{figure}[h]
\centering
\begin{align*}
\Gamma \vdash M \equiv N & : 1 \\
\Gamma \vdash M \parallel N : B
\end{align*}
\caption{The \(\lambda_{RA}\)-calculus: (a) syntax and (b) typing rules.}
\end{figure}
The term $\text{rmw}_{\varphi}(M; N)$ executes by evaluating M to a location ℓ, then evaluating N to a tuple of values $\hat{w} = \langle w_1, \ldots, w_{\varphi, \text{ax}} \rangle$. Then, atomically, reading a value v from ℓ and writing $\varphi_{\hat{w}, v}$ if it’s defined. Regardless of whether the write occurred, the read value is returned.

We desugar the typical memory dereferencing primitives using our example modifier primitives:

$$M? := \text{rmw}_{\text{load}}(M; \langle \rangle) \quad \text{CAS}(M, N, K) := \text{rmw}_{\text{cas}}(M; \langle N, K \rangle)$$

$$\text{XCHG}(M, N) := \text{rmw}_{\text{xchg}}(M; \langle N \rangle) \quad \text{FAA}(M, N) := \text{rmw}_{\text{faa}}(M; \langle N \rangle)$$

Assignment $M := N$ is standard, executing by first evaluating M to a location ℓ; evaluating N to a value v; storing the value v at the location ℓ in memory; and finally returning $\langle \rangle$. Parallel composition interleaves the execution of both its threads, and evaluates to the pair of results, one for each thread.

We do not include loops in this language, which we leave to future work. While important, recursion will muddy the waters substantially, requiring us to bring into context domain theoretic concepts like least upper-bounds of ω-chains and powerdomain constructions. Even without recursion, λ_{RA} is expressive enough for us to discuss interesting examples and transformations.

We use standard syntactic sugar:

- Let-binding: $\lambda a = M \text{ in } N := \text{match } \langle M \rangle \text{ with } \langle a \rangle$. N
- Sequencing: $M ; N := \lambda _ = M \text{ in } N$
- Value tuples: $\text{Val}^n := (\text{Val}^* \cdot \cdots \cdot \text{Val}^*)$
- Unit: $1 := ()$
- Enum. type: $\{ t_1 | \cdots | t_n \} := \{ t_1 \text{ of } 1 | \cdots | t_n \text{ of } 1 \}$
- Enum. label: $A.t := A.t' \langle \rangle$

Remark. RMWs, unlike assignments, must modify an existing message in memory. Thus, assignment $M := N$ is not equivalent to an XCHG that discards its read value, i.e. $\text{XCHG}(M, N) ; \langle \rangle$.

Type system. We present the type system in Figure 4(b). Each typing judgment $\Gamma \vdash M : A$ relates a type A, a term M, and a typing context Γ which associates to each of M’s unbound variable a a type B_a, written $(a : B_a) \in \Gamma$. We write \cdot for the empty context, and say that M is closed if $\cdot \vdash M : A$. The shadowing extension of Γ by $c : C$, denoted $\Gamma, c : C$, is equal to Γ except for associating C to c. The typing rules for the shared-memory constructs are standard, and reflect their informal explanation above. In particular, for RMW the arity of the tuple must match the arity of the modifier. Each term has at most one type in a given typing context, and in that case the typing derivation is unique. We denote by $\Gamma \vdash A$ the set of terms $\{ M | \Gamma \vdash M : A \}$.

A program is a closed term of ground type—iterated sum and product types:

$$G ::= (G_1 \ast \cdots \ast G_n) \mid \{ t_1 \text{ of } G_1 | \cdots | t_n \text{ of } G_n \}$$

(Ground types)

5 OPERATIONAL SEMANTICS FOR RELEASE/ACQUIRE CONCURRENCY

We start this section with a precise account of the “view-based” machine (§5.1) presented in §2.3. We observe that this semantics admits a non-deterministic view forwarding step (§5.2) which our metatheory uses. Our denotational semantics also accounts for both known and novel semantic invariants on the memories that can evolve when executing a well-typed program (§5.3).

5.1 View-based Semantics

Our formalization of the operational semantics follows Kang et al. [28] and Kaiser et al. [27]. The account below grounds the explanations we gave in §2.3 more formally.

Timestamps. We maintain a per-location timestamp order, which constrains the order in which threads will read values from memory. We use rational numbers \mathbb{Q} as timestamps, ranged over by t, q, p, though any choice of an infinite, dense, and totally-ordered set suffices.
Views. A view is a location-indexed tuple of timestamps, i.e. an element \((\kappa_\ell)_{\ell \in \text{Loc}}\) in View := \(Q^{\text{Loc}}\). We let \(\alpha, \kappa, \sigma, \omega\) range over views. In examples with \(\text{Loc} = \{x, y\}\), we denote by \(\langle x@t ; y@q \rangle\) the view that has \(t\) in the \(x\) component and \(q\) in the \(y\) component. We order views location-wise, i.e. \(\alpha \leq \omega\) when \(\forall \ell \in \text{Loc}. \alpha_\ell \leq \omega_\ell\), and in this case say that \(\omega\) dominates \(\alpha\). We also employ \(\sqcup\) and \(\sqcap\) for pointwise maximum and minimum of views, and denote by \(\kappa [\ell \mapsto t]\) the view that is equal to \(\kappa\) everywhere except \(\ell\), where it equals \(t\).

Messages. A message \(v\) is a tuple in Msg := \(\text{Loc} \times \text{Val} \times Q \times \text{View}\), written \(v = \ell . w @ (q, \kappa_\ell) \langle \kappa \rangle\), where \(q < \kappa_\ell\). Here, \(\ell\) is the location of the message, \(\omega\) is the value of the message, \(q\) is the initial timestamp of the message, and \(\kappa\) is the view of the message. We say this message dovetails another message if its timestamp is \(q\).

We use projection-notation for components of \(v\): \(v.1c := \ell\), \(v.1l := v\), \(v.i := q\), and \(v.vw := \kappa\). The (final) timestamp of the message is \(v.t := \kappa_\ell\). In concrete examples, we reduce duplication by eliding the timestamp from the view, e.g. \(\gamma : 0@0.5, 4.2 \langle x@1 \rangle\). The message’s two timestamps delimit the segment of the message: the interval \(v.seg := (v.i, v.t)\).

We range over messages using \(v, e, \beta\). We extend notation from messages to sets of messages by \(\mu, \rho, \theta\) range over memories, and denote the set of messages in \(\mu\) at location \(\ell\) by \(\mu_\ell := \{v \in \mu | v.1c = \ell\}\).

Example 5.1. The memory illustrated at the top of Figure 7(a) could have resulted from a program execution starting with the memory \(\{v_1, e_1\}\). A program may add messages out of the timeline order \((e_3, e_2, e_1)\); dovetails messages \((v_2.t = v_3.i)\); or leave gaps between messages \((v_1.t < v_2.i)\). Message views need not increase along the timeline \((e_2.t \leq e_3.t \text{ yet } e_2.vw \notin e_3.vw)\).

View trees. Kang et al.’s [28] original presentation of the view-based semantics studies top-level parallelism, requiring flat thread-view mappings. Since we allow nesting of parallel composition anywhere in the program, we use a nested view-tree mapping. Formally, a view-tree is a binary tree with view-labeled leaves. We denote the set of view-trees by VTree, ranged over by \(T, R, H\). We denote: by \(\kappa\) the leaf with label \(\kappa\); by \(T \xrightarrow{\kappa} R\) the tree whose immediate left and right subtrees are \(T\) and \(R\); and by \(T.1f\) the set of labels of leaves of a view-tree \(T\). We lift the order \(\leq\) from views to view-trees leaf-wise: \(\kappa \leq \sigma\) when \(\kappa \leq \sigma\), and \(T \xrightarrow{\kappa} R \leq T' \xrightarrow{\kappa} R'\) when \(T \leq T'\) and \(R \leq R'\).

Operational semantics. Figure 5 presents the operational semantics for \(\lambda_{RA}\). A configuration \(\langle T, \mu \rangle\), \(M\) consists of a view-tree \(T\) capturing the view of all active threads; the current memory \(\mu\); and a closed term \(M\). The state of the configuration is the pair \(\langle T, \mu \rangle\). The relation \(\alpha \terms RA \beta\) represents (atomic) steps between configurations. The label \(e\), distinguishing the memory-accessing steps \((\bullet)\) from the rest \((\circ)\), is used as a proof tool (Appendix B.3) and can be otherwise ignored. We denote \(\alpha \terms RA \beta := \alpha \terms RA \cup \beta \terms RA\).

Sequential CBV constructs. We omit the standard CBV transitions, demonstrating the standard congruence and \(\beta\)-reduction steps for function application: \(\text{APP, APPLEFT, APPRIGHT}\). Values are:

\[
V, W := \langle V_1, \ldots, V_n \rangle | A.t \ V | \lambda a : A. M \quad \text{ (Values)}
\]

The congruence steps include the assignment and RMW construct, and use any view-trees \(T, T'\) and memories \(\mu, \mu'\) which they maintain between the inductive hypothesis and conclusion. The \(\beta\)-reduction steps use any view-leaf \(\kappa\) and memory \(\mu\) which they maintain across the transition.
\[\text{App} \]

\[\langle \kappa, \mu \rangle, (\lambda a : A. M) V \sim^{\varnothing}_{\text{RA}} \langle \kappa, \mu \rangle, M[a \mapsto V] \]

\[\text{AppLeft} \]

\[(T, \mu), M \sim^{e}_{\text{RA}} \langle T', \mu' \rangle, M' \]

\[\langle T, \mu \rangle, MN \sim^{e}_{\text{RA}} \langle T', \mu' \rangle, MN' \]

\[\text{ParInit} \]

\[\langle \kappa, \mu \rangle, M \parallel N \sim^{e}_{\text{RA}} \langle \tilde{k}, \tilde{\kappa}, \mu \rangle, M \parallel N \]

\[\text{AppRight} \]

\[(T, \mu), N \sim^{e}_{\text{RA}} \langle T', \mu' \rangle, N' \]

\[\langle T, \mu \rangle, VN \sim^{e}_{\text{RA}} \langle T', \mu' \rangle, VN' \]

\[\text{ParLeft} \]

\[\langle T, \mu \rangle, M \parallel N \sim^{e}_{\text{RA}} \langle T', \mu' \rangle, M' \]

\[\langle T \parallel R, \mu \rangle, M \parallel N \sim^{e}_{\text{RA}} \langle T', R, \mu' \rangle, M' \parallel N' \]

\[\text{Store} \]

\[\alpha t < t \quad (q, t] \cap \bigcup_{\mu \in \text{seg}} = \emptyset \quad \omega = \alpha [t \mapsto t] \]

\[\langle \dot{\alpha}, \mu \rangle, \ell := v \sim^{\alpha}_{\text{RA}} \langle \dot{\omega}, \mu \cup \{ \ell : v @ \langle q, \omega \ell \rangle \} \}, \emptyset \]

\[\text{ReadOnly} \]

\[\ell @ (q, \kappa t) \langle \kappa \rangle \in \mu \quad \alpha t \leq \kappa t \quad \varphi_{\overline{\omega} v} \neq \bot \quad (\kappa t, t] \cap \bigcup_{\mu \in \text{seg}} = \emptyset \quad \omega = (\alpha \cup \kappa) [t \mapsto t] \]

\[\langle \dot{\alpha}, \mu \rangle, \text{rmw}_{\varphi} (\ell; \overline{\omega}) \sim^{\alpha}_{\text{RA}} \langle \dot{\omega}, \mu \rangle, v \]

\[\text{RMW} \]

\[\ell @ (q, \kappa t) \langle \kappa \rangle \in \mu \quad \alpha t \leq \kappa t \quad \varphi_{\overline{\omega} v} \neq \bot \quad (\kappa t, t] \cap \bigcup_{\mu \in \text{seg}} = \emptyset \quad \omega = (\alpha \cup \kappa) [t \mapsto t] \]

\[\langle \dot{\alpha}, \mu \rangle, \text{rmw}_{\varphi} (\ell; \overline{\omega}) \sim^{\alpha}_{\text{RA}} \langle \dot{\omega}, \mu \rangle, v \]

\[\text{ParFin} \]

\[\omega = \kappa \cup \sigma \]

\[\langle \tilde{k}, \tilde{\alpha}, \mu \rangle, V \parallel W \sim^{\emptyset}_{\text{RA}} \langle \dot{\omega}, \mu \rangle, \langle V, W \rangle \]

\[\text{ParRight} \]

\[\langle R, \mu \rangle, N \sim^{e}_{\text{RA}} \langle R', \mu' \rangle, N' \]

\[\langle T \parallel R, \mu \rangle, M \parallel N \sim^{e}_{\text{RA}} \langle T', R, \mu' \rangle, M' \parallel N' \]

\[\text{Fig. 5.} \] The operational semantics of λ_{RA} (selected rules).

Substitution. A (program) substitution Θ is a partial function from program variables to closed values, which extends to the identity on all other variables, and then to terms by recursively applying to subprograms, removing bound variables from the substitution’s domain, e.g.:

$\Theta \ (\text{match } M \text{ with } \langle a_1, \ldots, a_m \rangle, N) := \text{match } \Theta M \text{ with } \langle a_1, \ldots, a_m \rangle, \Theta |_{\{a_1, \ldots, a_m\}} N$

where $\Theta |_{\{X\}}$ is obtained by removing X from Θ’s domain. We write $M[V_1/a_1 \ldots V_n/a_n]$ for the application of the substitution that maps $a_i \mapsto V_i$ on M.

Parallel composition. The ParInit rule initializes a parallel composition by duplicating its view-leaf to a new node. The rules ParLeft and ParRight non-deterministically interleave the evaluation of the left and right threads. After both threads evaluate, ParFin joins the thread views back into a single leaf, and returns the pair of results.

Example. We show an example execution from a birds-eye view:

$\langle \mu_0, \dot{\alpha} \rangle, M ; (N_1 \parallel N_2) \sim^{e}_{\text{RA}} \langle \mu_1, \dot{\alpha}' \rangle, N_1 \parallel N_2 \sim^{e}_{\text{RA}} \langle \mu_1, \dot{\alpha}' \rangle, N_1 \parallel N_2$

$\sim^{e}_{\text{RA}} \langle \rho, \dot{\omega}_1 \overline{\omega}_2 \rangle, V_1 \parallel V_2 \sim^{e}_{\text{RA}} \langle \rho, \omega_1 \cup \omega_2 \rangle, \langle V_1, V_2 \rangle$

First, M runs until it returns a value, which is discarded by the sequencing construct. Next, the parallel composition $N_1 \parallel N_2$ activates. The threads then interleave executions, each with its associated side
of the view-tree, interacting via the shared memory. Finally, once each thread returns a value, they synchronize.

Assignment. The STORE rule for location \(\ell \) picks a free segment \((q, t]\) where \(t \) is strictly greater than the thread’s view for \(\ell \). The step updates this thread’s view to \(\omega \) by increasing the timestamp for \(\ell \) to \(t \); adds a message to memory with this updated view \(\omega \); and returns the unit value.

Read-modify-write. The READONLY and RMW rules for the \texttt{rmw} construct both start by picking a message to the given location to read from that has the same or a larger timestamp than the thread’s view, then incorporate the message’s view in the thread’s view, and finally return the value they read. If the given primitive modifier is undefined for the given parameters and message’s value, nothing else happens (READONLY rule). If the modifier is defined (RMW rule), much like the STORE rule, a timestamp strictly greater than the thread’s view for the location is chosen to update the thread’s view, and a message is added with this updated view. In contrast to the STORE rule, here the added message’s segment must dovetail with the message from which the RMW read, still avoiding any existing segment in this location. This dovetailing is only possible if we read from a message with no dovetailing succeeding message. In particular, a message can only be picked once to justify the RMW rule during an execution.

Initial memory and configuration. An initial memory \(\mu \) is a memory in which every location has exactly one message whose view contains the timestamps of the other messages. An initial configuration state is one with an initial memory and a view-leaf mapping each location to the timestamp of the unique message in memory of that location.

Evaluation. We’re interested in the behaviors closed terms exhibit when run to completion. Let the Kleene star (\(* \)) denote the reflexive-transitive closure of a relation. A configuration \((T, \mu), M\) evaluates to a value \(V \), written \((T, \mu), M \Downarrow_{\text{RA}} V\), when \((T, \mu), M \xrightarrow{h} (R, \rho), V\) for some state \((R, \rho)\). We write \((T, \mu), M \Downarrow_{\text{RA}} V\) when there is no such \((R, \rho)\). In the next examples, we write \(M \Downarrow_{\text{RA}} V\) when \(M\) may evaluate to \(V\) from every initial state, and \(M \Downarrow_{\text{RA}} V\) when it cannot evaluate to \(V\) from any initial state.

Example 5.2. We can give a more precise account of the litmus tests \((\text{SB})\) and \((\text{MP})\) from \$2:

\[
\begin{align*}
 &x := 0; y := 0; ((x := 1; y?) || (y := 1; x?)) \Downarrow_{\text{RA}} (0, 0) \\
 &x := 0; y := 0; ((x := 1; y := 1) || (y?, x?)) \Downarrow_{\text{RA}} (\langle \rangle, \langle 1, 0 \rangle)
\end{align*}
\]

5.2 Non-deterministic View Forwarding

It is technically convenient to extend \(\sim_{\text{RA}}\) with an additional step that non-deterministically advances the view of a thread. The effect of this step is to prohibit the thread from reading certain messages from memory, and propagating this prohibition to other threads that read values this thread writes. We think of this step as read-independent propagation of updates to threads. Lahav et al. [32] propose a similar extension when defining liveness conditions for RA.

Formally, we obtain \(\sim_{\text{RA}}\) by adding the \texttt{Adv} rule in Figure 6 to the rules presented in Figure 5, after replacing RA with RA\(_{\leq}\) and removing the labels. The \texttt{Adv} step advances the thread’s view like the READONLY rule without changing the term component of the configuration. A-priori, the resulting system may exhibit more behaviors since \texttt{STORE} and RMW steps will append messages with further advanced views. However, advancing views within messages only further constrains possible behaviors.

\[
\begin{align*}
 \texttt{Adv} &: \omega \@ (q, \kappa_f) \langle \kappa \rangle \in \mu \\
 &\alpha_{t} \leq \kappa_{t} \\
 &\omega = \alpha \cup \kappa \\
 \frac{\langle \alpha, \mu \rangle, M \xrightarrow{h} (R, \rho), V}{\langle \alpha, \mu \rangle, M \xrightarrow{\text{Adv}} (\alpha, \mu), M}
\end{align*}
\]

Fig. 6. The \texttt{Adv} rule.
We formalize this intuition using a simulation argument. One direction is straightforward: every execution in RA is an execution in RA\(_\prec\) that doesn’t use Adv, and so RA\(_\prec\) exhibits every behavior RA does. For the converse, we define a binary relation between configuration states \(\succeq\) such that \(\langle T, \mu \rangle \succeq \langle R, \rho \rangle\) when the following hold.

- The simulator’s view-tree dominates the simulator’s view-tree: \(R \leq T\).
- There are bijections \(\phi_\ell : \mu_\ell \rightarrow \rho_\ell\) for every location \(\ell\) such that if \(\phi_\ell(v) = e\), then the view of the simulator’s message dominates the simulator’s message: \(e.vw \leq v.vw\), and the messages’ value and segment agree: \(v.vl = e.vl, v.i = e.i, v.t = e.t\).

The relation \(\succeq\) is a weak simulation:

Proposition 5.3. If \(\langle T, \mu \rangle \succeq \langle R, \rho \rangle\) and \(\langle T, \mu \rangle, M \sim RA_{\prec} \langle T', \mu' \rangle, M'\), then there exists a configuration state \(\langle R', \rho' \rangle\) such that \(\langle R, \rho \rangle, M \sim RA \langle R', \rho' \rangle\).

Like \(\sim RA\), so does \(\sim RA_{\prec}\) yield an evaluation semantics \(\Downarrow RA_{\prec}\). By **Proposition 5.3**, they coincide:

Corollary 5.4. For every configuration \(\langle T, \mu \rangle, M\) and value \(V\):

\[\langle T, \mu \rangle, M \Downarrow RA V \iff \langle T, \mu \rangle, M \Downarrow RA_{\prec} V\]

Thus, we denote both by \(\Downarrow\).

5.3 Semantic Invariants

Our denotational model uses semantic invariants that initial states possess and RA\(_\prec\) steps preserve. During our presentation of the invariants we give intuitive explanations for why the hold. These are formally grounded in **Theorem 5.15** and **Proposition 5.18** below.

Basic memory invariants. A memory \(\mu\) is scattered when the segments of messages in the same location are pairwise disjoint: \(\forall \ell \in \text{Loc} \forall v, e \in \mu_\ell. v.\text{seg} \cap e.\text{seg} \neq \emptyset \implies v = e\). Initial memories are scattered and execution steps preserve this property since added messages can only occupy unused segments.

Example 5.5. This memory is scattered, which we visualise using the scattering condition:

\[
\begin{align*}
\text{y:1@}(-1, 0) & \langle x@5 \rangle, \text{y:3@} (0, 7) \langle x@8 \rangle \\
\text{x:0@}(-1, 0) & \langle y@0 \rangle, \text{x:2@} (4, 5) \langle y@7 \rangle
\end{align*}
\]

We think of timestamps as names, i.e., abstract pointers. Formally, a view \(\kappa\) points to a message \(e\), denoted by \(\kappa \mapsto e\), when \(\kappa\) holds \(e\)’s timestamp at \(\kappa\)’s location: \(\kappa.e.lc = e.t\). A view \(\kappa\) points to memory \(\mu\), denoted by \(\kappa \mapsto \mu\), when it points to a \(\mu\)-message in all locations: \(\forall \ell \in \text{Loc} \exists e \in \mu_\ell. \kappa \mapsto e\). A message \(v\) points to another message \(e\) or memory \(\mu\) when its view \(v.vw\) points to that message or memory, denoted by \(v \mapsto e\) and \(v \mapsto \mu\). A memory \(\mu\) is connected when it is scattered, and every message within it points to it: \(\forall v \in \mu. v \mapsto \mu\).

Example 5.6. Example 5.5’s memory is not connected: \(e_2\) doesn’t point to any message in \(x\). This memory is connected (left), with its timestamp orders (middle) and points-to relations (right):
Initial memories are connected, and execution steps preserve memory connectedness, assuming that all thread views point to the current memory: when a thread adds a message to memory, it uses its own view with an advanced timestamp for the message’s location, maintaining connectedness.

Causal memory invariants. The points-to relation tracks some causal dependencies. Intuitively, events should not be caused by future events, so causal paths, i.e. paths in $\mu.gph := \mu, (\rightarrow) \backslash id_{\mu}$, should not lead to the future along any timeline. We refine the points-to relation to enforce this.

Formally, we say that a view κ points downwards to a message e, written $\kappa \leftarrow e$ when it points to it, $\kappa \leftarrow e$, and it dominates e’s view, $\kappa \succeq e.vw$. A view points downwards into a scattered memory μ, denoted by $\kappa \leftarrow \mu$, when it points downward to a message in μ in every location, i.e.: $\forall t \in \text{Loc}: \exists e \in \mu.t. \kappa \leftarrow e$. We say that a message points downward into a memory, writing $v \leftarrow \mu$, when its view does: $v.vw \leftarrow \mu$. We say that a memory μ is causally connected, when it is connected, and every message within it points downwards into it: $\forall v \in \mu. v \leftarrow \mu$.

To further conserve space in the following examples, we omit locations from messages, instead tagging the row in the set. For example, by $5@\langle 6,7 \rangle \langle 7 \rangle$ in the y row we mean $y:5@\langle 6,7 \rangle \langle x@7 \rangle$.

Example 5.7. The memory from Example 5.6 is not causally connected because $e_1 \rightarrow v_2$ while nonetheless $e_1,vw_{y} = 0 \succeq 7 = v_2.vw_{y}$. The following memory is causally connected:

\[
\begin{align*}
\begin{cases}
y : & 1@(-1,0) \langle 0 \rangle, 3@\langle 0,5 \rangle \langle 0 \rangle, 5@\langle 6,7 \rangle \langle 7 \rangle \\
x : & 0@(-1,0) \langle 0 \rangle, 2@\langle 4,5 \rangle \langle 0 \rangle, 4@\langle 5,7 \rangle \langle 7 \rangle
\end{cases}
\end{align*}
\]

_initial

Initial memories are causally connected, and execution steps preserve this together with view-trees labeled solely by downward-pointing views. In showing this, particularly when observing steps that load a message, the following fact helps; pointing downwards is a stronger condition than may first appear:

Lemma 5.8. Assume μ is causally connected. Then $\kappa \leftarrow \mu$ iff $\kappa = \bigcup \{ e \in \mu \mid \kappa \rightarrow e \}.vw$.

Paths in a causally connected memory’s graph descend down its timelines:

Proposition 5.9. Let μ be a scattered, downward pointing memory, with a path $v \rightarrow^* e$ in $\mu.gph$.

(1) Views decrease along the path: $v.vw \succeq e.vw$.

(2) If there is also a path $e \rightarrow^* v$, i.e., v and e are part of a cycle, then $v.vw = e.vw$.

(3) If they share the location, $v.lc = e.lc$, their timestamps decrease along the path: $v.t \succeq e.t$.

If a causally connected memory μ has a message in location t, then it has a timestamp-minimal one which we denote by $\min_{\mu.t}$, i.e. $(\min_{\mu.t})_t = \min_{\mu.t}$. We say that causally connected memory μ is well-formed when it has at least one message at each location, and cycles within $\mu.gph$ consist solely of minimal messages, i.e. if $v \in \mu$ is part of a cycle in $\mu.gph$, then $v = \min_{\mu.v.lc}$.

Example 5.10. The memory from Example 5.7 is not well-formed: its minimal messages are v_1,e_1, but v_3 and e_3 are on a cycle. The following memory is:

\[
\begin{align*}
\begin{cases}
y : & 1@(-1,0) \langle 0 \rangle, 3@\langle 0,5 \rangle \langle 7 \rangle, 5@\langle 6,7 \rangle \langle 0 \rangle \\
x : & 0@(-1,0) \langle 0 \rangle, 2@\langle 4,5 \rangle \langle 7 \rangle, 4@\langle 5,7 \rangle \langle 0 \rangle
\end{cases}
\end{align*}
\]

A hypothetical language that allows atomic initialization of cyclic pointers in RA memory locations might include a construct for simultaneous mutation and will violate this invariant, but
A view-node is well-formed for a parallel composition only when its immediate subtrees are well-formed. They find a parallel composition sub-term. These follow the congruence rules from the operational semantics. We denote the set of well-formed memories by \(\text{Mem} \). Figure 7 gives a positive example (top) and a negative example (bottom).

Proposition 5.11. Let \(\mu \) be a well-formed memory, and \(\ell \in \text{Loc} \).

1. Minimal messages point at minimal messages: if \(\min \mu \rightarrow v \), then \(v \) is a minimal message.
2. Memory extension preserves minimal messages: if \(\mu \subseteq \rho \) is well-formed, then \(\min \mu = \min \rho \).

We denote the set of well-formed memories by \(\text{Mem} \). Figure 7 gives a positive example (top) and a negative example (bottom).

View-tree invariants. Like memories, view-trees also satisfy certain invariants during execution. In particular, the invariant that all thread views point downwards into the current memory depends on the invariants of memory, and vice-versa. Formally, we say that a view-tree points to downward into memory \(\mu \), and write \(T \rightarrow \mu \) and \(T \leftarrow \mu \) when \(\kappa \rightarrow \mu \) and \(\kappa \leftarrow \mu \) for every \(\kappa \in T.1.\ell \). We then say that a state \(\langle T, \mu \rangle \) is well-formed when \(\mu \) is well-formed and \(T \leftarrow \mu \).

While the labels of the view-tree are related to the memory, its structure is intimately related to the syntactic structure of the configuration’s term. We define this property as an inductive relation \(\Gamma \vdash M \) specifying when \(T \) is well-formed for a term \(M \). Every view-leaf is well-formed for any term. A view-node is well-formed for a parallel composition only when its immediate subtrees are well-formed for each thread. The rest of the rules reach through the term’s evaluation context until they find a parallel composition sub-term. These follow the congruence rules from the operational semantics.
semantics, which we demonstrate with the λ-L and λ-R rules:

<table>
<thead>
<tr>
<th>LEAF</th>
<th>NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa \vdash M$</td>
<td>$T \not\vdash M \quad R \not\vdash N$</td>
</tr>
<tr>
<td>$\kappa \vdash M$</td>
<td>$T \not\vdash R \not\vdash M | N$</td>
</tr>
</tbody>
</table>
| λ-L: $T \not\vdash R \vdash M$ | λ-R: $T \not\vdash R \vdash N$

Example 5.12. For $M = (\lambda a. N_1 \parallel N_2) (M_1 \parallel M_2)$, we have $\kappa \vdash M$ and $\kappa_1 \vdash \kappa_2 \vdash M$. Intuitively, the evaluation context in M is $\lambda a. N_1 \parallel N_2$ [−], and the active component—where reduction takes place—is $(M_1 \parallel M_2)$. The execution of $N_1 \parallel N_2$ is suspended under the λ-abstraction, so we associate no views with its threads. The view-node is well-formed for the active component by NODE.

For $N = (\lambda a. N_1 \parallel N_2) V$, the view node is not well-formed: $\kappa_1 \vdash \kappa_2 \not\vdash N$. The evaluation context is empty, and the active (single) thread is $(\lambda a. N_1 \parallel N_2) V$: the next execution step has to be λ-APP. Only a view-leaf is well-formed for such a program.

When a tree is well-formed for a program, each view in T corresponds to an M-subterm by the derivation of $T \not\vdash M$ up to the leaves:

Proposition 5.13. Every tree well-formedness judgement $T \not\vdash M$ has a unique derivation, the leaves of which induce an injective mapping from T’s view-leaves to M’s subterms.

Example 5.14. The leaves of the unique derivation tree for $\kappa_1 \vdash \kappa_2 \vdash (\lambda a. N_1 \parallel N_2) (M_1 \parallel M_2)$ are the instances $\kappa_i \vdash M_i$ of the LEAF rule.

Execution invariants. Collecting the invariants, a configuration $(T, \mu), M$ is well-formed of type A when: its state (T, μ) is well-formed; its term is (necessarily uniquely) well-typed $\cdot \not\vdash M : A$; and its view-tree is well-formed for its term: $T \not\vdash M$. The steps of RA$_\leq$ preserve well-formedness:

Theorem 5.15 (Preservation). If $(T, \mu), M \xrightarrow{\text{RA}_\leq} (R, \rho), N$ and $(T, \mu), M$ is a well-formed configuration of type A, then $(R, \rho), N$ is a well-formed configuration of type A.

From now on, we only consider steps between well-formed configurations.

Execution steps maintain some relationships between initial and final states. First, the timestamp of a new message lies between some thread’s initial and final views:

Lemma 5.16. Assume $(T, \mu), M \xrightarrow{\text{RA}_\leq} (R, \rho), N$ changed the memory, i.e. $\rho \neq \mu$. Then: the trees have the same shape; $T \leq R$; and there is a message v such that $\rho = \mu \oplus \{v\}$. Moreover, there are view-leaves α in T and ω in R in corresponding positions, such that $\alpha \leq v . \omega \leq \omega$ and $\alpha . v . \iota < v . \iota$.

The view-tree structure changes during PARIInit and PARIFin, so they cannot always be compared leaf-to-leaf as in Lemma 5.16. However, the sets of views that label each tree still maintain the Egli-Milner order induced by the view order:

Lemma 5.17 (Egli-Milner for view-leaves). Assume $(T, \mu), M \xrightarrow{\text{RA}_\leq} (R, \rho), N$.

- For every $\alpha \in T . \perp f$, there exists a leaf $\omega \in R . \perp f$, such that $\alpha \leq \omega$.
- For every $\omega \in R . \perp f$, there exists a leaf $\alpha \in T . \perp f$, such that $\alpha \leq \omega$.

We combine Lemmas 5.16 and 5.17 to obtain the following execution invariant:

Proposition 5.18 (Views delimit execution). Assume $(T, \mu), M \xrightarrow{\text{RA}_\leq} (R, \rho), N$. Assume that α is dominated by every view in $T . \perp f$, and that ω dominates every view in $R . \perp f$. Then $\alpha \leq \omega$; and for every added message $v \in \rho \setminus \mu$, both $\alpha \leq v . \omega \leq \omega$ and $\alpha . v . \iota < v . \iota$.

Interrupted executions. To analyze program behavior under concurrent contexts, we have to take into account all possible ways in which the environment can interfere during the execution. An interrupted execution \((T, \mu), M \sim_{RA}^* \cdots \sim_{RA}^* \langle R, \rho \rangle, V\) from a closed term \(M\) to a value \(V\) is a sequence of executions of the form

\[
\langle T, \mu \rangle, M = \langle T_1, \mu_1 \rangle, M_1 \sim_{RA}^* \langle T_2, \rho_1 \rangle, M_2 \\
\langle T_2, \mu_2 \rangle, M_2 \sim_{RA}^* \langle T_3, \rho_2 \rangle, M_3 \\
\vdots \\
\langle T_n, \mu_n \rangle, M_n \sim_{RA}^* \langle T_{n+1}, \rho_n \rangle, M_{n+1} = \langle R, \rho \rangle, V
\]

where \(\rho_j \subseteq \mu_{j+1}\) for every \(1 \leq j \leq n - 1\). Between the executions in the sequence, the configuration only changes by adding environment messages, the messages in \(\mu_{j+1} \setminus \rho_j\), to the memory—the only interference the environment can cause. We also have \(\mu_1 \subseteq \rho_1\), and we call the messages in \(\rho_1 \setminus \mu_1\) local messages. Proposition 5.18 extends to interrupted executions in a straightforward manner, replacing \(\sim_{RA}^*\) with \(\sim_{RA}^* \cdots \sim_{RA}^*\) and replacing added messages with local messages.

6 DENOTATIONAL SEMANTICS

Brookes-style traces (§6.1) adapted to describe behavior under RA, and Moggi’s monadic approach (§6.2) to denotational semantics, combine to give our semantic framework (§6.3). We build upon this framework in three stages.

First we define the generating denotational semantics (§6.4). The monad structure underlying this semantics does not satisfy the monad laws, and so does not fully conform to the monadic approach. Still, it is useful in forming a base for the next stage, as a metatheoretic tool, as well as a means to simpler calculations.

Thus, we define the concrete denotational semantics (§6.5). Here we do have a monad, but the denotational semantics follows the operational semantics too closely to be as abstract as we would like, evident in program transformations that it does not support. This semantics is useful as an intermediate step, and plays a central role in our proof of the adequacy theorem.

Finally, we define the abstract denotational semantics (§6.6). This is the semantics we were aiming for: adequate and abstract enough to justify transformations of interest.

6.1 Trace-based Semantics

Traces are a semantic counterpart to interrupted executions. Their core component is a sequence of memory-transitions, summarizing which messages the behavior they describe relies on and guarantees. A (memory)-transition is pair \((\mu, \rho)\) of memories, such that \(\mu \subseteq \rho\).

We capture the evolving assumptions and guarantees about memory messages by a chronicle: a possibly empty finite sequence of transitions \(\xi = \langle \mu_1, \rho_1 \rangle \cdots \langle \mu_n, \rho_n \rangle\) where \(\rho_j \subseteq \mu_{j+1}\) for every \(j\). When \(\xi\) is non-empty, we denote its opening and closing memories by \(\xi.o := \mu_1\) and \(\xi.c := \rho_n\). Its local messages are the ones added within transitions: \(\xi.own := \bigcup_{i \in \{1, \ldots, n\}} (\rho_i \setminus \mu_i)\), and its environment messages are the others. Let \(\text{Chro}\) be the set of chronicles, ranged over by \(\xi, \eta\).

In the operational semantics, some messages are obscured from any particular thread due to its view. The trace captures only an initial view that declares which messages may be relied on to be available at the beginning, and a final view that declares which messages are guaranteed to be available at the end. Together, these are the delimiting views.

Finally, a trace includes a semantic representation of the returned value [e.g. 6] Given a set representing semantic return values \(X\), an \(X\)-pre-trace is an element of \(\text{View} \times \text{Chro} \times \text{View} \times X\), written \(\alpha(\xi, \omega) \vdash r\), whose chronicle component is non-empty. We range over pre-traces with \(\tau, \pi, \varphi,\)
and use \(\tau.\text{ivw} \) (initial view), \(\tau.\text{ch} \) (chronicle), \(\tau.\text{fivw} \) (final view), \(\tau.\text{ret} \) (returned value) to retrieve the components of a pre-trace \(\tau = a[\xi/\omega].r \) in order.

Such an \(X \)-pre-trace \(\tau \) is an \(X \)-trace when each transition in \(\xi \) consists of well-formed memories; the initial view precedes the final views, each pointing downwards into the opening and closing memories respectively: \(\xi.0 \leftrightarrow \alpha \leq \omega \leftrightarrow \xi.c, \) and the view and segment of every local message are bound by the delimiting views, i.e.: \(\forall v \in \xi.\text{ovn}, \alpha \leq v.\text{wv} \leq \omega \wedge \alpha.\text{lc} < v.\text{t} \). These conditions reflect well-formedness and the invariants from Theorem 5.15 and Proposition 5.18. We denote the set of \(X \)-traces by Trace\(X \). The bottom of Figure 1 depicts an example trace.

6.2 Monad-based Semantics

We recap Moggi’s [40] approach to interpret a CBV calculus like \(\lambda_{RA} \) using a monad. A monad structure \(T = (\mathcal{T}_\ast, \text{return}^T, (__)^T) \) consists of three components: a set-level function \(\mathcal{T}_\ast \); a set-indexed function return\(^T \); and a two-argument set-indexed function \((__)^T\). The set-level function assigns to each set \(X \), whose elements represent fully-evaluated semantic values, the set \(\mathcal{T}X \), whose elements represent unevaluated effectful programs returning values in \(X \). The functions return\(^T_X : X \rightarrow \mathcal{T}X \), the unit, represent the program fragment that returns its input without any observable side-effects. The two-argument functions \((__)^T_{XY} : (\mathcal{T}X) \times (X \rightarrow \mathcal{T}Y) \rightarrow \mathcal{T}Y \), the monadic bind, represent the sequencing \(P \xRightarrow{T} f \) of an \(X \)-returning program \(P \) with an \(Y \)-returning program \(f \) that depends on the result of \(P \).

Moggi’s innovation is to take the traditional type and value semantics, following a long tradition of denotational semantics, and retain its uniform structure even for effectful computation, by using a monad-structure. Each construct has a corresponding semantic construct, and the interpretation proceeds structurally over the structure of types, context and terms.

Type semantics. Every type \(A \) denotes a set, where: product types denote the cartesian product; variants denote tagged unions; function types use the monad structure to denote the set of parameterized computations; and typing environments denote the cartesian product:

\[
\begin{align*}
[\prod_{j=1}^n A_j] & \defeq A_1 \times \cdots \times A_n \\
[\text{of}_{i_1} A_1 \cdots \text{of}_{i_n} A_n] & \defeq (\{i_1\} \times \{A_1\}) \cup \cdots \cup (\{i_n\} \times \{A_n\}) \\
\{A \rightarrow B\} & \defeq [A] \rightarrow [B] \\
\{\mathcal{T}\} & \defeq \prod_{(a:A) \in I} [A]
\end{align*}
\]

In particular, denotations of ground types \([G]\) do not depend on the monad structure. For example, \([\text{Val}]\) is in a natural bijection with the set of (storable) values \(\text{Val} \), and we will identify them.

Value semantics. Every value \(\Gamma \vdash V : A \) denotes a function \([V] : [\Gamma] \rightarrow [A] \), taking as argument a semantic environment \(\gamma \in [\Gamma] \) supplying a semantic value to each variable in context:

\[
\begin{align*}
&[b]_\gamma : (\{y_\alpha\} (a:A) \in \Gamma) \defeq \gamma_b \\
&[A.tV]_\gamma \defeq (i.\{V\}_\gamma) \\
&[\lambda b : B. M]_\gamma : (\{y_\alpha\} (a:A) \in \Gamma) \defeq \lambda \gamma_b. [M]_{\gamma}(y_\alpha) (a:A) \in \Gamma, \gamma.b.B
\end{align*}
\]

Closed values \(\bullet \vdash V : A \) denote functions from the singleton \([\cdot] : \{()\} \rightarrow [A] \), so we write \([V]_\gamma(\cdot) \) for \([V]_\gamma() \). The semantics of closed ground values do not use the monad structure.

Term semantics. Every term \(\Gamma \vdash M : A \) denotes a function \([M]_\gamma : [\Gamma] \rightarrow [\mathcal{T}[A]] \). The monadic bind expresses left-to-right evaluation order, and the unit expressing pure computation, e.g.:

\[
\begin{align*}
&[[MN]_\gamma] \defeq [M]_\gamma[\lambda g. [N]_\gamma] = \lambda a. g(a) \\
&[[M_1, \ldots, M_n]]_\gamma = \lambda a_1. \cdots [M_n]_\gamma = \lambda a_1. \cdots [M_n]_\gamma
\end{align*}
\]

Monad laws. While a monad structure suffices to define these interpretations, it does not suffice to guarantee they behave as expected. For example, a nested tuple of values \(V = \langle\langle 1, 2 \rangle, 3 \rangle \) has
We specialize the monad-based semantics to our case.

We would expect the two semantics to relate via $[V]^c = \text{return} [V]^y$, but a mere monad structure will not guarantee it. A monad is a monad structure satisfying:

- **left-neutrality**
 \[
 (\text{return } x) = f(x) \quad P = \text{return} = P \quad (P \Rightarrow f) = g = P \Rightarrow \lambda x. (f(x)) = g
 \]

As Moggi shows, a monad does guarantee the value and term semantics agree in this way.

The metatheory also uses the monad laws extensively, such as in the following lemma, which relates substitutions to standard denotations via typing context extension. Denote by $\Delta \leq \Gamma$ the statement that $(a : A) \in \Gamma$ whenever $(a : A) \in \Delta$; and define $\Gamma \setminus \Delta$ by $(a : A) \in \Gamma \setminus \Delta$ iff $(a : A) \in \Gamma$ and $(a : A) \notin \Delta$. Let $\text{Sub}_\Delta := \prod_{(a : A) \in \Delta} \{V | \cdot + V : A\}$ be the set of variable substitutions for Δ. For $\Theta \in \text{Sub}_\Delta$, denote by ΘM the standard simultaneous substitution by Θ in M.

Lemma 6.1 (Substitution Lemma). Assume $\Gamma \vdash M : A$ and let $\Theta \in \text{Sub}_\Delta$ for some $\Delta \leq \Gamma$. For all $y \in [\Gamma]_T$, if $\forall (b : B) \in \Delta. y b = [\Theta b]_T$, then $[M]^c_{\Delta} = [\Theta M]^c_T$.

Using the monad laws hold we can also justify all of the structural transformations. As an example, consider $[\text{match } V \text{ with } [\text{true},M] = [\text{false},M]]^c = [M]^c$. Though M may use program effects, the structure of the transformation only makes use of the core calculus constructs, and therefore can be proven using reasoning at the level of the monad structure and laws, ignoring the traces underneath.

6.3 Our Semantic Framework

We specialize the monad-based semantics to our case.

Adding the effects. One of the main selling points of Moggi’s approach is its modular support for extensions with effects. To define the denotations of shared-memory constructs, we extend T with additional structure, one for each construct: $[\text{store}_{t_{\ell,\alpha}}]_T \in T 1$ for assignment, $[\text{rmw}_{t_{\ell,\alpha}}]_T \in T\text{Val}$ for RMW, and $- \mid [X]_{T\ell} \rightarrow T X \times T Y \rightarrow T (X \times Y)$ for concurrent execution. They then interpret like so:

\[
[M]_T = \begin{cases} N & \text{if } \forall N \in X. \left[N \right]_T = \text{false} \\ \lambda f. \left[N \right]_T & \text{if } \forall N \in X. \left[N \right]_T = \text{true} \\
\end{cases}
\]

Trace rewrite rules. The semantics of terms $P \in T X$ in trace semantics are given by sets of traces, representing the possible behaviors, including possible environment interference. As subsets, they carry a natural inclusion order. We write $[M]^c \subseteq [N]^c$ to mean containment in every context, that is $V X \subseteq [\Gamma]$. $[M]^c_{\Delta} \subseteq [N]^c_{\Delta}$. Intuitively, this means that every behavior of M is a behavior of N.

Particularly, we will be looking at sets of traces closed under certain rewrite rules, a property that reflects the way in which traces represent possible behaviors. A rewrite rule \times is a binary relation between pre-traces. Its elements, written $\tau \xrightarrow{x} \pi$, are called x-rewrites from a source τ to a target π. Let $*$ be a set of rewrite rules. We write $\tau \xrightarrow{x} \pi$ when $\tau \xrightarrow{\times} \pi$ for some $x \in X$. A set $U \subseteq \text{TraceX}$ is \star-closed when $\tau \in U$ and $\tau \xrightarrow{\times} \pi \in \text{TraceX}$ implies $\pi \in U$. The \star-closure of a set $U \subseteq \text{TraceX}$, denoted U^\star, is the least \star-closed superset of U. Thus U is \star-closed iff $U = U^\star$. We denote the set of countable \star-closed subsets of E by $P_{\text{ctbl}}^\star (E) := \{ U \in P (E) \mid U = U^\star \}$. We \star-close a function ϕ that returns sets of traces by composition with the closure: $\phi^\star := \ast \circ \phi$. We say that...
Table 1. Summary of all rewrite rules.

<table>
<thead>
<tr>
<th>g</th>
<th>Loosen</th>
<th>$\alpha \left(\eta \cup { e } \right)$</th>
<th>L_s</th>
<th>$\alpha \left(\eta \cup { v } \right)$</th>
<th>$v \leq_{\text{vw}} e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expel</td>
<td>$\alpha \left(\eta \cup { e^{v+1} } \right)$</td>
<td>E_x</td>
<td>$\alpha \left(\eta \cup { v } \right)$</td>
<td>$v < e$</td>
<td></td>
</tr>
<tr>
<td>Condense</td>
<td>$\alpha \left(\eta \cup { v, e } \right)$</td>
<td>C_n</td>
<td>$\left(\alpha \left(\eta \cup { v } \right) \right) \left[{ | e } \right]_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Stutter</td>
<td>$\alpha \left(\eta \right)$</td>
<td>S_t</td>
<td>$\alpha \left(\mu, \eta \right)$</td>
<td>$v \leq_{\text{vw}} e$</td>
</tr>
<tr>
<td></td>
<td>Mumble</td>
<td>$\alpha \left(\mu, \eta \right)$</td>
<td>M_u</td>
<td>$\alpha \left(\mu, \eta \right)$</td>
<td>$v \leq_{\text{vw}} e$</td>
</tr>
<tr>
<td>a</td>
<td>Tighten</td>
<td>$\alpha \left(\mu, \eta \cup { v } \right)$</td>
<td>T_i</td>
<td>$\alpha \left(\mu, \eta \cup { e } \right)$</td>
<td>$v < e$</td>
</tr>
<tr>
<td></td>
<td>Absorb</td>
<td>$\alpha \left(\mu, \eta \cup { v } \right)$</td>
<td>A_b</td>
<td>$\alpha \left(\mu, \eta \cup { e^{v+1} } \right)$</td>
<td>$v < e$</td>
</tr>
<tr>
<td></td>
<td>Dilute</td>
<td>$\left(\alpha \left(\mu, \eta \cup { v } \right) \right) \left[{ | e } \right]$</td>
<td>D_i</td>
<td>$\left(\alpha \left(\mu, \eta \cup { e } \right) \right) \left[{ | e } \right]$</td>
<td>$v < e$</td>
</tr>
</tbody>
</table>

a function ϕ is pointwise \ast-closed when $\phi = \phi^\ast$. We say that a function ϕ between subsets of traces is \ast-closed when its restriction to \ast-closed subsets is pointwise closed.

Table 1 summarizes all the rewrite rules we will use. This compact figure packs many side conditions and new notation, which we explain as we present the rules. When presenting a rewrite rule we omit the return value, because they all maintain it.

Trace monad structure. Given a choice of rewrite rules \star, we define the \ast-monad structure as follows. The set-level function of T'’s monad structure sends every set X to a countable \ast-closed sets of X-traces: $T'X := P^\ast_{e_{\text{ctbl}}} (\text{Trace}X)$.

Trace concurrent execution. $|\ast|$ interleaves chronicles and pairs the returned values. The delimiting views must bound the views of the resulting traces, so we take the greatest lower bound of the initial views, and the least upper bound of the final views. To define these bounds, denote the set of views pointing downward into a well-formed memory μ by $\leftarrow \leftarrow \mu := \{ \kappa \in \text{View} \mid \kappa \leftarrow \mu \}$.

This set is finite since Loc and μ are finite, and each κ mentions only timestamps that appear in μ; and it has a minimum: the view that points to all the initial messages λt. min μ_t. t. Consider a non-empty $U \subseteq \leftarrow \leftarrow \mu$. Since $\leftarrow \leftarrow \mu$ is finite and closed under \sqcup, the set U has a least upper bound $\inf_\mu U := \sqcup U$. It also has a greatest lower bound $\inf_\mu U := \sqcup \{ \kappa \in \text{View} \mid \sqcup U \geq \kappa \leftarrow \mu \}$, noting $\sqcup U$ might not point downward into μ.

Example 6.2. Let μ be the memory from Example 5.10. For $\alpha_1 := \langle x@5 \; y@7 \rangle$ and $\alpha_2 := \langle x@7 \; y@5 \rangle$, we have $\alpha_1 \leftarrow \leftarrow \mu$ and $\alpha_2 \leftarrow \leftarrow \mu$, but $\alpha_1 \cap \alpha_2 = \langle x@5 \; y@5 \rangle \not\rightarrow \mu$. Here, $\inf_\mu \{ \alpha_1, \alpha_2 \} = \langle x@0 \; y@0 \rangle$.

Denoting by ξ_1 and ξ_2 the set of all the interleavings of ξ_1 and ξ_2 that form chronicles, we define:

$$P_{1 \left\| T \right\| 2} := \inf_{\xi_0} \{ \alpha_1, \alpha_2 \} \left(\left[\{ \{ \| e \} \} \right] \sup_{\xi, e} \left(\left(\omega_1, \omega_2 \right) \left(r_1, r_2 \right) \in \text{Trace} (X_1 \times X_2) \right) \right) \}$$

Trace memory access. Mirroring the operational semantics, we interpret:

$$\left[\text{store}_{t,v} \right] T := \kappa \left(\mu_1, \mu_2 \cup \{ \ell : \omega \left(t, q, t \right) \} \left(\kappa \left(\ell \rightarrow t \right) \right) \right) \kappa \left(\ell \rightarrow t \right). \emptyset \in \text{Trace1} \}$$

$$\left[\text{rmw}_{t,v} \right] T := \left[\text{rmw}_{t,v}^{\ast} \right] T \cup \left[\text{rmw}_{t,v}^{\star} \right] T$$ where:

$$\left[\text{rmw}_{t,v}^{\ast} \right] T := \kappa \left(\mu_1, \mu_2 \right) \kappa : v, v \in \text{TraceVal} \mid \Phi (v,v) = \bot \land \kappa \rightarrow v \in \mu_t \}$$

\[
\text{rmw}^{\text{RMW}}_{\ell,P} \in \mathcal{T} := \left\{ \kappa \left(\mu, \mu \cup \{ e \} \right) \kappa \left[\ell \mapsto t \right] : v \cdot v \cdot 1 \in \text{TraceVal} \right\}
\]

Requiring the resulting pre-traces to form traces ensures the constraints on their timestamps and segment hold. Assignment adds a new message. The RMW interpretation adds a new message depending on the modifier’s result. Loading is restricted to messages already pointed-to. This restricted definition relies on the bind (\(\Rightarrow \)) to advance the view when concatenating traces.

Monotonicity. To accommodate reasoning about refinement, we require that the trace monad operators be monotonic with respect to set inclusion:

Proposition 6.3. Let \(P_1, Q_1 \in \mathcal{GX}_1 \) and \(f, g : X_1 \rightarrow \mathcal{GX}_2 \). If \(P_1 \subseteq Q_1 \) and \(\forall r \in X_1, f r \subseteq gr \) then:

\[
P_1 \Rightarrow f \subseteq Q_1 \Rightarrow g \quad P_1 ||| P_2 \subseteq Q_1 ||| Q_2
\]

Proof. The \((-)^*\) operator is monotonic by virtue of being a closure operator. Thus, it is sufficient to show the containment for the operators as defined before taking the \(\star \)-closure, which follows straightforwardly from the set-definitions, where traces are obtained from traces in the operands.

6.4 Generating Denotations

In the degenerate case of the 0-monad structure, which we call the *null model* and denote by \(\mathcal{N} \), neither identity axiom hold, as evidenced by return \(r \Rightarrow= \text{return} \neq \text{return}_r \), where only on the left the traces have two transitions. As merely a monad structure, the induced denotational semantics is insufficiently abstract. For example, this inequation implies \(\llbracket \lambda f : 1 \rightarrow 1 \cdot f \rrbracket^\mathcal{G} = \llbracket \lambda f : 1 \rightarrow 1 \cdot f \rrbracket^\mathcal{T} \) – this model fails to satisfy even the most basic semantic equivalences. Still, we will find that we can use less abstract models as stepping stones to more abstract ones.

We identify a set of rewrite rules \(g := \{ \text{ls}, \text{ex}, \text{cn} \} \) under which the operations of \(\mathcal{N} \) are closed. That is, return is pointwise closed under \(g \); if \(f \) is pointwise \(g \)-closed, then \(\Rightarrow= f \) is \(g \)-closed, and similarly for the effect operations. We explain how the \(g \)-rewrite maintain this proposition as we present them. For now, let the *generating model* be the \(g \)-monad structure, which we denote by \(\mathcal{G} \).

So we have:

Proposition 6.4. For all \(P_1 \in \mathcal{GX}_1 \) and \(f : X_1 \rightarrow \mathcal{GX}_2 \):

\[
P_1 \Rightarrow^N f = P_1 \Rightarrow^G f \quad P_1 ||| P_2 = P_1 ||| G \quad P_2
\]

Moreover, return\(^N \) = return\(^G \), \([\text{store}_{\ell,v}]_\mathcal{N} = [\text{store}_{\ell,v}]_\mathcal{G} \), and \([\text{rmw}_{\ell,P}]_\mathcal{N} = [\text{rmw}_{\ell,P}]_\mathcal{G} \).

This means that we can calculate in \(\mathcal{G} \) quite concretely; we need not worry about traces that are obtained from the set-definitions after some arbitrarily long chain of rewrites. So the connections we establish later between \(\mathcal{G} \) and the more abstract monad structures (§7.1) become easier to use.

Remark. The difference between denotations in \(\mathcal{G} \) and in \(\mathcal{N} \) lies in the higher-order fragment. For example, return values of traces in \(\llbracket \lambda f : 1 \rightarrow 1 \cdot f \rrbracket^\mathcal{G} \) are functions that take as argument elements in \(\llbracket 1 \rrbracket \rightarrow \mathcal{T} [1] \). In particular, the denotation depends on \(\mathcal{T} \).

In presenting the \(g \)-rewrite rules below, we provide operational intuition by drawing explicit connections with interrupted executions. However, this intuition should be taken with a grain of salt: the abstract model (§6.6) uses these rules as well, where traces do not correspond to interrupted executions as they do here.

© 2024 Yotam Dvir, Ohad Kammar, and Ori Lahav.

, Vol. 1, No. 1, Article . Publication date: April 2024.
Loosen. When a program relies on a message from the environment, it relies on the message’s view being small enough, to not obstruct the behavior that follows. In addition, it relies on the message’s timestamp, which is part of the view, to be big enough for it not to be obscured when needed. The rule is depicted on the left of Figure 8.

Define the loosen (Ls) rewrite rule:

\[
\text{Loosen: } \frac{\text{Assuming } v \preceq_{vw} v' \text{ defined by requiring that they may only differ in their timestamps for other memory locations for which } v' \text{ s must precede } e' \text{ s: } v.1c = e.1c, v.v1 = e.v1, v.\text{seg} = e.\text{seg}, \text{ and } v.vw \preceq e.vw. \text{ If the source in (Loosen) is a trace, then the target is a trace iff either } \eta \text{ is empty or } v \leftarrow (\eta \cup \{v'\}).}{\alpha \frac{\text{Loosen}}{\text{Loosen}} \alpha \frac{\text{Loosen}}{\text{Loosen}} A}\]

Here, we use the partial order on messages \(v \preceq_{vw} v' \) defined by requiring that they may only differ in their timestamps for other memory locations for which \(v' \)'s must precede \(e' \)'s: \(v.1c = e.1c, v.v1 = e.v1, v.\text{seg} = e.\text{seg}, \) and \(v.vw \preceq e.vw. \) If the source in (Loosen) is a trace, then the target is a trace iff either \(\eta \) is empty or \(v \leftarrow (\eta \cup \{v'\}). \)

Intuitively, the source behavior can only use the view in \(e \) by incorporating it into its view and the view of its local messages using the max (\(\sqcup \)) operation on views. Since allowing threads to silently increase their own view does not change the observed behavior, we would still be able to guarantee the same local messages if the environment message has a smaller view. To make this intuition more precise, we outline a simulation argument in the case the program exhibits the source behavior through an interrupted execution that matches the trace exactly. We do not bother with a formal proof, since the abstract model §6.6 violates this simplifying assumption anyway.

Given an interrupted execution, we can replace an environment message \(e \) with a message \(v \preceq_{vw} e \) and obtain an interrupted execution of the same program. Whenever a thread with view \(\alpha \) loads \(e \) via the READONLY step in the original interrupted execution, its view becomes \(\omega := \alpha \sqcup e.vw. \)

In the new interrupted execution, we instead use the ADV rule to compensate for the earlier view in \(v \), once for every other location \(\ell \), and forward the view to the message at location \(\ell \) with timestamp \(\omega_{\ell}. \) Then we are able to load \(e \) via READONLY, since the message has the same timestamp and the thread’s view at the location \(e.1c = v.1c \) hasn’t changed during the ADV steps. The RMW-modifier still fails in the new execution because \(v \) and \(e \) hold the same value and the decision whether to modify it depends only on the value and the parameters, not the view. Loading via the RMW rule is similar, where the modifier still succeeds with the same modification. We choose the same timestamp for the new message we dovetail to \(v \), and it inherits the current view: \(\omega. \) Steps via other rules remain the same.

The \(N \) operations are Ls-closed since the inclusion of a trace never relies on the view of an environment message other than its value, segment, and it being dominated by another view: \(e.vw \preceq \kappa. \) Since \(v \preceq_{vw} e \), the value and segment agree and \(v.vw \preceq e.vw \preceq \kappa \), and so the target trace will appear in the result of the operation.

Expel. The rewrite expel (Ex) replaces an environment message with two dovetailing messages that occupy the same segment and have the same view, the latter message also having the same
We extend the pulling operation to messages, memories, chronicles, (pre-)traces, and view trees, means that pulling a dovetailing message preceding by pulling the view associated with these objects. In particular, our representation of messages message. then we update the timestamp to be the final timestamp (depicted on the right): required target. because the relaxed version is obtained by applying local message is “absorbed” into the message ε, which becomes ε’. value, as depicted on the left of Figure 9. This ensures that the value is available at the same timestamp with the same carried view, and that no more of the timeline is occupied. Formally:

Assuming \(v \prec \varepsilon \), \[\alpha \left(\xi \left(\eta \uplus \{ v, \varepsilon \} \right) \right) \omega \xrightarrow{\text{Ex}} \alpha \left(\xi \left(\eta \uplus \{ \varepsilon \} \right) \right) \omega \] (Exel)

Here, \(v \prec \varepsilon \) is the monotone dovetailing relation, i.e., the two messages dovetail: \(v.\iota c = \varepsilon.\iota c \), \(v.t = \varepsilon.t \); and moreover their views compare: \(v.\varepsilon = \varepsilon.\varepsilon \). The final condition relaxes the rule as depicted in Figure 9 where the \(v.\varepsilon = \varepsilon.\varepsilon \) was required. This makes no difference to the model, because the relaxed version is obtained by applying loosen after the strict version, to obtain the required target.

As was the case for loosen, if the source in (Exel) is a trace, then the target is a trace iff either \(\eta \) is empty or \(v \leftrightarrow \left(\eta \uplus \{ v, \varepsilon \} \right).o \).

To justify the rule for interrupted executions, suppose \(\varepsilon' \) is an environment message in an interrupted execution. By replacing \(\varepsilon' \) with \(v \) and \(\varepsilon \), we obtain another interrupted execution, in which the environment added these two messages. Throughout the interrupted execution, no view ever points to \(v \), as if \(v \) was not there.

The operations of \(\mathcal{N} \) are Exel-closed since they never rely on the absence of messages, only for the availability of segments, which is preserved by this rule.

Condense. In the condense (Cn) rewrite rule, the source behavior may include an environment message \(\varepsilon \) dovetailing some prior message \(v \) that carries the same value and view. The target behavior removes \(\varepsilon \), and modifies \(v \) to a message \(v' \) that occupies the same segment as the two messages combined, as depicted on the left of Figure 10. To formally capture how the views in the trace change in this rule, we define pulling a view \(\kappa \) along a message \(\varepsilon \) to be the view in which, if the timestamp at \(\varepsilon.\iota c \) is the initial timestamp of \(\varepsilon \), then we update the timestamp to be the final timestamp (depicted on the right):

\[
\kappa \left[\iota v \right] := \begin{cases} \kappa_{\varepsilon.\iota c} = \varepsilon.\iota : & \kappa_{\varepsilon.\iota c} \mapsto \varepsilon.t \\ \text{otherwise:} & \kappa_{\varepsilon.\iota c} \downarrow \downarrow \left(\varepsilon.\iota, \varepsilon.t \right) \end{cases}
\]

We extend the pulling operation to messages, memories, chronicles, (pre-)traces, and view trees, by pulling the view associated with these objects. In particular, our representation of messages means that pulling a dovetailing message preceding \(\varepsilon \) along \(\varepsilon \) merges them into one contiguous message.

The rewrite rule, formally:

Assuming \(v \prec \varepsilon \), \[\alpha \left(\xi \left(\eta \uplus \{ v, \varepsilon \} \right) \right) \omega \xrightarrow{\text{Cn}} \left(\alpha \left(\xi \left(\eta \uplus \{ v \} \right) \right) \omega \right) \left[\iota v \right] \] (Condense)
A Denotational Approach to Release/Acquire Concurrency

Fig. 10. Schematic depictions of the condense (left) and dilute (right) rewrite rules, in the style of Figure 9. A condition that is not depicted is that \(\nu \) and \(\nu' \) must appear in the same places in the chronicle, and \(\epsilon \) may not appear before them. The views that point to \(\nu' \) in the source can point either to \(\nu \) or to \(\epsilon \) in the target. **Left:** The message \(\nu \) turns into \(\nu' \) by "condensing" the environment message \(\epsilon \). **Right:** The message \(\nu' \) turns into \(\nu \) by "diluting" out the local message \(\epsilon \).

Fig. 11. Schematic depictions of the condense (left) and dilute (right) rewrite rules as in Figure 10, focusing this time on a memory without \(\epsilon \). **Left:** Since \(\epsilon \) is to appear as an environment message in the chronicle, it can appear since the opening memory, not appear even in the closing memory, or somewhere in between. **Right:** Since \(\epsilon \) is to appear as a local message, it cannot appear in the opening memory, and must appear in the closing memory.

Here we use the monotone repetitive dovetailing relation \(\nu \bowtie \epsilon \) where the two messages dovetail monotonically: \(\nu \prec \epsilon \), and have the same value: \(\nu.v1 = \epsilon.v1 \). As was the case for expel, relaxing the condition that the views must be equal as depicted more strictly in Figure 10 is admissible, this time by applying loosen before the strict version, to obtain the required source.

The decomposition of the chronicle in the rule determines where \(\epsilon \) first appears, but \(\nu \) can first appear earlier. This situation is depicted in Figure 11.

Unlike loosen and expel, when \(\eta \) is empty the target may differ from the source even though \(\epsilon \), or any other message, is removed. This is due to \(\text{Cn} \) pulling views along \(\epsilon \), whether \(\epsilon \) is there or not. So when \(\eta \) is empty the target differs from the source iff there is a message at \(\epsilon.i = v.t \) in this case, assuming the source is a trace, for the target to be a trace \(\epsilon.seg \) must be available, otherwise there will be a memory that is not scattered. If \(\epsilon.seg \) is available, then the target will be a trace, because pulling along a free segment retains the well-formed memory properties. For example, pointing downwards is preserved due to the following lemma:

Lemma 6.5. \(\forall \epsilon \in \text{Msg} \ \forall \kappa, \sigma \in \text{View}. \kappa_{c.1c}, \sigma_{c.1c} \notin \epsilon.seg \setminus c.t \implies \kappa \leq \sigma \implies \kappa[\uparrow \epsilon] \leq \sigma[\uparrow \epsilon] \).

To summarize, if the source in (Condense) is a trace, then the target is a trace iff either \(\eta \) is non-empty, \(v.t \notin \xi.c.t \), or \(\epsilon.seg \cap \bigcup \xi.c.seg = 0 \).

If we have an interrupted execution with two messages \(\nu \) and \(\epsilon \) as in condense, we will also have an interrupted execution without the environment message \(\epsilon \), and with \(\nu' \) instead of \(\nu \). In the new interrupted execution, \(\nu' \) is used whenever either \(\nu \) or message \(\epsilon \) were used in the original.

The operations of \(N \) are \(\text{Cn} \)-closed. This is harder to demonstrate compared to the previous rules. Considerations involving the value available to load, and the segment available to store, are similar. If a message dovetailed with \(\epsilon \) in the source, it dovetails with \(\nu' \) in the target. Thus, if a message was added due to an RMW in the source, the condition to dovetail with a message that holds the loaded value is still met in the target. There are also new considerations involving the rewrite affecting the entire trace rather than just one or two messages. For instance, to show that (\(\equiv \)) preserves the rule, we replace an application of condense after binding the traces with applications of condense (with the same messages) on each of the traces before binding. This is
subtle because the delimiting views change, and thus the condition imposed on binding the traces changes from $\kappa \leq \sigma$ to $\kappa [\tau e] \leq \sigma [\tau e]$. The condition still holds due to Lemma 6.5 since neither κ nor σ point into the interior of e.seg, because no message has a timestamp there. This insight resolves similar subtleties for the other N-constructs.

6.5 Concrete Denotations

Brookes [13] pioneered two rewrite rules to make denotations abstract and support desired program transformations: stuttering and mumbling. To define our next model, we adapt these to our setting, as well as add two additional ones: $\epsilon := \langle St, Mu, Fw, Rw \rangle$. We combine notations of rewrite-rule sets, e.g. $\epsilon \mathcal{g} := \mathcal{g} \cup \epsilon$. Thus, we denote by \mathcal{M} the \mathcal{g}-Monad structure. We call this model the concrete model because, like the generating model, it still maintains a close correspondence to the operational semantics \mathcal{RA}_{\leq}. However, \mathcal{M} is a monad, a crucial element in the proof of the adequacy theorem (Appendix B.4).

Proposition 6.6. \mathcal{M} is a monad.

Stutter. A program can always make the same memory guarantees on which it relies. This is captured stutter (St), which inserts a transition with equal components somewhere:

$$\alpha[\xi \eta]_\omega \xrightarrow{St} \alpha[\xi[\mu, \mu] \eta]_\omega$$ (Stutter)

Note that for the target in (Stutter) to form a trace, provided that its source is a trace, we need to further require that μ is a well-formed memory, and that α points to μ (which may not be the case if ξ is empty).

We can also understand stutter using interrupted executions. Given an interrupted execution, a sequence of 0 steps $\langle T, \mu \rangle, M \rightsquigarrow^* (T, \mu), M$ can be inserted anywhere as long as $\langle T, \mu \rangle$ is well-formed and μ contains previous, and is contained in subsequent, memories. This insertion does not change the initial or the final configurations of the interrupted execution.

As a concrete (contrived) example, stutter is used for validating the transformation $\langle \rangle ; \langle \rangle \rightarrow \langle \rangle ; \langle \rangle ; \langle \rangle$. Indeed, it is not true that $[[\langle \rangle ; \langle \rangle]_\mathcal{G} \supseteq [[\langle \rangle ; \langle \rangle]_\mathcal{G}$, but we do have $[[\langle \rangle ; \langle \rangle]_\mathcal{G} \supseteq [[\langle \rangle ; \langle \rangle]_\mathcal{G}$. Indeed, it is not true that $[[\langle \rangle ; \langle \rangle]_\mathcal{G} \supseteq [[\langle \rangle ; \langle \rangle]_\mathcal{G}$.

Mumble. A program can omit a guarantee and rely on that guarantee internally. This is captured by mumble (Mu), which combines transitions with the same memory at their common edge:

$$\alpha[\xi[\rho, \rho] \eta]_\omega \xrightarrow{Mu} \alpha[\xi[\mu, \theta] \eta]_\omega$$ (Mumble)

If the source in (Mumble) is a trace then so is its target.

We can also understand mumble using interrupted executions. If we have an interrupted execution of the form $\ldots \langle T, \mu \rangle, M \rightsquigarrow^*_\mathcal{RA}_{\leq} \langle R, \rho \rangle, N \rightsquigarrow^* \langle R, \rho \rangle, N \rightsquigarrow^*_{\mathcal{RA}_{\leq}} \langle H, \theta \rangle, K \ldots$ that is compatible with the source trace, the we clearly have a shorter interrupted execution $\ldots \langle T, \mu \rangle, M \rightsquigarrow^*_\mathcal{RA}_{\leq} \langle H, \theta \rangle, K \ldots$ that is compatible with the target trace.

As a concrete example, mumble is used for validating the transformation $\langle \rangle ; M \rightarrow M$. Indeed, it is not true that $[[\langle \rangle ; M]_\mathcal{G} \supseteq [M]_\mathcal{G}$, because the traces on the left have an additional transition. However, $[[\langle \rangle ; M]_\mathcal{G}^{\{Mu\}} \supseteq [M]_\mathcal{G}$ is true, because we can always pick the memory in the transition from $[[\langle \rangle]_\mathcal{G}$ to match that of $[M]_\mathcal{G}$, and then get rid of the transition by using mumble.

Forward. If a program fragment can operate and guarantee a certain set of messages remain visible, it can operate in the same way and guarantee a subset of these messages remain visible. The final view serves to guarantee revealed messages to subsequent computation, so we reflect this fact by forward (Fw), which increases the final view:

$$\text{Assuming } \kappa \leq \omega, \alpha[\xi] \kappa \xrightarrow{Fw} \alpha[\xi] \omega$$ (Forward)
The rule is also depicted in Figure 12. Note that for the target in (Forward) to form a trace (rather than a pre-trace), provided that its source is a trace, we need to further require that $\omega \leadsto \xi \cdot c$.

As a concrete example, St and Fw are used in validating the transformation $M \rightarrow M \cdot \langle \rangle$. We can use St to compensate for the transition added by $\langle \rangle^c_G$. However, this is insufficient on its own, because not only is there an extra transition, it is also possible that the final view from $[M]^c_G$ and the initial view from $\langle \rangle^c_G$ used in the binding are different. To compensate for that we use Fw.

\textbf{Rewind}. If a program fragment can operate by relying on a certain set of visible messages, it can operate in the same way by relying on a superset of these messages being visible. The initial view serves to guarantee revealed messages from previous computation, so we reflect this fact by rewind (Rw), which decreases the initial view:

$$\text{Assuming } \alpha \leq \kappa, \kappa^c_{\xi} \omega \xrightarrow{\text{Rw}} \alpha^c_{\xi} \omega$$

(Rewind)

The rule is also depicted in Figure 12. Note that for the target in (Rewind) to form a trace (rather than a pre-trace), provided that its source is a trace, we need to further require that $\alpha \leadsto \xi \cdot o$.

We can also understand rewind using interrupted executions, similarly to how we did for forward. Instead of appending Adv steps to the final sequence, we prepend Adv steps to the initial sequence.

As a concrete example, rewind and stutter are used in validating the transformation $M \rightarrow \langle \rangle \cdot M$.

6.6 Abstract Denotations

Finally, we define the abstract model, \mathcal{A} as the $\mathfrak{R} \mathfrak{A}$-monad structure, where $\mathfrak{a} := \{\text{Ti}, \text{Ab}, \text{Di}\}$ are rewrite rules, presented below. This model fulfills the basic requirement of a monadic model:

\textbf{PROPOSITION 6.7.} \mathcal{A} is a monad.

By including the additional rewrite rules of \mathfrak{a} we give up the strictly operational interpretation that we have assumed when presenting the previous rules. This allows us to obtain the abstraction that the concrete model lacks. We took a parsimonious approach, only proposing rules that we need to justify program transformations that the RA model is expected to validate. With each rewrite rule, we present a program transformations whose validation uses that particular rule, though other $\mathfrak{R} \mathfrak{A}$-rewrites are often required as well.

\textbf{Tighten}. The role of the view that a message carries, other than providing the timestamp, is to constrain the loading thread by increasing its view when it loads the message. Considering a local message ν, its view serves to guarantee that loading it would not obscure any message within a certain portion of the memory. Therefore, replacing ν by ϵ that only differs in its view, where $\nu \leq_{\nu \epsilon} \epsilon$, as depicted on the right of Figure 8, means that only a sub-portion of the memory is guaranteed not to become obscured by loading the message, and keeps everything else the same.
which we use

See of a dovetailing local message

formally specified as follows, where we abbreviate by denoting

to

the guarantee by way of making any more of the location’s timeline available. No view can point

transformation

Assuming this is the effect of the

Fig. 13

A possible result from rewriting the trace from Figure 1 using tighten. Since \(v_2 \) is local in the trace

from Figure 1, tighten can advance its view to point to \(e_3 \) instead of \(e_1 \). The same replacement is applied

throughout the trace’s sequence, not just the closing memory.

This is the effect of the tighten (Ti) rewrite rule. Formally:

Assuming \(v \leq \omega, \alpha \left(\xi \left(\mu, \rho \cup \{ v \} \right) \eta \cup \{ v \} \right) \omega \xrightarrow{\text{Ti}} \alpha \left(\xi \left(\mu, \rho \cup \{ \epsilon \} \right) \eta \cup \{ \epsilon \} \right) \omega \) (Tighten)

See Figure 13 for a concrete example.

As a concrete benefit of tighten, consider the RA-valid (but SC-invalid) write-read-reordering

transformation \(\ell := v \cdot \ell \leftarrow \ell \). Let \(a = \ell' \) in \(a \rightarrow \ell \) for \(a, \ell \neq \ell' \). On the right, the added

message carries the view of the thread after it is increased by the view of the loaded message, but,

on the left, the added message carries the initial view of the thread. By applying tighten to traces

of the left, we compensate for this difference.

Absorb. Applying absorb (Ab) removes a local message \(v \) and decreases the initial timestamp of

e with the same view, such that the resulting \(e' \) covers the segment

of \(v \). This is depicted on the right of Figure 9. In this way, the rule weakens its memory guarantee

to the environment because it has less messages available to load from, without strengthening

the guarantee by way of making any more of the location’s timeline available. No view can point

to \(v \) before applying this rule, otherwise the resulting pre-trace would not be a trace. The rule is

formally specified as follows, where we abbreviate by denoting \(e'_1 := e [1 \mapsto \ell] \):

Assuming \(v \leq \omega, \alpha \left(\xi \left(\mu, \rho \cup \{ v, e \} \right) \eta \cup \{ v, e \} \right) \omega \xrightarrow{\text{Ab}} \alpha \left(\xi \left(\mu, \rho \cup \{ v, e \} \right) \eta \cup \{ v, e \} \right) \omega \) (Absorb)

See Figure 14 for a concrete example.

As in expel, we relax the condition that the views must be equal, which tighten can compensate

for.

The transformation \(\ell := w ; \ell := v \rightarrow \ell := v \) is a concrete example where this rule is useful, in

which we use absorb to compensate for the extra message. Specifically, if the local message on the

right is \(\beta \), we pick some \(t \) from the interior of \(\beta \).seg, a trace with a local message due to \(\ell := w \)

that has the segment \((\beta, i, t) \) and a trace with a local message due to \(\ell := u \) that has the segment

(\(t, \beta, t \)). After binding, we use mumble to combine the transitions, then absorb to replace these

two messages with \(\beta \).

Dilute. Formally, the dilute (Di) rule is specified as follows:

Assuming \(v \leq \omega, \alpha \left(\xi \left(\mu, \rho \cup \{ v \} \right) \eta \cup \{ v \} \right) \omega \xrightarrow{\text{Di}} \alpha \left(\xi \left(\mu, \rho \cup \{ v, e \} \right) \eta \cup \{ v, e \} \right) \omega \) (Dilute)
views that point to pointer moving. That is, in terms of the memory graph’s structure, we think of there is no message there until the pulling

See Fig. 15.

Unpacking this definition, we first note that, although we are focusing on the case where the source and target are traces, the pre-trace expression \(\tau' := \alpha \left(\mu, \rho \cup \{v\} \right) \eta \cup \{v\} \omega \) within the source may not be a trace itself. In particular, there could be views in \(\tau' \) that point to \(\epsilon \) even though there is no message there until the pulling \(\langle-\rangle \) \(\uparrow \epsilon \) takes effect, after which they will point to \(v \uparrow \epsilon \).

There could also be views that point to \(\nu \uparrow v \) in \(\tau' \), which too point to \(v \uparrow \epsilon \) in the source. Therefore, views that point to \(\nu \uparrow \epsilon \) in the source could point to either \(v \) or \(\epsilon \) in the target—the latter being a pointer moving. That is, in terms of the memory graph’s structure, we think of \(\nu \uparrow \epsilon \) and \(v \) being
the same vertex labeled differently in the memories before and after the rewrite respectively, with some pointers moved to the newly added \(\epsilon \)-labeled vertex. This is depicted on the right of Figure 10.

Another tricky thing about this rule is that \(\nu \) could appear first before \(\epsilon \), and could be either a local message or an environment message. This is depicted on the right of Figure 11.

Justifying this rewrite, if the program relies on \(\nu.v1 \) being available at \(\nu [\tau \epsilon] \tau \), it can instead rely on it being available with \(\nu.\tau \) with a view that will impose the same restrictions on the program once it loads the message and inherits the view; all this, so long as the remainder of the segment remains unoccupied until it guarantees the same value and the same view there (with \(\epsilon \)). Similarly, if the program guarantees the value with \(\nu [\tau \epsilon] \nu \) it can guarantee it with \(\nu \) instead, so long as only \(\epsilon \) can occupy the remaining segment.

As a concrete example of this rule in use, consider the transformation \(\ell? \rightarrow FAA (\ell, 0) \). A trace from the target has a message \(\epsilon \) added to dovetail with an existing message \(\nu \). So there is a matching trace in the source without that added message. By closure under \(\mathfrak{g} \), we can \(\mathcal{Cn} \)-rewrite the trace, pulling \(\nu \) by \(\epsilon \) (the \(\mathcal{Cn} \)-rewrite is defined even when pulling by a message that is not there). Then, we can apply dilute to add \(\epsilon \).

7 METATHEORY

The difference between the different monads from §6 are due to the abstraction afforded to them by the rewrite rules under which they are closed. Ultimately, it is the monad \(\mathcal{A} \) that we are interested in, as it is the one over which we define satisfactory denotational semantics. To prove the results that justify this, we first relate the different monads using properties of the rewrites rules and their interactions (§7.1).

Then, focusing on the denotational semantics of interest, over \(\mathcal{A} \), we prove (directional) compositionality (§7.2) and soundness (§7.3). These results, interesting in their own right, are also stepping stones towards (directional) adequacy (§7.4). Finally, we exhibit the sufficient abstraction of the denotational semantics with various transformations it supports (§7.5).

7.1 Commutativity of Rewrites

A complicating aspect of these trace models is how intricately rewrites between traces interact. For example, an application of forward may only be possible after adding a transition to the end of the chronicle with stutter, in which the messages that the final view is intended to point to exist. So given a rewrite \(\tau \xrightarrow{St} \pi \xrightarrow{Fw} \varnothing \), it may not be possible to find any \(\pi' \) such that \(\tau \xrightarrow{Fw} \pi' \xrightarrow{St} \varnothing \).

At other times, commuting in this way is guaranteed to be possible. As a relatively simple example, an application of loosen can always be made before one of stutter rather than after it. Even if the message that loosen acts on happens to appear in the transition that stutter adds to the chronicle in the sequence \(\tau \xrightarrow{St} \pi \xrightarrow{Ls} \varnothing \), in the alternative sequence \(\tau \xrightarrow{Ls} \pi' \xrightarrow{St} \varnothing \) the transition added already includes the "loosened" message. It is important to check that the pre-trace \(\pi' \) is in fact a trace. Since \(\tau \) is a trace, then—other than the trivial case in which \(\pi' \) is \(\tau \) itself—we only need to check that the "loosened" message points downwards into the memories in which it appears. This we infer from the fact that every memory in \(\pi' \) appears in \(\varnothing \), which is itself a trace.

More generally, every sequence of rewrites can be rearranged such that \(\mathfrak{g} \)-rewrites appear first, then \(\mathfrak{c} \)-rewrites, and finally \(\mathfrak{a} \)-rewrites. This property will play a pivotal role in the metatheory, and it is an immediate consequence of the following lemma. We write \(x \trianglelefteq y \) when \(x \rightarrow y \subseteq y \rightarrow x \), where \(\rightarrow \) and \(\subseteq \) are restricted to traces.

Lemma 7.1 (Rewrite Commutativity). If \(x \in \mathfrak{a} \) and \(y \in \mathfrak{g} \mathfrak{c} \), or \(x \in \mathfrak{c} \mathfrak{a} \) and \(y \in \mathfrak{g} \), then \(x \trianglelefteq y \).
with the conditions that are known because they were required for the rewrites to be applicable; and then use can instead mirror its effect by calculations in instead of rewriting some trace
then need to "tighten" the new local message to recover the resulting trace from the original rewrite
equal. In fact, we used this slightly simpler presentation in the abridged version of this paper \\
restricted version of
the pulls need to be commuted, as in
message (y
overlap.
Remark.
A Denotational Approach to Release/Acquire Concurrency 35
Deferral of Closure
For example, we would not have
the bind.
The cases in Figure 16 are among the more interesting cases in which the activities of x and y overlap. The left diagram shows a sub-case of Ab ⊆ Cn in which the absorbing message (e) also serves as the condensing message. On the right, a sub-case of Di ⊆ Cn in which the diluted message (ˆe) is also the message that is being condensed. This case is particularly tricky because the pulls need to be commuted, as in (− [↑ˆe]) [↑e [↑e]] = (− [↑e]) [↑e [↑e]].
The entire collection of diagrams is in Appendix D. □

Remark. When defining the rewrite rules, we could have restricted v ⊂ e (and similarly v ⊂ e) to messages with equal views: v.νvw = e.νvw, resulting in equivalent closures. For example, to apply the restricted version of absorb, one first applies tighten, which is also an a-rewrite, to make the views equal. In fact, we used this slightly simpler presentation in the abridged version of this paper [21]. However, we would have to make Rewrite Commutativity less granular.
For example, we would not have Di ⊆ Ls. Here, it may be the case that we “dilute” an environment message and then “loosen” it. After commuting, if we only have the restricted version of dilute, we then need to “tighten” the new local message to recover the resulting trace from the original rewrite sequence.
As a corollary to Rewrite Commutativity, we can commute ca-rewrites out of the G-operators:

Lem 7.2 (Deferral of Closure). Let e ⊆ ⋆ ⊆ ca. For all P1 ∈ GX1 and f : X1 → GX2:

\[
(P^\star !\equiv G f^\star)^\star = (P_1 !\equiv G f)^\star \quad \quad \quad (P_1 !|\overbrace G P_2)^\star = (P_1 !|\overbrace G P_2)^\star
\]

Proof. In the proof we rely on the fact that every closure in a is mirrored in g. For example, instead of rewriting some trace τ ∈ P1 by Ab and then "binding" it with a trace π ∈ f (τ.vλ), we can instead mirror its effect by Ex-rewriting π to make its messages match τ’s, bind those together, and then use Ab after the bind. The detailed proof is in Appendix B.1. □

Deferral of Closure also applies to M and A instead of G, since GX ⊇ MX ⊇ AX. Since calculations in G are relatively simple, this lemma is quite convenient to have.

Fig. 16. Two cases from the proof of Rewrite Commutativity shown side-by-side, in which “active” messages overlap.

Proof. The proof proceeds by case analysis on x and y, each encapsulated in diagram(s) such as the two in Figure 16. Each diagram shows the assumed rewrite sequence τ → π → o on the left, with the conditions that are known because they were required for the rewrites to be applicable; and the deduced sequence τ → π’ → o on the right, with the conditions that need to hold for the rewrites to be applicable. The conditions are enough to show that the rewrite rules apply for pre-traces, but for the sequence to be valid, we must verify that π’ is a trace. This is done by inferring from the fact that it was x-rewritten from the trace τ, and y-rewritten to the trace π, using the conditions we have collected as we presented the rewrite rules.

WoRK in pRogRess – to be submitted to TOPLAS 2024
Example 7.3. The associativity laws for \mathcal{M} and \mathcal{A} are implied by the one for \mathcal{G}. To show this for \mathcal{M}, we specialize Deferral of Closure to $\star = \cdot$, and restrict to $P \in \underline{M}X$, $f : X \to \underline{M}Y$, and $g : Y \to \underline{M}Z$, obtaining:

$$\left(P \gg^{\mathcal{M}} f \right) \gg^{\mathcal{M}} g = \left(\left(P \gg^{\mathcal{G}} f \right) \gg^{\mathcal{G}} g \right)^{\cdot} = \left(\left(P \gg^{\mathcal{G}} f \right) \gg^{\mathcal{G}} g \right)^{\cdot}$$

The same can be repeated for \mathcal{A} by specializing to $\star = \cdot a$.

When calculating denotations of terms, we can use Deferral of Closure to similarly delay taking the closure. For programs specifically, we can delay all the way through, only taking the closure at the top level. Relating \mathcal{M} to \mathcal{A} in this way is a key step in our proof of adequacy. Thus, we state:

Lemma 7.4 (Retroactive Closure). If M is a program, then $[M]^C = [M]^C_M a$.

The proof is in Appendix B.3.

7.2 Compositionality

To state compositionality, and later adequacy, we need a few technical concepts involving capturing and capture-avoiding substitution in λ_{RA} and its semantics. We extend λ_{RA} with well-typed second-order metavariables: these are binding-aware identifiers $\Gamma \vdash M : A$. Metavariables represent "holes" into which we can slot well-typed terms $\Gamma \vdash M : A$, in an operation called *metavariable substitution*. When such a metavariable appears in a term, it is accompanied by an explicit value substitution governing which values to substitute when we slot a term into it. Metavariable substitution captures the variables of which the metavariables are aware.

Example 7.5. Consider the following metavariable that is aware of a context with two variables: $a : \text{Loc}, b : \text{Val} \vdash M : 1$. The term $\vdash M[a \mapsto x, b \mapsto 42] : 1$ contains this metavariable and no other variables. Metasubstituting the open term $a : \text{Loc}, b : \text{Val} \vdash a := b$ for M yields $x := 42 : 1$.

This treatment of metavariables and their substitution is tedious but standard given the binding structure in the syntax. A (term) context $\Delta \vdash \Xi [\Gamma \vdash - : A] : B$ is a term of type B with variables from Δ and one meta-variable $\Gamma \vdash - : A$ of type A that assumes a binding context Γ. It is a program context if Δ is empty and $B = G$ is ground.

The recursive definition of a term’s denotation only uses the denotations of its subterms, so the semantics is automatically compositional. Abbreviating $\Gamma \vdash M : A$ and $\Gamma \vdash N : A$ into $\Gamma \vdash M, N : A$:

Proposition 7.6 (Compositionality). Let $\Delta \vdash \Xi [\Gamma \vdash - : A] : B$ be a term context and assume $\Gamma \vdash M, N : A$. If $[M]^C = [N]^C$ then $[\Xi [M]]^C = [\Xi [N]]^C$.

However, we are interested in a directional version of this, dealing not only with set equality but also with set inclusion. Simply replacing $=$ with \subseteq in Proposition 7.6 results in a false claim. This is because the language is higher-order, so only a "nested" form of containment holds, which degenerates to containment when restricted programs:

Theorem 7.7 (Directional Compositionality). Let $\cdot \vdash \Xi [\Gamma \vdash - : A] : G$ be a program context and assume $\Gamma \vdash M, N : A$. If $[M]^C \subseteq [N]^C$ then $[\Xi [M]]^C \subseteq [\Xi [N]]^C$.

The proof is in Appendix B.2.
7.3 Soundness
A basic part of the correspondence between the denotational and the operational semantics is its soundness, in the sense that the denotation of a program has traces corresponding to evaluations. More specifically, program evaluation is reflected in the denotation of the program by a single-transition trace, using the greatest lower bound of the initial view tree as the initial view:

Theorem 7.8 (Soundness). For a program M, if $\langle T, \mu \rangle, M \Downarrow V$, then $\inf_{\mu'} T(\mu, \mu') \omega : V \in [M]^{\omega}$ for some μ' and ω.

The proof is in Appendix B.3.

7.4 Adequacy
Adequacy uses contextual refinements to formalize how denotations capture behavior within any context: for $\Gamma \vdash M, N : A$, we say that M contextually refines N, denoted $\Gamma \vdash M \subseteq N : A$, or $M \subseteq N$ for short, if $\langle \alpha, \mu \rangle, \Xi [M] \Downarrow V \iff \langle \alpha, \mu \rangle, \Xi [N] \Downarrow V$ for every program context $\cdot \vdash \Xi [\Gamma \vdash - : A] : G$, initial configuration state $\langle \alpha, \mu \rangle$, and value V.

Theorem 7.9 (Directional Adequacy). If $[M]^{\omega} \subseteq [N]^{\omega}$ then $M \subseteq N$.

The proof begins by examining the tight correspondence between traces in denotations over M and interrupted executions. Formally, we write $M : \tau : V$ when M executes through τ to V: there is an interrupted execution from M to V such that $\tau.\tau \downarrow = [V]_{M}$, which starts with the view-leaf labeled by $\tau.\downarrow v w$, passes exactly through the memory transitions of $\tau.\downarrow c h$, and ends with the view-leaf labeled by $\tau.f.\downarrow v w$. By the Fundamental Lemma, the statement and proof of which we relegate to Appendix B.4, if $\tau \in [M]_{M}^{\omega}$ then there exists an appropriate value V such that $M : \tau : V$.

Traces in denotations over \mathcal{A} do not enjoy this correspondence, due to the abstract nature of the model. However, a looser correspondence holds, between denotations of programs to their evaluations:

Lemma 7.10 (Evaluation Lemma). For a program M, if $\alpha(\langle \mu, \rho \rangle) \omega : r \in [M]^{\omega}$ then $\langle \alpha, \mu \rangle, M \Downarrow r$.

Proof. By Retroactive Closure the trace is obtained by α-rewriting a trace in the M denotation. We proceed by induction on the length of this sequence. In the base case, we use the Fundamental Lemma which, for a single-transition trace degenerates to an uninterrupted execution. For the step, we observe that α-rewrites preserve evaluation. We leave the details to Appendix B.4. □

The converse of the Evaluation Lemma we already have as a special case of Soundness. These two, together with Directional Compositionality, give us Directional Adequacy:

Proof of Directional Adequacy. Assume $[M]^{\omega} \subseteq [N]^{\omega}$. Let $\tau \vdash \Xi [\Gamma \vdash - : A] : G$ be a program context and assume $\langle \alpha, \mu \rangle, \Xi [M] \Downarrow V$. By Soundness, $\tau \in [\Xi [M]]^{\omega}$ for some τ of the form $\alpha(\langle \mu, - \rangle) \omega : V$. By Directional Compositionality and the assumption, $\tau \in [\Xi [N]]^{\omega}$. By the Evaluation Lemma, $\langle \alpha, \mu \rangle, \Xi [N] \Downarrow V$. □

7.5 Validating Transformations
Using Directional Adequacy, we can validate $M \rightarrow N$ in our model by showing that $[M]^{\omega} \supseteq [N]^{\omega}$. This already justifies structural transformations by virtue of using standard denotational semantics, as mentioned in §6.2. For others, thanks to Deferral of Closure and closure preserving containment, we can use the G operators instead of the \mathcal{A} operators, making calculations simpler.

Figure 3 lists various transformations that we support in this way. The interested reader can find a more general collection in Appendix C (Table 2) and proofs thereof.
Additionally, the parallel composition construct in Jagadeesan et al. [25] (that they assume to be sequential) quantifies over all possible context execution graphs and calculates for each context the “happens-before” relation between context actions that is induced by the block. They further use a finite approximation of these histories to atomically validate refinement as acyclicity criteria on execution graphs. Roughly speaking, their denotation of code blocks behind this approach had been used in multiple related developments, e.g. [12, 36, 37, 48]. We hope that our work that targets RA will pave the way for similar continuations.

Jagadeesan et al. [25] adapted Brookes’ semantics to the x86-TSO memory model [42]. They showed that for x86-TSO it suffices to include the final store buffer at the end of the trace and add two additional simple closure rules that emulate non-deterministic propagation of writes from store buffers to memory, and identify observably equivalent store buffers. The x86-TSO model, however, is much closer to sequential consistency than RA, which we study in this paper. In particular, unlike RA, x86-TSO is “multi-copy-atomic” (writes by one thread are made globally visible to all other threads at the same time) and successful RMW operations are immediately globally visible. Additionally, the parallel composition construct in Jagadeesan et al. [25] is rather strong: threads are forked and joined only when the store buffers are empty. Being non-multi-copy-atomic, RA requires a more delicate notion of traces and closure rules, but it has more natural meta-theoretic properties, which one would expect from a programming language concurrency model: sequencing, a.k.a. thread-inlining, is unsound under x86-TSO [see 25, 33] but sound under RA (see Figure 3).

Burckhardt et al. [14] developed a denotational semantics for hardware weak memory models (including x86-TSO) following an alternative approach. They represent sequential code blocks by sequences of operations that the code performs, and close them under certain rewrite rules (re-orderings and eliminations) that characterize the memory model. This approach does not validates important optimizations, such as Read-Read Elimination. Moreover, unlike x86-TSO, RA cannot be characterized by rewrite operations on SC traces [33].

Dodds et al. [19] developed a fully abstract denotational semantics for RA, extended with fences and non-atomic accesses. Their semantics is based on RA’s declarative (a.k.a. axiomatic) formulation as acyclicity criteria on execution graphs. Roughly speaking, their denotation of code blocks (that they assume to be sequential) quantifies over all possible context execution graphs and calculates for each context the “happens-before” relation between context actions that is induced by the block. They further use a finite approximation of these histories to atomically validate refinement in a model checker. While we target RA as well, there are two crucial differences between our work and Dodds et al. [19]. First, we employ Brookes-style totally ordered traces and use interleaving-based operational presentation of RA. Second, and more importantly, we strive for a compositional semantics where denotations of compound programs are defined as functions of denotations of their constituents, which is not the case for Dodds et al. [19]. Their model can nonetheless validate transformations by checking them locally without access to the full program.
Others present non-compositional techniques and tools to check refinement under weak memory models between whole-thread sequential programs that apply for any concurrent context. Poetzl and Kroening [45] considered the SC-for-DRF model, using locks to avoid races. Their approach matches source to target by checking that they perform the same state transitions from lock to subsequent unlock operations and that the source does not allow more data-races. Morriset et al. [41] and Chakraborty and Vafeiadis [16] addressed this problem for the C/C++11 model, of which RA is a central fragment, by implementing matching algorithms between source and target that validate that all transformations between them have been independently proven to be safe under C/C++11.

Cho et al. [18] introduced a specialized semantics for sequential programs that can be used for justifying compiler optimizations under weak memory concurrency. They showed that behavior refinement under their sequential semantics implies refinement under any (sequential or parallel) context in the Promising Semantics 2.1 [17]. Their work focuses on optimizations of race-free accesses that are similar to C11’s “non-atomics” [4, 34]. It cannot be used to establish the soundness of program transformations that we study in this paper. Adding non-atomics to our model is an important future work.

Denotational approaches were developed for models much weaker than RA [15, 24, 26, 29, 43] that allow the infamous Read-Write Reorder and thus, for a high-level programming language, require addressing the challenge of detecting semantic dependencies between instructions [3]. These approaches are based on summarizing multiple partial orders between actions that may arise when a given program is executed under some context. In contrast, we use totally ordered traces by relating to RA’s interleaving operational semantics. In particular, Kavanagh and Brookes [29] use partial orders, Castellan, Paviotti et al. [15, 43] use event structures, and Jagadeesan et al., Jeffrey et al. [24, 26] employ “Pomsets with Preconditions” which trades compositionality for supporting non-multi-copy-atomicity, as in RA. These approaches do not validate certain access eliminations, nor Irrelevant Load Introduction, which our model validates.

An exciting aspect of our work is the connection between memory models to Moggi’s monadic approach. For SC, Abadi and Plotkin, Dvir et al. [1, 20] have made an even stronger connection via algebraic theories [44]. These allow to modularly combine shared memory concurrency with other computational effects. Birkedal et al. [11] develop semantics for a type-and-effect system for SC memory which they use to enhance compiler optimizations based on assumptions on the context that come from the type system. We hope to the current work can serve as a basis to extend such accounts to weaker models.

ACKNOWLEDGMENTS

Supported by the Israel Science Foundation (grant number 814/22) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 851811); and by a Royal Society University Research Fellowship and Enhancement Award.

REFERENCES

Yotam Dvir, Ohad Kammar, and Ori Lahav

40 Yotam Dvir, Ohad Kammar, and Ori Lahav

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960
A Denotational Approach to Release/Acquire Concurrency

A.1 Properties of Memories

Proposition 5.3. By induction on the step. In Adv steps, we retain the simulation. In the remaining cases, we take the same RA step, which retains the simulation. In the Store case, we store the unique corresponding message that is permissible according to the rule. Other than the timestamp, the view is determined by the current view tree. In the ReadOnly case, we load the corresponding message according to the bijection given by the weak simulation relation. The RMW case is a combination of both of the above. The other cases retains the simulation as they propagate the state by induction or without change.
Proof of Lemma 5.8. Let $t' \in \text{Loc}$. Then $\{e \in \mu_{t'} \mid \kappa \Rightarrow e\}.vw = \{\kappa\}$, and so

$\kappa_{t'} = \left(\bigsqcup \{e \in \mu_{t'} \mid \kappa \Rightarrow e\}.vw \right)_{t'} \leq \left(\bigsqcup \{e \in \mu \mid \kappa \Rightarrow e\}.vw \right)_{t'}$

Therefore, $\kappa \leq \bigsqcup \{e \in \mu \mid \kappa \Rightarrow e\}.vw$.

Conversely, since $\kappa \leftarrow \mu$, if $\kappa \Rightarrow e \in \mu$ then $\kappa \geq e.vw$. Thus $\kappa \geq \bigsqcup \{e \in \mu \mid \kappa \Rightarrow e\}.vw$. □

Proof of Proposition 5.9. Item 1 follows from the fact that the memory is downwards-pointing in the case of a single-edge path. This extends to a path of any length by induction. The other items are direct consequences of the first. □

Proof of Proposition 5.11(1). Since μ is connected, there exists $e \in \mu_{t'}$ such that $\nu \Rightarrow e$. By Proposition 5.9, $(\min \mu_{t'}).t \geq e.t$. By minimality $(\min \mu_{t'}).t = e.t$, and since μ is scattered, $e = \min \mu_{t'}$. Thus ν is on a cycle (with e). Since μ is built-up, ν is minimal. □

Proof of Proposition 5.11(2). Since μ is built-up, $\min \mu_{t'}$ appears in a cycle in $\mu.gph$, and thus in a cycle of the supergraph $\rho.gph$. Since ρ is built-up, $\min \mu_{t'}$ is minimal in ρ. □

A.2 Properties of View Trees

Only leaves are well-formed for values, being a special case of a single-threaded program:

Lemma A.1. If $T \vdash V$ then T is a leaf, i.e. $\exists \kappa \in \text{View}. T = \kappa$.

Proof. The Leaf rule is the only rule in which the term in the conclusion can be a value. □

Proof of Proposition 5.13. Let ∇_1 and ∇_2 be derivations of $T \vdash M$. Induction on ∇_1 shows that $\nabla_1 = \nabla_2$. In every case there is only one applicable derivation rule, and the premises are determined by the conclusion. To illustrate this point, consider the case of $T \leadsto R \vdash VN$. The application of λ-L is ruled-out since $T \leadsto R \vdash V$ contradicts Lemma A.1.

Since the derivation is unique, an mapping as claimed can be constructed by deconstructing the term following the derivation. The mapping is injective because the subterms and subtrees in NODE, the only rule with more than one premise, are disjoint. □

A.3 Properties of the Operational Semantics

Proof of Theorem 5.15. Preservation of the type is standard. The well-formedness of the state we show by induction on the step derivation.

The view-tree after the step is well-formed if it is a leaf by the Leaf rule. Otherwise, we use a corresponding well-formedness rule. For example, for the APPLEFT case we use the λ-L rule and the induction hypothesis; for the PARINIT case we use the NODE rule, and satisfy the premises using the Leaf rule.

That the view-tree points downwards into the memory, and that the memory is well-formed, are both immediate from the induction hypothesis when there is one. The PARINIT case is also immediate since neither the memory nor the set of views changes. The memory also doesn’t change in the PARFIN case, into which the view-leaf after the step points downward since it is the pointwise maximum of views that do.

For the cases of memory-accessing steps, we also use this fact that pointwise maximum preserves pointing downwards for those steps that load a message. The steps that add a message change the timestamp by increasing it, therefore preserving pointing downwards with respect to the other locations. With respect to the location itself, the property holds because the view-leaf points to the added message which has the same view, and views succeed themselves. The memory remains well-formed after adding such a message since the condition on the segment ensures that
the memory remains scattered; the message is not minimal because the timestamp is chosen to increase; the message is not on a cycle because no other message points to it; and, as we have just established, its view points downwards, and the views of the other messages point to the same messages so they too point downwards as they have before the step. □

Proof of Lemma 5.16. By induction on the step derivation. The congruence cases are all immediate from the induction hypothesis. Of the others, only STORE and RMW add a message, in which cases the premises ensure the claim holds. □

Proof of Lemma 5.17. This property extends from a single step inductively. For a single step, we proceed by induction on the step derivation. The congruence cases and those that do not change the view-tree are all immediate from the induction hypothesis. In the memory-accessing steps, the claim follows from their premises. The cases that change the tree structure, PARINIT and PARFIN, are trivial to check. □

Proof of Proposition 5.18. That \(\alpha \leq \omega \) follows from Lemma 5.17. The rest follows by induction on the number of steps. Indeed, combining our assumption with Lemma 5.16, when a message is added there exist \(\alpha' \in T.1f \) and \(\omega' \in R.1f \) such that, \(\alpha \leq \alpha' \leq v.vw \leq \omega' \leq \omega \) and \(\alpha_{v.1c} \leq \alpha'_{v.1c} < v.t. \) □

B.1 Proofs for Commutativity.

The diagrams for the proof of Rewrite Commutativity are in Appendix D. Below are proofs of other claims from §7.1.

Proof of Deferral of Closure. Since \((\cdot)^* \) is a closure operator, it is monotonic, so the \(\supseteq \) containment follows from the monotonicity of \((\models \! G) \) and \((\models \! G^*) \) (Proposition 6.3). Moreover, for the \(\subseteq \) containment, suffice it we show that \(P_1^* \models \! f \not\subseteq (P_1 \models \! f)^* \) and \(P_1^* \models \! G P_2^* \not\subseteq (P_1^* \models \! G P_2)^* \).

Denote by \(P^n \) the set of traces obtained by \(\ast \)-rewriting \(n \) times a trace from \(P \), and similarly for \(f^n \). So it is sufficient to show that for all \(n_1, n_2 \in \mathbb{N} \), \(P_1^{n_1} \models \! G P_2^{n_2} \not\subseteq (P_1 \models \! f)^* \) and \(P_1^* \models \! G P_2 \not\subseteq (P_1^* \models \! G P_2^*)^* \). We show this by induction on \(n_1 + n_2 \), where the base case \(P_1 \models \! f \subseteq (P_1 \models \! f)^* \) and \(P_1^* \models \! G P_2 \subseteq (P_1^* \models \! G P_2)^* \) holds since \((\cdot)^* \) is a closure operator.

For the induction step, the induction hypothesis is that the claim holds for \(n_1 + n_2 \leq m \), and we must show it holds for \(n_1 + n_2 = m + 1 \). So either \(n_1 = n'_1 + 1 \) or \(n_2 = n'_2 + 1 \). We focus on the claim for \((\models \! G^*) \), since we find that proving the claim for \((\models \! G) \) to be similar and somewhat easier.

Let \(\tau \in P_1^{n_1} \models \! G P_2^{n_2} \). So \(\tau = \inf_{\xi, \alpha} \{\alpha_1, \alpha_2\} \xi \omega_1 \cup \omega_2 \vdash (r_1, r_2) \) where \(\tau_1 := \alpha_1 \xi \omega_1 \vdash r_1 \in P_1^{n_1} \) and \(\xi \in \xi_1 \parallel \xi_2 \). Assume w.l.o.g. that \(n_1 = n'_1 + 1 \). So there is some \(\tau'_1 \in P_1^{n'_1} \) and \(x \in \ast \) such that \(\tau'_1 \xrightarrow{\ast} \tau_1 \).

By case analysis on \(x \), we show that there exists \(\tau' \in P_1^{n'_1} \models \! G P_2^{n'_2} \) such that \(\tau' \ast \)-rewrites to \(\tau \). By the induction hypothesis \(\tau' \in P_1 \models \! G P_2^* \), and so \(\tau \in P_1 \models \! G P_2^* \).

For the \(x \in \ast \cap c \) cases, we construct \(\tau' \) from \(\tau'_1 \) and \(r_2 \). The procedure depends on \(x \):

- **Rw.** So \(\tau'_1 = \alpha'_1 \xi \omega_1 \vdash r_1 \) where \(\alpha_1 \leq \alpha'_1 \). We take
 \(\tau' := \inf_{\xi, o} \{\alpha'_1, \alpha_2\} \xi \omega_1 \cup \omega_2 \vdash (r_1, r_2) \)

Since \(\inf_{\xi, o} \{\alpha_1, \alpha_2\} \leq \inf_{\xi, o} \{\alpha'_1, \alpha_2\} \), we have \(\tau' \xrightarrow{Rw} \tau \).
Fw. Similar to Rw.
St. So $\tau'_1 = \alpha_1 (\eta_1 \eta'_1) \omega_1 : \tau_1$ where $\xi_1 = \eta_1 (\mu, \rho) \eta'_1$. Since $\xi \in \xi_1 \parallel \xi_2$, there exist η, η' such that $\xi = \eta (\mu, \rho) \eta'$, where η includes the transitions from η_1 and η' includes the transitions from η'_1. Formally, there exist η_2, η'_2 such that $\xi_2 = \eta_2 \eta'_2$. Since $\eta \in \eta_1 \parallel \eta_2$ and $\eta' \in \eta'_1 \parallel \eta'_2$. In particular, $\eta' \in \eta_1 \eta'_1 \parallel \eta_2 \eta'_2 = \eta_2 \eta'_2$. Denoting $\xi' := \eta' \eta'_2$, we take

$$\tau' := \inf \xi' \cdot \alpha_1, \alpha_2 \{ \xi' \omega_1 \cup \omega_2 : \langle r_1, r_2 \rangle \}$$

We have $\xi . \omega \subseteq \xi' . \omega$, so $\inf \xi . \omega \{ \alpha_1, \alpha_2 \} \leq \inf \xi' . \omega \{ \alpha_1, \alpha_2 \}$. So $\tau' \xrightarrow{\text{Rw}} \tau''$, where

$$\tau'' := \inf \xi' \cdot \alpha_1, \alpha_2 \{ \xi' \omega_1 \cup \omega_2 : \langle r_1, r_2 \rangle \}$$

Since $\xi = \eta (\mu, \rho) \eta'$, we have $\tau'' \xrightarrow{\text{St}} \tau$.

Mu. So $\tau'_1 = \alpha_1 \left(\eta_1 \right) \left(\mu, \rho \right) \eta'_1 \omega_1 : \tau_1$ where $\xi_1 = \eta_1 (\mu, \rho) \eta'_1$. Since $\xi \in \xi_1 \parallel \xi_2$, there exist η, η' such that $\xi = \eta (\mu, \rho) \eta'$, where η includes the transitions from η_1 and η' includes the transitions from η'_1. Formally, there exist η_2, η'_2 such that $\xi_2 = \eta_2 \eta'_2$. Since $\eta \in \eta_1 \parallel \eta_2$ and $\eta' \in \eta'_1 \parallel \eta'_2$. In particular, $\eta (\mu, \rho) \eta' \in \eta_1 (\mu, \rho) \eta'_1 \parallel \eta_2 \eta'_2 = \eta_1 \eta'_1 \parallel \eta_2 \eta'_2$. Denoting $\xi' := \eta (\mu, \rho) \eta'_2$, we take

$$\tau' := \inf \xi' \cdot \alpha_1, \alpha_2 \{ \xi' \omega_1 \cup \omega_2 : \langle r_1, r_2 \rangle \}$$

Since $\xi = \eta (\mu, \rho) \eta'$, and $\xi' . \omega = \xi . \omega$ and $\eta' . \omega = \eta . \omega$, we have $\tau' \xrightarrow{\text{Mu}} \tau$.

For the $x \in \star \cap \alpha$ cases, we construct τ' from τ'_1 and a τ'_2 defined such that $\tau_2 \xrightarrow{\gamma} \tau'_2$ for some $\gamma \in \eta$. By iterating Rewrite Commutativity η_2 times to commute γ through the \star-rewrite sequence that resulted in τ_2, we find that $\tau'_2 \in P_{\eta_2}^n$. This is because $P_2 \in G(X_2)$. The procedure depends on κ.

Ti. So $\tau'_1 = \alpha_1 \left(\eta_1 \right) \left(\mu, \rho \cup \{ v \} \right) \eta'_1 \omega_1 : \tau_1$ where $\xi_1 = \eta_1 (\mu, \rho \cup \{ v \}) \eta'_1 \omega_1 \cup \{ v \}$ and $\eta \leq \eta_1 \parallel \eta_2$ Since $\xi \in \xi_1 \parallel \xi_2$, there exist $\eta, \eta', \eta_2, \eta'_2$ such that $\xi := \eta (\mu, \rho \cup \{ v \}) (\eta' \cup \{ v \}) \eta_2 (\eta'_2 \cup \{ v \}) \eta_2 \eta'_2 \cup \{ v \}$. Since $\eta \in \eta_1 \parallel \eta_2$ and $\eta' \in \eta'_1 \parallel \{ v \} \parallel \eta'_2 \cup \{ v \}$. Taking the same order of interleaving, $\eta' \cup \{ v \} \in \eta'_1 \parallel \{ v \} \parallel \eta'_2 \cup \{ v \}$. Therefore, we have $\xi' \in \xi'_1 \parallel \xi'_2$, where

$$\xi' := \eta (\mu, \rho \cup \{ v \}) (\eta' \cup \{ v \}) \eta'_1 \cup \{ v \}, \quad \xi'_1 := \eta_1 (\mu, \rho \cup \{ v \}) \eta'_1 \cup \{ v \}, \quad \text{and} \quad \xi'_2 := \eta_2 (\eta'_2 \cup \{ v \})$$

Define $\tau'_2 := \alpha_2 \{ \xi'_1 \omega_2 \cup \{ v \} \} : \tau_2$. Since $\tau_2 \xrightarrow{\text{Ls}} \tau'_2$, indeed $\tau'_2 \in P_{\eta_2}^n$. We take

$$\tau' := \inf \xi' . \alpha_1, \alpha_2 \{ \xi' \omega_1 \cup \omega_2 : \langle r_1, r_2 \rangle \}$$

Since $\xi . \omega = \xi' . \omega$, we have $\tau' \xrightarrow{\text{Ti}} \tau$.

Ab. Similar to Ti, using $\tau_2 \xrightarrow{\text{Ex}} \tau'_2$.

Di. So $\tau'_1 = \left(\alpha_1 \eta_1 (\mu, \rho \cup \{ v \}) \eta'_1 \omega_1 \cup \{ v \} \right) [\tau e]$, where $\xi = \eta_1 (\mu, \rho \cup \{ v, e \}) \eta'_1 \omega_1 \cup \{ v, e \}$. The reasoning in this case proceeds similarly, using $\tau_2 \xrightarrow{\text{Cn}} \tau'_2$ and interleaving τ'_1 with τ'_2 to take

$$\tau' := \inf \xi' . \alpha_1, \alpha_2 \{ [\tau e] \alpha_1, [\tau e] \alpha_2 \} \{ \xi' \omega_1 \cup \tau e : \langle r_1, r_2 \rangle \}$$

We have $\xi . \omega = \xi' . \omega$ again too. Moreover, ξ is the chronicle of a trace, and e appears in it. So no view that appears in the trace can point into the interior of e’s segment. Otherwise, since view must point to timestamps of messages, we would have a memory that is not scattered.

We show $\inf \xi . \omega \{ \alpha_1, \alpha_2 \} [\tau e] \leq \inf \xi' \cdot \omega \{ \alpha_1, \alpha_2 \} [\tau e]$. Indeed, for $\kappa \leftarrow \xi . \omega$, assume $\kappa \leq \alpha_1$. Therefore, $\kappa [\tau e] \leq \alpha_1 [\tau e]$, and so $\kappa [\tau e] \leq \inf \xi' \cdot \omega \{ \alpha_1, \alpha_2 \} [\tau e]$. Thus in particular for $\kappa = \inf \xi . \omega \{ \alpha_1, \alpha_2 \}$.
By order-comparing \((\omega_1)_{e_1}c\) to \(e.1\), one also finds that \((\omega_1 \cup \omega_2) \uparrow \epsilon = \omega_1 \uparrow \epsilon \cup \omega_2 \uparrow \epsilon\). And so we obtain \(\tau' \xrightarrow{\text{Rw, Di}} \tau\).

From here on we work to prove Retroactive Closure via logical relation. To compensate for the rewrite closure being taken at different stages of higher-order constructions, we use a refined notion of equality.

Egli-Milner lifting. The trace lifting of a relation \(\sim \subseteq X \times Y\) is a relation \(\sim \subseteq \text{Trace}X \times \text{Trace}Y\) defined \(\tau \sim \tau' := \tau.\text{st} = \tau'.\text{st} \land \tau.\text{vl} \sim \tau'.\text{vl}\). This in turn lifts to the Egli-Milner relation \(\sim \subseteq \mathcal{P}(\text{Trace}X) \times \mathcal{P}(\text{Trace}Y)\) where \(U \sim E := \forall \tau \in U \exists \tau' \in E. \tau \sim \tau' \land \forall \tau' \in E \exists \tau \in U. \tau \sim \tau'\). We call this last relation the EM-trace lifting of the first relation. We use the same notation for the relations because we will always be able to infer which relation is meant by the objects related.

Logical relation. For every type \(A\) we define \(\mathcal{V}^\uparrow[I\downarrow A] \subseteq [A] \times [A]_M\) and \(C^\uparrow[I\downarrow A] \subseteq \mathcal{A}[A] \times M[A]_M\) by mutual recursion. The definition of \(\mathcal{V}^\uparrow[I\downarrow A]\) follows the standard "related-inputs to related-outputs" mantra:

\[
\mathcal{V}^\uparrow[I\downarrow A \rightarrow B] := \{(f, g) \mid \forall (r, s) \in \mathcal{V}^\uparrow[I\downarrow A]. (fr, gs) \in C^\uparrow[I\downarrow B]\}
\]

\[
\mathcal{V}^\uparrow[I\downarrow (A_1 \bullet \cdots \bullet A_n)] := \{(\langle r_1, \ldots, r_n \rangle, \langle s_1, \ldots, s_n \rangle) \mid \forall i. (r_i, s_i) \in \mathcal{V}^\uparrow[I\downarrow A_i]\}
\]

\[
\mathcal{V}^\uparrow[I\downarrow \{i_1 \text{ of } A_1 | \cdots | i_n \text{ of } A_n\}] := \bigcup \{\{i_1 r, i_1 s\} \mid (r, s) \in \mathcal{V}^\uparrow[I\downarrow A_i]\}
\]

The relation trivializes on ground types: \(\mathcal{V}^\uparrow[I\downarrow G]\) is equality. In particular for \(V, W \in \cdot \vdash G\), if \(\langle [V]^\gamma, [W]^\delta \rangle \in \mathcal{V}^\uparrow[I\downarrow G]\), then \(V = W\) because as program values, \([V]^\gamma = V\) and \([W]^\delta = W\).

The bespoke \(C^\uparrow[I\downarrow A] := \{(P, Q) \mid \langle P, Q^\delta \rangle \in \mathcal{V}^\uparrow[I\downarrow A]\}\) uses the EM-trace lifting of \(\mathcal{V}^\uparrow[I\downarrow A]\) to relate abstract denotations to generating denotations by nesting a-closures.

In regards to open terms, for every typing context \(I\) we define \(X^\uparrow[I\downarrow \Gamma]\) by:

\[
X^\uparrow[I\downarrow \Gamma] := \{(\gamma, \delta) \mid \forall (a : A) \in I. (\gamma a, \delta a) \in \mathcal{V}^\uparrow[I\downarrow A]\}
\]

and define \(I^\uparrow : A\downarrow : A\) as follows: \(\forall (\gamma, \delta) \in X^\uparrow[I\downarrow \Gamma]. \langle [M]^\gamma, [M]_M^\delta \rangle \in C^\uparrow[I\downarrow A]\). We show this semantic judgment is sound with respect to the typing relation, following some supportive lemmas.

Lemma B.1. If \((r, s) \in \mathcal{V}^\uparrow[I\downarrow A]\) then \(\langle \text{return } r, \text{return } M^s \rangle \in C^\uparrow[I\downarrow A]\).

Proof. For the first half of the EM-trace lifting, let \(\tau \in \text{return } r = (\text{return } M^s)^a\), where we used Rewrite Commutativity to reorder the rewrites. So there exists \(\pi \in \text{return } M^s\) such that \(\pi \xrightarrow{\text{a}} \tau\). Obtain \(\tau', \pi'\) from \(\tau, \pi\) respectively by replacing their return value \(r\) with \(s\). By construction, \(\langle r, r' \rangle \in \mathcal{V}^\uparrow[I\downarrow A]\). Moreover, \(\pi' \in \text{return } M^s\). By reusing the rewrite sequence, \(\pi' \xrightarrow{\text{a}} \tau'\). Therefore, \(\tau' \in (\text{return } M^s)^a\) is a witness as required.

The same idea in reverse shows the second half of the EM-trace lifting.

Lemma B.2. If \((P, Q) \in C^\uparrow[I\downarrow A]\) and \((f, g) \in \mathcal{V}^\uparrow[I\downarrow A \rightarrow B]\) then \(\langle P \rangle = f, Q \rangle = M^g \in C^\uparrow[I\downarrow B]\).

Proof. For the first half of the EM-trace lifting, let \(\tau \in \text{return } r = (P \rightarrow M^f)^a\), where we used Lemma 7.1 to reorder the rewrites. So there exists \(\pi \in \text{return } M^s\) such that \(\pi \xrightarrow{\text{a}} \tau\). So there exist \(\alpha \widetilde{\varepsilon} \kappa : r \in P\) and \(\sigma \widetilde{\varepsilon} \omega : s \in f \text{ if } \kappa \leq \sigma\) such that \(\alpha \rightarrow \tau\). By the first assumption, there exists \(\pi'\) such that \(\langle r, r' \rangle \in \mathcal{V}^\uparrow[I\downarrow A]\) and \(\pi \xrightarrow{\text{a}} \tau' \in Q^a\).

By the second assumption, there exists \(s'\) such that \(\langle s, s' \rangle \in \mathcal{V}^\uparrow[I\downarrow B]\) and \(\sigma \xrightarrow{\text{a}} \omega : s' \in (gr')^a\).
So \(\pi' := \alpha \xi_\omega \cdot s' \in Q^a \Rightarrow^M g^a \). Obtain \(\tau' \) from \(\tau \) by replacing its return value \(s \) by \(s' \). By reusing the rewrite sequence, \(\pi' \xrightarrow{a} \tau' \). By Deferral of Closure, \(\tau' \in (Q^a \Rightarrow^M g^a)^a = (Q \Rightarrow^M g)^a \).

The same idea in reverse shows the second half of the EM-trace lifting.

Lemma B.3. \(\langle [\text{store}_t,a] \cdot [\text{store}_t,a] \rangle_M \in C^\gamma[\{1\}] \) and \(\langle [\text{rmw}_{t,\varphi}] \cdot [\text{rmw}_{t,\varphi}] \rangle_M \in C^\gamma[\text{Val}] \).

Proof. Since \(1 \) and \(\text{Val} \) are ground types, the sets are equal by Deferral of Closure, reasoning as in Lemma B.1.

Lemma B.4. If \(\langle P_i, Q_i \rangle \in C^\gamma[\{A_i\}] \) then \(\langle P_1 \parallel \parallel P_2, Q_1 \parallel \parallel M Q_2 \rangle \in C^\gamma[(A_1 \ast A_2)] \).

Proof. Similar to Lemma B.2.

Proposition B.5. If \(\Gamma \vdash M : A \) then \(\Gamma \vdash^M M : A \).

Proof. By induction on the derivation of \(\Gamma \vdash M : A \). We detail some paradigmatic examples:

\[
\begin{array}{c|c}
\Gamma, a : A & \Gamma \vdash^M M : B \\
\hline
\Gamma \vdash^M \lambda a : A.M : A \rightarrow B \\
\hline
\Gamma \vdash^M N : A \rightarrow B \\
\hline
\Gamma \vdash^M \text{NM} : B
\end{array}
\]

Let \(\langle y, \delta \rangle \in X^\gamma[\Gamma] \). If \(\langle r, s \rangle \in V^\gamma[\{A\}] \), then \(\langle \lambda r. [M]^c \gamma \rightarrow f, \lambda s. [M]^c \gamma \delta \rightarrow f \rangle \in V^\gamma[(A \rightarrow B)] \). Applying Lemma B.1, \(\langle [\lambda a. M]^c \gamma, [\lambda a. M]^c_M \delta \rangle \in C^\gamma[A \rightarrow B] \).

Let \(\langle y, \delta \rangle \in X^\gamma[\Gamma] \). If \(\langle f, g \rangle \in V^\gamma[A \rightarrow B] \), then by Lemma B.2 with the first assumption, \(\langle [M]^c \gamma \Rightarrow f, [M]^c_M \delta \Rightarrow^M g \rangle \in C^\gamma[\{B\}] \).

So by Lemma B.2 with the second assumption, \(\langle [NM]^c \gamma, [NM]^c_M \delta \rangle \in C^\gamma[\{B\}] \).

The other cases follow by similar reasoning with Lemmas B.1 and B.2, where in the cases of the effects we also use the respective Lemmas B.3 and B.4.

Proof of Retractive Closure. Since \(M \) is a program, by Proposition B.5, \(\cdot \vdash^M M : G \) for some ground type \(G \). That is, \(\langle [M]^c, [M]^c_M \rangle \in C^\gamma[\{A\}] \). Since the EM-trace lifting degenerates to equality on ground types, \([M]^c \Rightarrow [M]^c_M \).

B.2 Proof of Directional Compositionalty

We prove Directional Compositionality via logical relation. For this, we use a refinement of the notion of set-containment.

Hoare lifting. The trace lifting of a relation \(\subseteq X \times Y \) is a relation \(\subseteq \text{TraceX} \times \text{TraceY} \) defined \(\tau \sim \tau' := \tau . s t = \tau' . s t \land \tau . v 1 \sim \tau' . v 1 \). This in turn lifts to the Hoare relation \(\subseteq \mathcal{P} \text{(TraceX)} \times \mathcal{P} \text{(TraceY)} \) where \(U \sim V := \forall \tau \in U \exists \tau' \in E. \tau \sim \tau' \). We call this last relation the H-trace lifting of the first relation.

Logical relation. For every type \(A \) we define \(V^\gamma[A] \subseteq [A] \times [A] \) and \(C^\gamma[A] \subseteq \mathcal{A}[A] \times \mathcal{A}[A] \) by mutual recursion. The definition of \(V^\gamma[A] \) follows the standard "related-inputs to related-outputs" mantra:

\[
\begin{align*}
V^\gamma[A \rightarrow B] & := \{ (f, g) \mid \forall \langle r, s \rangle \in V^\gamma[A] . \langle f r, g s \rangle \in C^\gamma[\{B\}] \} \\
V^\gamma[\langle A_1 \ast \cdots \ast A_n \rangle] & := \{ \langle \langle r_1, \ldots, r_n \rangle, \langle s_1, \ldots, s_n \rangle \rangle \mid \forall i . \langle r_i, s_i \rangle \in V^\gamma[A_i] \} \\
V^\gamma[\{t_1 \text{ of } A_1 \mid \cdots \mid t_n \text{ of } A_n \}] & := \bigcup \{ \{ t_i r, t_i s \} \mid \langle r, s \rangle \in V^\gamma[A_i] \}
\end{align*}
\]

The relation trivializes on ground types: \(V^\gamma[G] \) is equality. In particular for \(V, W \in \cdot \vdash G \), if \(\langle [V]^Y, [W]^Y \rangle \in V^\gamma[G] \), then \(V = W \) because as program values, \([V]^Y = V \) and \([W]^Y = W \). We
H-trace lift $\mathcal{V}^\alpha[A]$ to obtain $C^\alpha[G]$.
It too trivializes on ground types: $C^\alpha[G]$ is containment.
In regards to open terms, for every typing context Γ we define $X^\alpha[\Gamma]$ as follows:
$$X^\alpha[\Gamma] := \{ (\gamma, \delta) \mid \forall (a : A) \in \Gamma. \langle \gamma a, \delta a \rangle \in \mathcal{V}^\alpha[A] \}$$
and define $\Gamma \triangleright \alpha M \leq N : A$ as follows: $\forall (\gamma, \delta) \in X^\alpha[\Gamma]. \langle [M^c] \gamma, [N^c] \delta \rangle \in C^\alpha[A]$.

As in Appendix B.1, we have the same supportive lemmas for this logical relation. The proofs are similar, though slightly simpler because there is no need for Lemma 7.2.

Lemma B.6. If $\langle r, s \rangle \in \mathcal{V}^\alpha[A]$ then $\langle \text{return } r, \text{return } s \rangle \in C^\alpha[A]$.

Lemma B.7. If $\langle P, Q \rangle \in C^\alpha[A]$ and $\langle f, g \rangle \in \mathcal{V}^\alpha[A \rightarrow B]$ then $\langle P \rangle = f, \langle Q \rangle = g \Rightarrow C^\alpha[B]$.

Lemma B.8. $\langle \text{store}_r, \text{store}_t \rangle \in C^\alpha[1]$ and $\langle \text{rmw}_\ell, \varphi \rangle \in C^\alpha[\text{Val}]$.

Lemma B.9. If $\langle P, Q \rangle \in C^\alpha[A_1]$ then $\langle P_1 \parallel P_2, Q_1 \parallel Q_2 \rangle \in C^\alpha[(A_1 \parallel A_2)]$.

The judgment is closed under term contexts:

Lemma B.10. For $\Delta \vdash \Sigma [\Gamma - A] : B$, if $\Gamma \triangleright \alpha M \leq N : A$, then $\Delta \vdash \Sigma [M] \leq \Sigma [N] : B$.

Proof. By induction on the derivation of $\Delta \vdash \Sigma [\Gamma - A] : B$. The metavariable case holds by assumption. The rest uses the supportive lemmas Lemmas B.6 to B.9 as in the proof of Proposition B.5.

Proposition B.11. If $\mathcal{A} [A] \ni P' \leq P$ and $\langle P, Q \rangle \in C^\alpha[A]$ then $\langle P', Q \rangle \in C^\alpha[A]$.

Proof. Assuming a statement about all elements of P we deduce the same statement about all elements of P'.

Lemma B.12. For $M, N \in \Gamma \vdash A$, if $[M]^c \subseteq [N]^c$ then $\Gamma \triangleright \alpha M \leq N : A$.

Proof. Let $\langle \gamma, \delta \rangle \in X^\alpha[\Gamma]$. By Lemma B.10 with N itself as the context (the degenerate case with no metavariable appearance), $\langle [N]^c \gamma, [N]^c \delta \rangle \in C^\alpha[A]$. By assumption, $[M]^c \gamma \subseteq [N]^c \gamma$. So by Proposition B.11, $\langle [M]^c \gamma, [N]^c \delta \rangle \in C^\alpha[A]$.

Proof of Theorem 7.7. By Lemma B.12, $\Gamma \triangleright \alpha M \leq N : A$. By Lemma B.10, $\cdot \triangleright \alpha \Sigma[M] \leq \Sigma[N] : G$. That is, $\langle [\Sigma[M]^c] \gamma, [\Sigma[N]^c] \delta \rangle \in C^\alpha[G]$. Since G is ground, this degenerates to $[\Sigma[M]^c] \subseteq [\Sigma[N]^c]$.

B.3 Proof of Soundness

To enable optimizations, the abstract model decouples traces far enough from the operational semantics to make it non-trivial to prove Soundness. To overcome this challenge we use a logical relation to relate the abstract model to a model which corresponds tightly to the execution steps of the operational semantics, by tracking the initial view-tree and the memory accesses individually. Formally, for a set X, an X-run-trace is an element of $\mathcal{VTree} \times \text{Mem} \times \text{Chro} \times \text{View} \times X$, written $\tau = \langle T, \mu \rangle \parallel \omega \cdot r$, where:

- The run-trace’s chronicle is $r.ch = \xi$. Each transition consists of well-formed memories, and represents a single memory-accessing step during the interrupted execution; i.e. those labeled by \bullet. We call such steps loud, and the other step silent; i.e. those labeled by \circ. Respectively, the run-trace is silent if ξ is empty, otherwise it is loud.
- The run-trace’s initial state is $\langle T, \mu \rangle$. This represents the state from the execution’s initial configuration, so we require that $T \mapsto \mu$. However, the environment may add messages before the program even starts running, so in the loud case we only require $\mu \subseteq \xi.o$.

The run-trace’s final view is \(\tau.f \mathcal{V}w = \omega \). The corresponding interrupted execution ends with \(\hat{\omega} \). In the silent case we require \(T = \hat{\omega} \) since silent steps do not change the state.

The run-trace’s final state is \(\langle \omega, (\langle \mu, \mu \rangle \xi), c \rangle \), so we require \(\omega \leftarrow \langle \mu, \mu \rangle \xi.c \). In light of Lemma 5.17, we require moreover that \(\kappa \leq \omega \) for every \(\kappa \in T.1f \), denote by \(T \leq \omega \).

Considering Lemma 5.16, we require \(\forall v \in \xi, \omega \exists \alpha \in T.1f. \alpha \leq v.\mathcal{V}w \leq \omega \land \alpha_{v.1c} < v.t \).

The run-trace’s return value is \(r.\text{ret} = r \). This corresponds to the program value the interrupted execution returns.

We denote the set of \(X \)-run-traces by \(\text{OpTrace}X \).

We define a monad structure \(\mathcal{R}X := \{ \mathcal{R}X, \text{return}^R, \} \)

\[
\mathcal{R}X := \mathcal{P} \text{(OpTraceX)} \quad \text{return}^R r := \{ \langle \kappa, \mu \rangle \cup \kappa : r \}
\]

If the chronicle is empty. In particular, messages unseen by the initial view-tree are redundant: other do not appear because they hold implicitly due to the requirements on run-traces.

Next we extend \(\mathcal{R} \) with shared-memory constructs.

Concurrent execution. Consider a program \(M \parallel N \). Either the state has a leaf \(k \) as its view-tree, in which case the first step it takes has to be \(\text{PARINIT} \), or it has a node as its view tree \(T \rightleftharpoons R \), in which case the first step it takes cannot be \(\text{PARINIT} \). Either way, it then takes some steps due to steps of \(M \) and \(N \) (with \(\text{PARLEFT} \) and \(\text{PARRIGHT} \)), then finally it steps with \(\text{PARFIN} \) to synchronize.

\[
P_1 |||^R P_2 := \{ \langle T, \mu \rangle \xi \omega \cup \omega_2 : \langle r_1, r_2 \rangle \in \mathcal{R} (X_1 \times X_2) \mid \exists \xi_1, \xi_2. \xi \in \xi_1 \| \xi_2 \land \exists T_1, T_2.\}
\]

Memory access. The definitions follow the \(\text{STORE} \), \(\text{READONLY} \), and \(\text{RMW} \) rules:

\[
\begin{align*}
[\text{store}_{\ell,t},_\mu]_R & := \{ \langle \hat{\alpha}, \mu \rangle \langle \rho, \rho \mathcal{V} \ell.\mathcal{V}q.t.\alpha \rangle \rangle \langle \alpha \hat{\ell} \hat{t} \rangle \} \alpha \hat{\ell} \hat{t} \\
[\text{rmw}^\text{RO}_{\ell,t},_\mu]_R & := \{ \langle \hat{\alpha}, \mu \rangle \langle \rho, \rho \mathcal{V} \ell.\mathcal{V}q.t.\alpha \rangle \rangle \alpha \hat{\ell} \hat{t} \} \alpha \hat{\ell} \hat{t} \\
[\text{rmw}^\text{RMW}_{\ell,\kappa},_\mu]_R & := \{ \langle \hat{\alpha}, \mu \rangle \langle \rho, \rho \mathcal{V} \ell.\mathcal{V}q_{\ell,\kappa}.\alpha \rangle \rangle \alpha \hat{\ell} \hat{t} \} \alpha \hat{\ell} \hat{t} \\
[\text{rmw}^\text{RO}_{\ell,\kappa},_\mu]_R & := \{ \langle \hat{\alpha}, \mu \rangle \langle \rho, \rho \mathcal{V} \ell.\mathcal{V}q_{\ell,\kappa}.\alpha \rangle \rangle \alpha \hat{\ell} \hat{t} \} \alpha \hat{\ell} \hat{t} \\
\end{align*}
\]

Some of the premises of the corresponding rules appear as conditions in the set notations, while other do not appear because they hold implicitly due to the requirements on run-traces.

The importance of a run-trace’s initial memory is in making sense of the initial view-tree, even if the chronicle is empty. In particular, messages unseen by the initial view-tree are redundant:

\[
\text{Lemma B.14. If } \langle T, \mu' \rangle \xi \omega : r \in [M]_R \text{ and } T \leftarrow \mu \subseteq \mu' \text{ then } \langle T, \mu \rangle \xi \omega : r \in [M]_R.
\]

Single-step soundness. To make the relationship between these denotations and the operational semantics precise, we can follow an execution backwards, adding a transition for every \(\bullet \)-step:

\[
\text{Lemma B.15. Assume } \langle T, \mu, M \hat{\sim}_{\text{RA}} \langle T', \mu' \rangle, M' \text{ and } \langle T', \mu' \rangle \xi \omega : r \in [M']_R.
\]

- If \(\varepsilon = \circ \), then \(\langle T, \mu \rangle \xi \omega : r \in [M]_R.
- If \(\varepsilon = \bullet \), then \(\langle T, \mu \rangle \langle \mu, \mu' \xi \omega : r \in [M]_R. \)
A Denotational Approach to Release/Acquire Concurrency

Proof. By induction on the derivation of \(\langle T, \mu \rangle, M \xrightarrow{\varepsilon}_{RA} \langle T', \mu' \rangle, M' \). Paradigmatic examples follow:

APP Assume \(\langle k, \mu \rangle, (\lambda a.M) V \xrightarrow{\omega}_{RA} \langle k, \mu \rangle, M[a \mapsto V] \) and \(\tau := \langle k, \mu \rangle \xrightarrow{\varepsilon} \omega : r \in [M[a \mapsto V]]^c_R \).

By the Substitution Lemma, \([M[a \mapsto V]]^c_R = [(\lambda a.M) V]^c_R \). So indeed \(\tau \in [(\lambda a.M) V]^c_R \).

PARLEFT Assume \(\langle T \rightarrow R, \mu \rangle, M \models N \xrightarrow{\omega}_{RA} \langle T' \rightarrow R, \mu' \rangle, M' \models N \) and \(\langle T' \rightarrow R, \mu' \rangle \xrightarrow{\varepsilon} \omega : \langle r, s \rangle \in [M']^c_R \).

So there exist \(\xi_1, \xi_2 \) such that \(\xi \in \xi_1 \parallel \xi_2 \), and there exist \(\omega_1, \omega_2 \) such that \(\langle T', \mu' \rangle \xrightarrow{\xi_1} \omega_1 : r \in [M']^c_R \) and \(\langle R, \mu' \rangle \xrightarrow{\xi_2} \omega_2 : s \in [N]^c_R \).

In that latter we can replace \(\mu' \) with \(\mu \) using Lemma B.14. By the induction hypothesis and the former, \(\langle T, \mu \rangle \xrightarrow{(\mu, \mu') \xi_1} \omega_1 : r \in [M]^c_R \). Since \(\langle \mu, \mu' \rangle \xi \in \langle \mu, \mu' \rangle \xi_1 \parallel \xi_2 \), we have

\(\langle T \rightarrow R, \mu \rangle \xrightarrow{(\mu, \mu') \xi} \langle r, s \rangle \in [M] \parallel [N]^c_R \).

We say a chronicle \(\xi \) is gapless if \(\rho = \rho' \) whenever \(\langle \mu, \rho \rangle \) is followed by \(\langle \rho', \theta \rangle \) in \(\xi \). Traces that feature gapless chronicles can be rewritten using Mu to obtain single-transition traces.

Proposition B.16. If \(\langle T, \mu \rangle, M \xrightarrow{\ast}_{RA} \langle \omega, \mu \rangle, V \), then \(\langle T, \mu \rangle \xrightarrow{\omega} \forall \langle V \rangle^c_R \in [M]^c_R \), where \(\eta = \langle \mu, \mu \rangle \xi \) is gapless and \(\eta \vdash c = \mu' \), i.e. either: (i) \(\xi \) is empty and \(\mu = \mu' \); or (ii) \(\xi \vdash o = \mu, \xi \vdash c = \mu' \), and \(\xi \) is gapless.

Proof. By induction on the number of small-steps. Case (i) applies so long as all the steps so far are silent. Case (ii) applies otherwise.

Hoare run-lifting. The run-trace lifting of a relation \(\sim \subseteq X \times Y \) is a relation \(\sim \subseteq \text{OpTrace}X \times \text{Trace}Y \) defined \(\tau \sim \tau' := \exists T, \mu, \xi, \omega, r, s, \tau = \langle T, \mu \rangle \xrightarrow{\xi} \omega : r \sim s. \) This in turn lifts to the Hoare relation \(\sim \subseteq \mathcal{P} \text{(OpTrace}X) \times \mathcal{P} \text{(Trace}Y) \) where \(\overline{U} \sim \overline{V} := \forall \tau \sim U \exists \tau' \sim E \). We call this last relation the \(H\text{-run-trace lifting} \) of the first relation.

Logical relation. For every type \(A \) we define \(V^\ast\langle A \rangle \subseteq [A]_R \times [A] \) and \(C^\ast\langle A \rangle \subseteq R[A]_R \times A \langle A \rangle \) by mutual recursion. The definition of \(V^\ast\langle A \rangle \) follows the standard "related-inputs to related-outputs" mantra, while the bespoke \(C^\ast\langle A \rangle \) part transforms the view tree to its greatest lower bound using the notation \(\inf_{\mu} T := \inf_{\mu} T \parallel 1 \), and adds a transition for the first memory:

\[V^\ast\langle A \rightarrow B \rangle := \{ \langle f, g \rangle \mid \forall \langle r, s \rangle \in V^\ast\langle A \rangle \cdot \langle f r, g s \rangle \in C^\ast\langle B \rangle \} \]

\[V^\ast\{ A_1 ; \cdots ; A_n \} := \{ \langle r_1, \ldots, r_n, s_1, \ldots, s_n \rangle \mid \forall i. \langle r_i, s_i \rangle \in V^\ast\langle A_i \rangle \} \]

\[V^\ast\{ \text{one of } A_1 \cdots \text{one of } A_n \} := \bigcup \{ \langle i_1 r, i_1 s \rangle \mid \langle r, s \rangle \in V^\ast\langle A_i \rangle \} \]

The relation trivializes on ground types \(V^\ast\langle \text{ground} \rangle \) is equality. In particular for \(V, W \in \lambda G \), if \(\langle V, W \rangle \in V^\ast\langle G \rangle \), then \(V = W \) because as ground-typed values, \([V]^c_R = V = W \).

In regards to open terms, for every typing context \(\Gamma \) we define \(X^\ast\langle \Gamma \rangle \subseteq [\Gamma]_R \times [\Gamma] \) by:

\[X^\ast\langle \Gamma \rangle := \{ \langle \gamma, \delta \rangle \mid \forall (a : A) \in \Gamma. \langle \gamma a, \delta a \rangle \in V^\ast\langle A \rangle \} \]

and define \(\Gamma \vdash M : A \) as follows: \(\forall \langle \gamma, \delta \rangle \in X^\ast\langle \Gamma \rangle \cdot [M]^c_R \gamma, [M]^c_R \delta \in C^\ast\langle A \rangle \). We show this semantic judgment is sound with respect to the typing relation, following some supportive lemmas.

Lemma B.17. If \(\langle r, s \rangle \in V^\ast\langle A \rangle \) then \(\langle \text{return}^R r, \text{return}^S s \rangle \in C^\ast\langle A \rangle \).

Proof. Assume \(\langle r, s \rangle \in V^\ast\langle A \rangle \). W.l.o.g., let \(\langle k, \mu \rangle \in \kappa \cdot r \in \text{return}^R r \), where \(\kappa \rightarrow \mu \). Note that \(\kappa \langle \mu, \mu \rangle \kappa : s \in \text{return}^S s \). Trivially, \(\langle \mu, \mu \rangle \cdot = \langle \mu, \mu \rangle \) and \(\text{inf}_{\mu} \kappa = \kappa \). Substituting these, together with our assumption, we obtain the required precisely:

\[\forall \langle k, \mu \rangle \in \kappa \cdot r \in \text{return}^R r \exists s. \text{inf}_{\mu} \kappa \langle \mu, \mu \rangle \cdot \kappa : s \in \text{return}^S s \land \langle r, s \rangle \in V^\ast\langle A \rangle \]
Lemma B.18. If \(\langle P, Q \rangle \in C^*([A]) \) and \(\langle f, g \rangle \in \mathcal{V}'([A \rightarrow B]) \) then \(\langle P \rangle \equiv_R^f, Q \rangle \equiv g \rangle \in C^*([B]). \)

Proof. Assume \(\langle P, Q \rangle \in C^*([A]) \) and \(\langle f, g \rangle \in \mathcal{V}'([A \rightarrow B]). \) Let \(\langle T, \mu \rangle \equiv_R^\omega \ r' \in P \equiv_R^f. \) So there exist \(r \) and \(\kappa \) such that \(\langle T, \mu \rangle \equiv_R^\omega \ r' \in P \equiv_R^f. \) By the first assumption there exists an \(s \) such that \(\inf_\mu T ([\mu \mu \xi] \equiv_R^\omega \ s \in Q \) and \(r, s \in \mathcal{V}'([A]). \) Using the second assumption we find that \(\langle f, g \rangle \in C^*([B]). \) In particular, there exists an \(s' \) such that \(\kappa ([\mu \mu \xi] \equiv_R^\omega \ s' = gs \) and \(r, s' \in \mathcal{V}'([B]). \) So we have

\[
\inf_\mu T ([\mu \mu \xi] \equiv_R^\omega \ s' \in Q \equiv_R^g.
\]

By using \(\mu \), we have the required \(\inf_\mu T ([\mu \mu \xi] \equiv_R^\omega \ s' \in Q \equiv_R^g. \)

Lemma B.19. \(\{\langle \text{store}_{t,\omega} \rangle, \langle \text{store}_{t,\omega} \rangle \} \in C^*([1]) \) and \(\{\langle \text{rmw}_{t,\varphi} \rangle, \langle \text{rmw}_{t,\varphi} \rangle \} \in C^*([\text{Val}]). \)

Proof. Using \(S_t \) to compensate for the additional transition from the initial memory, and \(R_w \) to compensate for the view not necessarily already pointing to the loaded message.

Lemma B.20. If \(\langle P_1, Q_1 \rangle \in C^*([A_1]) \) then \(\langle P_1 \parallel \ P_2, Q_1 \parallel \ Q_2 \rangle \in C^*([A_1 * A_2]). \)

Proof. Assume \(\langle P_1, Q_1 \rangle \in C^*([A_1]) \), and let \(\tau \in P_1 \parallel \ P_2. \) We proceed by case analysis depending on whether the initial view tree is a leaf:

Leaf. W.l.o.g., \(\tau = (\kappa, \mu) \equiv_R^\omega \ s_1 \in Q_1 \) and \(\langle r_1, r_2 \rangle \in \mathcal{V}'([A]). \) By definition, there exist \(s_1 \) such that \(\kappa ([\mu \mu \xi] \equiv_R^\omega \ r_1 \in P_1 \) and \(\eta \in \xi \). Using Mu we have \(\kappa ([\mu \mu \xi] \equiv_R^\omega \ r_2 \in P_2 \). Rudimentarily, \(\inf_\mu \{\inf_\mu T, \inf_\mu T_2\} = \inf_\mu \{\inf_\mu T_1 \equiv_R^{\tau} T_2\} = \inf_\mu \{\inf_\mu T_1 \equiv_R^{\tau} \equiv_R^{\tau} T_2\}, \)

Node. W.l.o.g., \(\tau = (\overrightarrow{T_1 T_2}, \mu) \equiv_R^\omega \ r_1 \in P_1 \) and \(\eta \in \xi \). Using Mu we have \(\kappa ([\mu \mu \xi] \equiv_R^\omega \ r_1 \in P_1 \) and \(\eta \in \xi \). By definition, \(\inf_\mu \{\inf_\mu T_1 \equiv_R^{\tau} T_2\} = \inf_\mu \{\inf_\mu (T_1 \equiv_R^{\tau} T_2)\} = \inf_\mu \{\inf_\mu (T_1 \equiv_R^{\tau} T_2)\}. \)

Proposition B.21. If \(\Gamma \vdash M : A \) then \(\Gamma \not\vdash^\omega M : A. \)

Proof. By induction on the derivation of \(\Gamma \vdash M : A. \) We detail some paradigmatic examples:

\[
\begin{array}{l}
\Gamma, a : A \not\vdash^\omega M : B \\
\hline
\Gamma \not\vdash^\omega \lambda a : A, M : A \rightarrow B
\end{array}
\]

Let \(\langle \gamma, \delta \rangle \in \mathcal{X}'([\Gamma]). \) We have \(\lambda a : M \equiv_R^{\gamma} \lambda r, [M] \equiv_R^{\gamma} [a \rightarrow r] \) and \(\lambda a : M \equiv^\gamma \delta = \lambda r. \) By Lemma B.17 and the definition of \(\mathcal{V}'([A \rightarrow B]), \) it suffices to show that if \(\langle r, s \rangle \in \mathcal{V}'([A]), \) then \(\{[M] \equiv_R^{\gamma} [a \rightarrow r], [M \equiv^\gamma \delta [a \rightarrow s] \} \in C^*([B]), \) which is implied by the induction hypothesis.

By the first induction hypothesis, \(\{[M] \equiv_R^{\gamma} [a \rightarrow r], [M \equiv^\gamma \delta [a \rightarrow s] \} \in C^*([B]), \) which is implied by the induction hypothesis.

By the second induction hypothesis, \(\{[M] \equiv_R^{\gamma} [a \rightarrow r], [M \equiv^\gamma \delta [a \rightarrow s] \} \in C^*([B]), \) which is implied by the induction hypothesis.

The other cases follow by similar reasoning with Lemmas B.17 and B.18, where in the cases of the effects we also use the respective Lemmas B.19 and B.20.
The proof of soundness concludes by using Propositions B.16 and B.21:

Proof of Soundness. We have $\langle T, \mu \rangle \xrightarrow{\xi} \omega :: V \in [M]_R^C$ by Proposition B.16 since M is of ground type. Therefore, Proposition B.21 implies that $\inf_\mu T (\mu, \mu') \xrightarrow{\xi} \omega :: V \in [M]_C^C$. Thanks to the extra conclusions of Proposition B.16, $\inf_\mu T (\mu, \mu') \xrightarrow{\xi} \omega :: V \in [M]_C^C$ by iteratively Mu-rewriting. □

B.4 Proof of Adequacy

The proof of adequacy starts with the Fundamental Lemma, stating that M-traces correspond to interrupted executions. The main reason behind this fact is simple: c-rewrites preserve this correspondence. That is:

Lemma B.22. If $M : \tau : V$ and $\tau \xrightarrow{\chi} \pi$ for $\chi \in c$, then $M : \pi : V$.

Proof. We split to the different $\chi \in c$ cases:

- **St** Add a transition that doesn’t change the configuration.
- **Mu** Meld adjacent transitions with equal configurations at the boundary.
- **Rw** Append an Adv step to the final transition.

In regards to open terms, for every typing context Γ we define

$$
\mathcal{X}[\Gamma] := \{ \Theta \in \text{Sub} \Gamma | \forall (a : A) \in \Gamma. \Theta_a \in \mathcal{V}[\Lambda] \}
$$

and define $\Gamma \vdash M : A$ for $\Gamma \vdash M : A$ as $\forall \Theta \in \mathcal{X}[\Gamma]. \Theta M \in \mathcal{C}[\Lambda]$. Therefore, the conditions of Store are satisfied thanks to τ being a trace, e.g. the segment of the stored message being unoccupied due to $\xi.c$ being well-formed. □

Theorem B.23 (Fundamental Lemma). If $\Gamma \vdash M : A$, then $\Gamma \vdash M : A$.

We devote lemmas to inductive cases of the Fundamental Lemma’s proof.

Lemma B.24. If $\tau := \alpha \xrightarrow{\xi} \omega :: \langle \rangle \in [\text{store}_{\xi,\omega}]_M$, then $\tau := \omega : \tau : \langle \rangle$.

Proof. W.l.o.g. $\tau \in [\text{store}_{\xi,\omega}]_G$, because the general case then follows from Lemma B.22. Thus, the interrupted execution is just a single Store step. Indeed, the states $\langle \alpha, \xi, \omega \rangle$ and $\langle \omega, \xi, c \rangle$ match those in Store’s conclusion. The conditions of Store are met thanks to τ being a trace, e.g. the segment of the stored message being unoccupied due to $\xi.c$ being well-formed. □

Lemma B.25. If $\tau := \alpha \xrightarrow{\xi} \omega :: \omega \in [\text{rmw}_{\xi,\omega}]_M$, then $\text{rmw}_{\psi}(\ell; \tilde{\omega}) : \tau : v$.

Proof. W.l.o.g. $\tau \in [\text{rmw}_{\xi,\omega}]_G$, because the general case then follows from Lemma B.22. Thus, the interrupted execution is a single ReadOnly step (if $\tau \in [\text{rmw}_{\xi,\omega}]_G$) or a single RMW step (if $\tau \in [\text{rmw}_{\xi,\omega}]_G$), in which the initial view points to the loaded message. □
To address concurrent execution, let \(\langle T, M \rangle \xrightarrow{\xi}^* \langle R, V \rangle \) be an interrupted execution of the form
\[
\langle T_1, \mu_1 \rangle, M_1 \xrightarrow{\rho_1} \langle T_2, \mu_2 \rangle, M_2 \xrightarrow{\rho_2} \langle T_3, \mu_3 \rangle, M_3 \ldots \langle T_n, \mu_n \rangle, M_n \xrightarrow{\rho_n} \langle T_{n+1}, \rho_n \rangle, M_{n+1}
\]
where \(M_1 = M, M_{n+1} = V, T_1 = T, T_{n+1} = R \), and \(\xi = \langle \mu_1, \rho_1 \rangle \ldots \langle \mu_n, \rho_n \rangle \).

Lemma B.26. If \(\xi \in \xi_1 \parallel \xi_2 \) and \(M_1 : \alpha_1 (\xi_1) \omega_1 : r_1 : V_1 \), then
\[
M_1 \parallel M_2 : \inf_{\xi, \alpha} \{ \alpha_1, \alpha_2 \} \left(\sup_{\xi, \alpha} \{ \omega_1, \omega_2 \} : (r_1, r_2) : \langle V_1, V_2 \rangle \right)
\]
by interleaving the interrupted executions following the interleaving that generated \(\xi \), prepending to the first transition \(\text{ParInit} \) followed by \(\text{ParLeft}/\text{ParRight}-\text{lifted Adv}'s \), and appending to the last transition \(\text{ParFin} \) (since \(\sup_{\xi, \alpha} \{ \omega_1, \omega_2 \} = \omega_1 \cup \omega_2 \)).

Proof of the Fundamental Lemma. By induction on the typing derivation \(\Gamma \vdash M : A \).

Let \(\Theta \in \text{Sub}_\Gamma \) be such that \(\forall (a : A) \in \Gamma, \Theta_a \in \mathcal{V}[A] \). To show \(\Theta a = \Theta_a \in C[\Lambda] \), let \(\tau \in [\Theta_a]_M = \text{return}^M[\Theta_a]_M^V \). Suffice it we show \(\Theta_a : \tau : \Theta_a \). Using Lemma B.22, we restrict to the case of \(\tau \in \text{return}^G[\Theta_a]_M^V \). So \(\tau \) is of the form \(\kappa [\mu, \rho] \kappa : \Theta_a[\Lambda]_M^V \).

The required interrupted execution is obtained by taking no steps in its only transition.

Let \(\Theta \in \text{Sub}_\Gamma \) be such that \(\forall (a : A) \in \Gamma, \Theta_a \in \mathcal{V}[A] \). Denote by \(K \)
the term \(\Theta (\lambda a : A.M) = \lambda a : A. \Theta_a[M] \). To show that \(K \in C[\Lambda] \), let \(\tau \in [K]_M^c = \text{return}^M[K]_M^V \). Like the previous case, we can show \(K : \tau : K \) using Lemma B.22. This is sufficient, because \(K \in \mathcal{V}[A \rightarrow B] \). Indeed, for \(V \in \mathcal{V}[A] \), denoting by \(\Theta[V/a] \) the substitution equal to \(\Theta \) except at \(V \) which it maps to \(a \), by the induction hypothesis we have \((\Theta[\Theta[a]])_M[a \mapsto V] = \Theta[V/a]M \in C[B] \).

Let \(\Theta \in \text{Sub}_\Gamma \) be such that \(\forall (a : A) \in \Gamma, \Theta_a \in \mathcal{V}[A] \). To show that \(\Theta(NM) = (\Theta(N)(\Theta[M])) \in C[\Lambda] \) holds, let \(\tau \in \text{Sup} (\Theta(N)(\Theta[M]))_M^c = (\text{Sup} \Theta[N])_M^c = \text{Sup} \Theta[M]_M^c = \text{Sup} \Theta[N]_M^c = \text{Sup} \Theta[M]_M^c = \text{Sup} \Theta[N]_M^c \).

Unfolding:
\[
\exists \tau_1 := \alpha_1 (\xi_1) \omega_1 : \bot \in [\Theta[N]]_M^c, \tau_2 := \alpha_2 (\xi_2) \omega_2 : \bot \in [\Theta[M]]_M^c, \tau_3 := \alpha_3 (\xi_3) \omega_3 : \bot \in [\Theta[N](\Theta[M])]_M^c
\]
where the induction hypotheses, there exists \(\lambda a : A.K \in \mathcal{V}[A \rightarrow B] \) such that \(\Theta N : \tau_1 : \lambda a : A.K \), and there exists \(V \in \mathcal{V}[A] \) such that \(\Theta[M] : \tau_2 : V \). So \(K[a \mapsto V] \in C[B] \), and using the Substitution Lemma: \(f r = [\lambda a : A.K]^V_M[V]_M^V = [K[a \mapsto V]]_M^V \).

Therefore, there exists \(W \in \mathcal{V}[B] \) such that \(K[a \mapsto V] : \tau_3 : W \). We transform to sequence the interrupted executions into one that corresponds to \(\tau \) as follows: we lift the one corresponding to \(\tau_1 \) using \(\text{AppLeft} \) to the context \([-] (\Theta[M]) \), we lift the one corresponding to \(\tau_2 \) using \(\text{AppRight} \) to the context \((\lambda a : A.K) [-] \), and we prepend \(\text{App} \) to the one corresponding to \(\tau_3 \). By using \(\text{Adv} \) to compensate for the difference in delimiting views, we get \((\Theta(N)(\Theta[M])) : \tau : W \).

Binds unfold like in the case above. The rest is handled using Lemma B.24 and Lemma B.25 respectively.

\[\text{Vol. 1, No. 1, Article . Publication date: April 2024.} \]
Let $\Theta \in \text{Sub}_\Gamma$ be such that $\forall (a : A) \in \Gamma, \Theta a \in \mathcal{V}[\llbracket A \rrbracket]$. Thanks to Lemma B.22, to show $\Theta(M_1 \parallel M_2) = \Theta M_1 \parallel \Theta M_2 \in \mathcal{C}[\llbracket A_1 \ast A_2 \rrbracket]$, it is sufficient to consider $\tau \in \mathcal{M}_{S_M}^{\Theta M_1} \parallel \mathcal{M}_{S_M}^{\Theta M_2}$. Unfolding the concurrent construct, there exist $\tau_i : \alpha_i \in \mathcal{M}_{S_M}$ such that $\tau := \alpha_1 \cdot r_1 = \alpha_2 \cdot r_2$. By induction hypotheses, there exist $V_i \in \mathcal{V}[\llbracket A_i \rrbracket]$ such that $OM_i : \tau_i : V_i$. So $(V_1, V_2) \in \mathcal{V}[\llbracket A_1 \ast A_2 \rrbracket]$.

The other cases are treated similarly.

To prove the Evaluation Lemma we observe that α-rewrites preserve evaluation:

Lemma B.27. For $x \in a$, if $\pi \not\xrightarrow{\alpha} \tau$ and $(\pi.i\nu, \pi.ch.o), M \parallel \pi.vl$, then $(\pi.i\nu, \pi.ch.o), M \parallel \tau.vl$.

Proof. In any case, $\tau.vl = \pi.vl$. If $x = Ti$ or $x = Ab$, then also $(\pi.i\nu, \pi.ch.o) = \tau.ch.o$, so the claim holds trivially. Only $x = Di$ remains, where $\pi.i\nu = \pi.i\nu[\{e\}]$ and $\pi.ch.o = \tau.ch.o[\{e\}]$ for some message e. We obtain the required execution underlying $(\pi.i\nu, \pi.ch.o), M \parallel \tau.vl$ from the one that underlies $(\pi.i\nu, \pi.ch.o), M \parallel \pi.vl$ by replacing the timestamp $e.1$ with $e.t$ everywhere. We elide the straightforward simulation argument that justifies this.

Proof of the Evaluation Lemma. Denote $\tau := \alpha(\{\mu, \rho\}) \omega \cdot r \in \mathcal{M}^\alpha$. By Retroactive Closure,

$$\mathcal{M}^\alpha = \mathcal{M}_{S_M}^{\alpha \cdot o \cdot}.$$ Such that $\pi \not\xrightarrow{\alpha} \tau$. Proceed by induction on the number of α-rewrites. If none, $\tau = \pi \in \mathcal{M}^\alpha$, so by the Fundamental Lemma, $M : \tau : V$ for some V. Since M is of ground type, so is $V \equiv \mathcal{V}^\alpha_M = r$, and thus $(\pi, \mu), M \xrightarrow{*} (\omega, \rho), r$, so $(\pi, \mu), M \parallel r$.

Otherwise, we have $\pi \not\xrightarrow{\alpha} \tau' \xrightarrow{\tau'} \tau$ where $x \in a$ and $(\tau'.i\nu, \tau'.ch.o), M \parallel \tau'.vl$ by the induction hypothesis. We replace τ' with τ using Lemma B.27, as required.

Validating Transformations

Table 2 lists various transformations $M \rightarrow N$ that can be proved this way, organized such that the general pattern appears first, followed by specific instantiations and corollaries.

For handling the RMW modifiers, we use additional notations. For modifiers $\Phi, \Psi \in \text{Val} \rightarrow \text{Val}:

- The domain of definition of Φ is $\text{dom} \Phi := \{o \in \text{Val} \mid \Phi o \neq \bot\}$.
- We say that Ψ is an expansion of Φ, denoted by $\Phi \leq \Psi$, if $\Phi o \neq \Psi o$ occurs only when $\Phi o = \bot$ and $\Psi o = o$. Intuitively, this means that Φ and Ψ are the same, except that in some cases in which Φ reads and does not write, Ψ atomically reads and rewrites the read value.
- We denote by Φ^id the unique expansion of Φ that is total: $\Phi^\text{id} o := \Phi o$ if $\Phi o = \bot$ else Φo.
- Intuitively, Φ^id rewrites the read value whenever Φ reads but does not write.
- We let $(\Psi \circ^\text{id} \Phi) o := (\Psi o)^\text{id} \Phi o$ if $\Phi o = \bot$ then Ψo else Φo.
- Intuitively, $(\Psi \circ^\text{id} \Phi)$ composes the modification of Φ followed by the modification of Ψ, only failing if both do.

Moreover, some optimizations involving modifiers assume the language can express corresponding constructs. For example, the Write-RMW Elimination instantiated with $\varphi = \text{faa}$ requires addition (+), and the RMW-Write Elimination instantiated with $\varphi = \text{cas}$ requires branching on value comparison ($\text{if } \varphi = \text{then } \varphi = \text{else } \top$). Under this assumption, for every primitive modifier φ and every tuple \bar{o} of length φ, both $\varphi_{\bar{o}}$ and $\varphi^\text{id}_{\bar{o}}$ are represented by closed, pure (effect-free) terms, of type $\text{Val} \rightarrow \{\bot, \top\} \mid \tau$ of Val and $\text{Val} \rightarrow \text{Val}$ respectively. These are used implicitly in Table 2.

In the following we prove selected results from Table 2. We explicitly mention the use of α-rewrites, but often leave uses of c-rewrites implicit. For convenience, we denote $\alpha(\{\bar{e}\} \cdot r) := (\sigma[\bar{e}] \cdot \cdot)$. and we say this trace resulted from binding the first with the second.

Proposition C.1. If $\Gamma \vdash M_1 : A_1; \Gamma \vdash N_1 : B_1; \Gamma, a : A' \vdash M_2 : A_2; \text{ and } \Gamma, b : B' \vdash N_2 : B_2$:

$$[(\text{let } a = M_1 \text{ in } M_2) \parallel (\text{let } b = N_1 \text{ in } N_2)]^c \supseteq [\text{match } M_1 \parallel N_1 \text{ with } \langle a, b \rangle, M_2 \parallel N_2]^c$$
Table 2. Validated transformations. Needed rules used from a appear above the symbol →.

<table>
<thead>
<tr>
<th>Generalized Sequencing</th>
<th>Symmetric-Monoidal Laws, e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(let a = M₁ in M₂)</td>
<td></td>
</tr>
<tr>
<td>Sequencing M</td>
<td></td>
</tr>
<tr>
<td>Irrelevant Read Introduction ⟨⟩ → ℓ? ; ⟨⟩</td>
<td>ℓ := v ; rmwφ (ℓ, w) → ℓ := v !d v ; v</td>
</tr>
<tr>
<td>Irrelevant Read Elimination ℓ? ; ⟨⟩ → ⟨⟩</td>
<td>ℓ := v ; ℓ? → ℓ := v ; v</td>
</tr>
<tr>
<td>Write-Write Elimination</td>
<td>ℓ := v ; ℓ := v Ab → ℓ := v</td>
</tr>
<tr>
<td>Write-Read Disorder ⟨ℓ ≠ ℓ’⟩</td>
<td>ℓ := v , w ; ℓ := v ℓ’? → ℓ := v ℓ’?</td>
</tr>
<tr>
<td>Table 2. Atomic Store</td>
<td>ℓ := v → XCHG (ℓ, v) ; ⟨⟩</td>
</tr>
<tr>
<td>RMW Expansion (φu ≤ ψu)</td>
<td>RMW-Write Elimination (dom ψw ≥ dom φu)</td>
</tr>
<tr>
<td>rmwφ (ℓ, u) → rmwφ (ℓ, w)</td>
<td>let a = rmwφ (ℓ, u) in</td>
</tr>
<tr>
<td>ℓ? Di</td>
<td>match (ψw) with</td>
</tr>
<tr>
<td>CAS (ℓ, v, u) → FAA (ℓ, 0)</td>
<td>let a = ℓ? in (if a = v</td>
</tr>
<tr>
<td>Atomic Store</td>
<td>then ℓ := w else ⟨⟩) ; a →</td>
</tr>
<tr>
<td>ℓ := v → XCHG (ℓ, v) ; ⟨⟩</td>
<td>CAS (ℓ, u, w)</td>
</tr>
<tr>
<td>RMW-RMW Elimination (rmwφ (ℓ, u), rmwφ (ℓ, w)) → let a = rmwφ (ℓ, u) in</td>
<td></td>
</tr>
<tr>
<td>⟨ℓ? , ℓ?⟩ → let a = ℓ? in ⟨a, a⟩</td>
<td>⟨FAA (ℓ, v), FAA (ℓ, w)⟩ → let a = FAA (ℓ, v + w) in</td>
</tr>
<tr>
<td>⟨ℓ? , CAS (ℓ, v, w)⟩ → let a = CAS (ℓ, v, w) in ⟨a, a⟩</td>
<td>⟨XCHG (ℓ, w) , ℓ?⟩ → let a = XCHG (ℓ, w) in ⟨a, w⟩</td>
</tr>
</tbody>
</table>

(Formally, in the right denotation we use Γ, a : A’, b : B’ + M₂ ; A₂ and Γ, a : A’, b : B’ + N₂ ; B₂.)

Proof. Let γ ∈ Γ and denote the left and right sets of the required containment by P and Q respectively. Thus, we require P ⊇ Q.

Let ϕ ∈ Q. By Deferral of Closure, ϕ is in the ca-closure of:

\[Q' := [M_1]^{c} γ \| [N_1]^{c} γ =_{G} λ (γ, γ) \cdot [M_2]^{c} (γ_c)_{c(e,c) \in Γ,a,A'} \| [N_2]^{c} (γ_c)_{c(e,c) \in Γ,b,B'} \]

So there exists γ’ ∈ Q’ that ca-rewrites to ϕ. This γ’ results from binding two traces. On the left, inf(σ₁, κ₁) ∈ [M₁] γ ; σ₁ := κ₁ [σ₁ ; s₁ ∈ [N₁] γ ; σ₁ ∈ [η₁] γ]

On the right, inf(σ₂, κ₂) [σ₂ ; s₂ ∈ [N₂] γ ; σ₂ ∈ [η₂] γ]

The binding implies that σ₁ ≤ inf(σ₂, κ₂). In particular, σ₁ ≤ κ₂. Therefore, let σ₁ := κ₂ σ₂ ; s₂ ∈ [N₂] γ ; σ₂ ∈ [η₂] γ. Since η₁ ∈ [η₂]₂ ; η₁σ₂ and (η₁)₀ = η₁, we obtain γ’ by interleaving these. Therefore, γ’ ∈ P.

Since P is ca-closed, ϕ ∈ P.

PROPOSITION C.2. [⟨⟩]^{c} Γ ≥ [ℓ? ; ⟨⟩]^{c} Γ.

Proof. Let τ ∈ [ℓ? ; ⟨⟩]^{c} Γ. Unfolding definitions:

[⟨ℓ? ; ⟨⟩]^{c} Γ := [rmwτ, λ⁻, λ⁺] Γ =_{G} λ⁻ . return^{G} ⟨⟩ = \{ α (μ, μ) (ρ, ρ) _ω := ⟨⟩ ∈ Trace 1 \ | \ η ∈ ρ, α → v \}

, Vol. 1, No. 1, Article . Publication date: April 2024.
Therefore, we have the form $\tau = \alpha (\mu, \mu \langle \rho, \rho \rangle) \omega :: \langle \rangle$. From $\alpha (\mu, \mu) \alpha :: \langle \rangle \in [\langle \rangle]_G^c$, we obtain $\tau \in [\langle \rangle]_G^c$ by stuttering (St) and forwarding (Fw).

Proposition C.3. $[\ell :: v]_G^c \supseteq [\text{XCHG} (\ell, v) :: \langle \rangle]_G^c$.

Proof. By taking the traces in $[\ell :: v]_G^c$ in which the newly added message dovetails with the previous message in memory by choosing the initial timestamp appropriately.

Proposition C.4. Assuming $\ell \neq \ell'$, $[\langle \ell :: v, \ell' ? \rangle]_G^c \supseteq [\ell :: v || \ell' ?]_G$.

Proof. The elements of $[\text{store}_{\ell, v}]_G || [\text{rmw}_{\ell', \lambda, \bot}]_G$ are formed by interlacing a store

$$\kappa \langle \mu, \mu \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \rangle \kappa [\ell \mapsto t] :: \langle \rangle \in \text{store}_{\ell, v}$$

with a load $\sigma (\langle \rho, \rho \rangle) \sigma :: w \in [\text{rmw}_{\ell', \lambda, \bot}]_G$. Depending on the order, this results in one of:

$$\inf_{\mu} \kappa, \sigma \left(\mu, \mu \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \right) \kappa [\ell \mapsto t] \cup \sigma :: \langle \rangle, w \quad \text{(WR)}$$

$$\inf_{\rho} \kappa, \sigma \left(\rho, \rho \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \right) \kappa [\ell \mapsto t] \cup \sigma :: \langle \rangle, w \quad \text{(RW)}$$

We prove we complete these interlavings in $[\langle \ell :: v, \ell' ? \rangle]_G^c$.

- (WR): Denoting $\alpha := \inf_{\mu} \kappa, \sigma$ and $\beta := \langle \rho \setminus \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \rangle$:

$$\alpha \langle \mu, \mu \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \rangle \alpha [\ell \mapsto t] :: \langle \rangle \in \text{store}_{\ell, v}$$

$$\kappa [\ell \mapsto t] \cup \sigma (\langle \theta, \theta \rangle) \alpha [\ell \mapsto t] \cup \sigma :: w \in [\text{rmw}_{\ell', \lambda, \bot}]_G \quad \text{(St, Fw)}$$

By forwarding (Fw) after binding we obtain:

$$\alpha \langle \mu, \mu \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \} \rangle \kappa \kappa [\ell \mapsto t] \cup \sigma :: \langle \rangle, w \in [\langle \ell :: v, \ell' ? \rangle]_G^c$$

All that remains is to tighten (Ti) $\ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle$ to $\ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle$.

- (RW): Using the result for (WR), with $\theta := \mu \cup \{ \ell : w(\langle q, t \rangle) \langle k [\ell \mapsto t] \rangle \}$:

$$\inf_{\mu} \kappa, \sigma \left(\langle \mu, \theta \rangle \langle \theta, \theta \rangle \right) \kappa \kappa [\ell \mapsto t] \cup \sigma :: \langle \rangle, w \in [\langle \ell :: v, \ell' ? \rangle]_G^c$$

We can rewind (Rw) $\inf_{\mu} \kappa, \sigma$ to $\inf_{\rho} \kappa, \sigma$, since $\rho \subseteq \mu$. By mumbling (Mu) and stuttering (St), we are done.

Proposition C.5. Assuming $\varphi \varphi$ $\leq \psi \varphi$, $[\text{rmw}_{\varphi} (\ell; \varphi)]_G^c \supseteq [\text{rmw}_{\psi} (\ell; \varphi)]_G^c$.

Proof. Let $\tau \in [\text{rmw}_{\psi} (\ell; \varphi)]_G^c$, resulting from loading a value u from a message v. If $\varphi \varphi u = \psi \varphi u$, then obviously $\tau \in [\text{rmw}_{\varphi} (\ell; \varphi)]_G^c$. Otherwise, by assumption $\varphi \varphi u = \bot$ and $\psi \varphi u = u$. So we have $\tau = \kappa \langle \mu, \mu \cup \{ \ell : t \mapsto u \} \rangle \kappa [\ell \mapsto t] :: u$, with $e := \ell : u(\kappa, \ell) \langle k [\ell \mapsto t] \rangle$, where $v \in \mu_\ell$ and $v, t = k$. In the left denotation, by loading $v [\ell : e]$ we have $\kappa [\ell : e] \langle \mu, \mu \rangle \kappa [\ell \mapsto t] :: u$. By diluting (Di), we obtain τ.

Proposition C.6. Assuming $\forall v \in \text{Val} \cdot \zeta \varphi \psi' = (\psi \varphi \psi' \circ \text{id} \varphi \varphi \psi') v'$,

$$[\text{let } a = \text{rmw}_{\varphi} (\ell; \varphi) \in \langle a, \text{rmw}_{\varphi} (\ell; \varphi) \rangle]_G^c \supseteq [\text{let } a = \text{rmw}_{\psi} (\ell; \varphi) \in \langle a, \varphi \varphi \varphi a \rangle]_G^c$$

Proof. Let $\pi \in \text{let } a = \text{rmw}_{\varphi} (\ell; \varphi) \in \langle a, \varphi \varphi \varphi a \rangle]_G^c$. So a $\tau' := \alpha (\mu, \rho) \omega :: v' \in [\text{rmw}_{\varphi} (\ell; \varphi)]_G^c$ exists due to loading $v \in \mu_\ell$ with $v, 1 = v'$, such that $\tau := \alpha (\mu, \rho) \omega :: v', \varphi \varphi \varphi a' \xrightarrow{\text{St, Fw}} \pi$.
RO. If \(\tau' \in \left[\text{rmw}_\tau^{\text{RO}} \right]_G \), then we have \(\tau = \kappa \left(\mu, \mu \right) \kappa \mapsto \left(v', \varphi_{\bar{a}}^{\text{id}} v' \right) \) where \(\xi \psi \varphi' = \Delta \) and \(v.t = \kappa_t \).

By assumption, \(\varphi_{\bar{a}} v' = \Delta \), so \(\varphi_{\bar{a}}^{\text{id}} v' = v' \); and \(\psi_{\bar{a}} \varphi' = \Delta \), so by loading \(v \) in both RMWs we can obtain \(\tau \) in the left denotation.

RMW. If \(\tau' \in \left[\text{rmw}_\tau^{\text{RMW}} \right]_G \), then we have \(\tau = \kappa \left(\mu, \mu \uplus \left\{ l : u' @ (\kappa_l, t) \left[\kappa \left[l \mapsto t \right] \right] \right\} \right) \kappa \left[l \mapsto t \right] \mapsto \left(v', \varphi_{\bar{a}}^{\text{id}} v' \right) \) where \(\xi \psi \varphi' = \Delta \) and \(v.t = \kappa_t \).

The \(\varphi_{\bar{a}} v' = \Delta \) case is similar to before, where again \(\tau \) is in the left denotation by loading \(v \) in both RMWs, with the difference that here \(\psi_{\bar{a}} \varphi' = v' \), to the second RMW also writes the message \(l : u' @ (\kappa_l, t) \left[\kappa \left[l \mapsto t \right] \right] \).

By assumption, \(\varphi_{\bar{a}} v' = \Delta \); in the sub-case that \(\psi_{\bar{a}} w' = \Delta \) we have \(w' = u' \), and we find \(\tau \) in the left denotation by loading \(v \) and writing \(l : u' @ (\kappa_l, t) \left[\kappa \left[l \mapsto t \right] \right] \) in the first RMW, the second RMW loads.

In the sub-case where \(\psi_{\bar{a}} w' = u' \), the first RMW writes \(l : w' @ (\kappa_l, \frac{\kappa_l + t}{2}) \left[\kappa \left[l \mapsto \frac{\kappa_l + t}{2} \right] \right] \) instead. For the second RMW we take a trace with initial view \(\kappa \left[l \mapsto \frac{\kappa_l + t}{2} \right] \), enabling its loading of this new message and writing \(l : u' @ (\frac{\kappa_l + t}{2}, t) \left[\kappa \left[l \mapsto t \right] \right] \). To find \(\tau \) in the left denotation we have the latter message absorb (Ab) the former message.

Either way, \(\tau \) is in \(\left[\text{let } a = \text{rmw}_\tau \left(\ell ; \bar{a} \right) \text{ in } \left\{ a, \text{rmw}_\psi \left(\ell ; \bar{w} a \right) \right\} \right]_G \), and therefore so is \(\pi \).

Corollary C.7. Assuming \(\xi \psi = \psi_{\bar{a}} \circ \text{id} \varphi_{\bar{a}} \),

\[
\left[\left\{ \text{rmw}_\psi \left(\ell ; \bar{v} \right), \text{rmw}_\psi \left(\ell ; \bar{w} \right) \right\} \right]_G \supseteq \left[\left\{ \text{let } a = \text{rmw}_\xi \left(\ell ; \bar{u} \right) \text{ in } \left\{ a, \varphi_{\bar{a}} \circ a \right\} \right\} \right]_G,
\]

Proof. Using a special case of Proposition C.6, where \(\psi \) is independent of its final parameter.

Proposition C.8. \[
\left[l := v ; \text{rmw}_\psi \left(\ell ; \bar{w} \right) \right]_G \supseteq \left[l := \varphi_{\bar{w}}^{\text{id}} v ; v \right]_G.
\]

Proof. Same as the RMW case in the proof of Proposition C.6, except the initial timestamp does not have to equal the timestamp of the loaded message.

Proposition C.9. \[
\left[l := w ; l := v \right]_G \supseteq \left[l := v \right]_G.
\]

Proof. Replace the second assignment on the left using Proposition C.3, and follow with Proposition C.8.

Proposition C.10. Assuming \(\text{dom } \psi_{\bar{w}} \supseteq \text{dom } \varphi_{\bar{a}} \),

\[
\left[\text{let } a = \text{rmw}_\psi \left(\ell ; \bar{u} \right) \text{ in } \text{match } \varphi_{\bar{a}} a \right] \left[t_1 \uplus a \uplus t_2 \uplus a \right]_G \supseteq \left[\text{rmw}_\psi \left(\ell ; \bar{w} \right) \right]_G.
\]

Proof. Let \(\tau \in \left[\text{rmw}_\psi \left(\ell ; \bar{w} \right) \right]_G \), then we have \(\tau = \kappa \left(\mu, \mu \right) \kappa \mapsto v.v.1 \) where \(\psi_{\bar{w}}(v.v.1) = \Delta \), \(v \in \mu \), and \(v.t = \kappa_t \).

Structurally, we have

\[
\left[\text{match } \left(\psi_{\bar{w}} \right) v.v.1 \right]_G \left[t_1 \uplus v.v.1 \right] \left[t_1 \uplus v.v.1 \right]_G \supseteq \text{return } v.v.1
\]

By assumption, \(\varphi_{\bar{a}}(v.v.1) = \Delta \). Loading the same message \(v \), we have \(\tau \in \left[\text{rmw}_\psi \left(\ell ; \bar{u} \right) \right]_G \).

We obtain the desired trace from binding it with \(\kappa \left(\mu, \mu \right) \kappa \uplus v.v.1 \in \text{return } v.v.1 \).

RMW. If \(\tau \in \left[\text{rmw}_m^{\text{RMW}} \right]_G \), then we have \(\tau = \kappa \left(\mu, \mu \uplus \left\{ l : u @ (\kappa_l, t) \left[\kappa \left[l \mapsto t \right] \right] \right\} \right) \kappa \left[l \mapsto t \right] \mapsto v.v.1 \) where \(\psi_{\bar{w}}(v.v.1) = v, v \in \mu_t \), and \(v.t = \kappa_t \).

Structurally, we have

\[
\left[\text{match } \psi_{\bar{w}}(v.v.1) \right]_G \left[t_1 \uplus v.v.1 \right] \left[t_1 \uplus v.v.1 \right]_G \supseteq \left[\text{let } a = v.v.1 \right]_G
\]
Loading the same message \(v\), we proceed depending on \(\varphi_\ell^a(v.v.l)\).
\[\varphi_\ell^a(v.v.l) = \bot.\]
We can bind \(\kappa(\mu, \mu) : \ell.v.l \in \left[\text{rmw}_\varphi(\ell; \tilde{u})\right]^c, \text{with } \tau \in \left[\ell \leftarrow u; v.v.l\right]^c.\]
\[\varphi_\ell^a(v.v.l) \neq \bot.\] Then we have \(\kappa(\mu, \mu) : \ell \mapsto \frac{\kappa + t}{2} \cdot v.v.l \in \left[\text{rmw}_\varphi(\ell; \tilde{u})\right]^c, \text{where } \rho := \mu \uplus \left\{ \ell : \varphi_\ell^a(v.v.l) \circ (v.t, \frac{\kappa + t}{2}) \left(\kappa : \ell \mapsto \frac{\kappa + t}{2}\right) \right\}.\]
We can bind it with
\[\kappa : \ell \mapsto \frac{\kappa + t}{2} \left\{ (\rho, \rho \uplus \left\{ \ell : \varphi_\ell^a(v.v.l) \circ (v.t, \frac{\kappa + t}{2}) \left(\kappa : \ell \mapsto \frac{\kappa + t}{2}\right) \right\}) \kappa : \ell \mapsto t \cdot v.v.l \in \left[\ell := u; v.v.l\right]^c\]
where at the end we absorb (Ab) the first message into the second. \(\square\)

D COMMUTATIVITY DIAGRAMS

We prove Rewrite Commutativity via an elaborate case-split. The following lemma summarizing insights we noted when we introduced the rewrite rules in §6, which will be helpful during the case analysis.

Lemma D.1. For \(x \in g_c\), assume \(\tau\) is a trace and \(\tau \xrightarrow{\times} \pi\). Then, using the notations of **Table 1**:

- If \(x = Mu\), then \(\pi \in \text{Trace}\).
- If \(x = Ls\), then \(\pi \in \text{Trace}\) iff \(Ls^v(\eta, \eta)\): either \(\eta\) is empty, or \(v \leftarrow (\eta \uplus \{v\})\).\(\omega\).
- If \(x = Ex\), then \(\pi \in \text{Trace}\) iff \(Ex^v(\eta, \eta)\): either \(\eta\) is empty, or \(v \leftarrow (\eta \uplus \{v\})\).\(\omega\).
- If \(x = Cn\), then \(\pi \in \text{Trace}\) iff \(Cn^v(\xi, \xi)\): either \(\xi\) is empty, \(\xi \not\in \xi.\text{c.t.}\), or \(\xi.\text{cseg} \cap \xi.\text{cseg} = \emptyset.\)
- If \(x = St\), then \(\pi \in \text{Trace}\) iff \(St^v(\alpha, \mu) : \alpha \mapsto \mu \in \text{Mem}\).
- If \(x = Fw\), then \(\pi \in \text{Trace}\) iff \(Fw^v(\omega, \xi) : \omega \mapsto \xi.\).
- If \(x = Rw\), then \(\pi \in \text{Trace}\) iff \(Rw^v(\alpha, \xi) : \alpha \mapsto \xi.\).

We address each case, grouping those for which we reason similarly:

- For cases of \(St \xrightarrow{\gamma} y\) where \(y \in g\), the required condition is about the same chronicle as the assumed condition, except for possibly a removed transition. This means that its opening memory is an extension of the original, and the closing memory is a reduction of the original. The condition of pointing downwards into a memory is stable under extensions, and the condition of non-intersection is stable under reductions. Cases of \(Mu \xrightarrow{\gamma} y\) where \(y \in g\) are simpler because the opening and closing memory remain the same.
- The cases of \(Fw \xrightarrow{\gamma} y\) and \(Rw \xrightarrow{\gamma} y\) where \(y \in g\) are trivial because the required condition remains the same.
- For cases of \(Ti \xrightarrow{\gamma} y\) where \(y \in g\), the required condition in the cases of \(y \in \{Ls, Ex\}\) \(\{19, 20, 21, 22\}\) holds because pointing downwards into a memory is stable under “loosening” a message within the memory \((v \leq \epsilon)\). The remaining \(y = Cn\) case \(\{23, 24, 25\}\) holds because the difference between the required condition and the original keeps the occupied timestamps the same, and the \(\equiv\) relation is stable under “loosening” the first argument.
- For cases of \(Ab \xrightarrow{\gamma} y\) where \(y \in g\), the required condition in the cases of \(y \in \{Ls, Ex\}\) \(\{26, 27, 28, 29\}\) holds because pointing downwards into a memory is stable under changing a message’s initial timestamp and adding a message within the memory. The remaining \(y = Cn\) case \(\{30, 31, 32\}\) holds because the difference between the required condition and the original keeps the occupied timestamps the same, and the \(\equiv\) relation is stable under changing the initial timestamp of the first argument.
- Cases of \(Di \xrightarrow{\gamma} y\) where \(y \in g\) hold thanks to Lemma 6.5 when \(y \in \{Ls, Ex\}\) \(\{33, 34, 35, 36, 37, 38\}\). The remaining \(y = Cn\) case \(\{39, 40, 41, 42\}\) is the most complicated. First, we note that \((- \left[\tilde{\epsilon}\right]\left[\tilde{\epsilon} \left[\tilde{\epsilon}\right]\right] = (- \left[\tilde{\epsilon}\right]\left[\tilde{\epsilon} \left[\tilde{\epsilon}\right]\right]\right]\right]\), which means that the pre-trace to be “diluted” is of the correct shape. The rewrite itself is valid because \(\equiv\) is stable under changing the
timestamp of the second argument. In particular, it is stable under pulling both arguments along the same message which does not intersect the arguments’ segments. Finally, the condition for the pre-trace to be a trace is satisfied because the message is being pulled along a message that was either removed or known to appear later in the chronicle (as a local message); either way, the segment is free. There are also the cases where they overlap this way or that, in which we use the trivial dovetailing geometry of \ll.

- For cases of $x \equiv St$ where $x \in a$, the required condition in the cases of $x \in \{Ti,Ab\}$ (43, 44, 45, 46) holds because there remains a message at each timestamp where there was a message originally, and the initial view remains the same. The remaining $y = Di$ case (47, 48) holds because pointing-to is stable under pulling along a message; and if the initial view pointed to the Di’ee then after pulling it, it will point to the Di’er pulled along the Di’ee.

- The cases of $x \equiv Mu$ where $x \in a$ (49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60) do not require special considerations regarding conditions.

- For cases of $x \equiv y$ where $x \in a$ and $y \in \{Fw,Rw\}$, the required condition in the cases of $x \in \{Ti,Ab\}$ (61, 62, 63, 64) holds because pointing downwards into a memory is stable under “loosening” a message within the memory ($v \leq e$). The case of $x \in Di$ (65, 66) hold thanks to Lemma 6.5, and the fact that pointing downward into a memory is stable under pulling along the same message; and if the delimiting view pointed to the Di’ee then after pulling it, it will point to the Di’er pulled along the Di’ee.

1. The $St \Rightarrow Ls$ case when the Ls’ee does not appear across the St’ee

2. The $St \Rightarrow Ls$ case when the Ls’ee appears across the St’ee
3. The $\text{St} \models \text{Ex}$ case when the Ex'ee does not appear across the St'ee

4. The $\text{St} \models \text{Ex}$ case when the Ex'ee appears across the St'ee

5. The $\text{St} \models \text{Cn}$ case when the Cn'ee does not appear across the St'ee
6. The $\text{St} \implies \text{Cn}$ case when the Cn’ee appears across the St’ee

7. The $\text{Mu} \implies \text{Ls}$ case when the Ls’ee does not appear across the Mu’ee

8. The $\text{Mu} \implies \text{Ls}$ case when the Ls’ee appears across the Mu’ee
9. The \(\text{Mu} \models \text{Ex} \) case when the \(\text{Ex}' \) long does not appear across the \(\text{Mu}' \) long

\[
\alpha \left[\xi' \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta \{ \eta' \sqcup \{ \xi_1' \} \} \omega \right]
\]

\[
\hat{\nu} \leq \nu \land \text{Ex}'(\hat{\nu}, \eta')
\]

\[
\alpha \left[\xi' \langle \mu, \theta \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right]
\]

\[
\text{Ex}
\]

\[
\alpha \left[\xi' \langle \mu, \theta \rangle \eta \{ \eta' \sqcup \{ \nu, \xi \} \} \omega \right]
\]

\[
\text{Mu}
\]

10. The \(\text{Mu} \models \text{Ex} \) case when the \(\text{Ex}' \) long appears across the \(\text{Mu}' \) long

\[
\alpha \left[\xi' \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta \{ \eta' \sqcup \{ \xi_1' \} \} \omega \right]
\]

\[
\hat{\nu} \leq \nu \land \text{Ex}'(\hat{\nu}, \xi') \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta
\]

\[
\alpha \left[\xi' \langle \nu, \xi \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right]
\]

\[
\text{Ex}
\]

\[
\alpha \left[\xi' \langle \nu, \xi \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right]
\]

\[
\text{Mu}
\]

11. The \(\text{Mu} \models \text{Cn} \) case when the \(\text{Cn}' \) long does not appear across the \(\text{Mu}' \) long

\[
\alpha \left[\xi \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right]
\]

\[
\hat{\nu} \leq \nu \land \text{Cn}'(\hat{\nu}, \xi') \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta
\]

\[
\alpha \left[\xi \langle \mu, \theta \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right]
\]

\[
\text{Cn}
\]

\[
\alpha \left[\xi \langle \mu, \theta \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right] \ [\hat{\nu}]
\]

\[
\text{Mu}
\]

\[
\alpha \left[\xi \langle \mu, \theta \rangle \eta \{ \eta' \sqcup \{ \hat{\nu}, \xi \} \} \omega \right] \ [\hat{\nu}]
\]
12. The $\text{Mu} \equiv \text{Cn}$ case when the Cn’ee appears across the Mu’ee

13. The $\text{Fw} \equiv \text{Ls}$ case

14. The $\text{Rw} \equiv \text{Ls}$ case
A Denotational Approach to Release/Acquire Concurrency

15. The $\text{Fw} \equiv \text{Ex}$ case

\[\alpha \left(\xi \left(\eta \uplus \{ \hat{\varepsilon}^{i-1} \} \right) \right) \kappa \]

$\hat{\nu} \leq \nu \land \text{Ex}'(\hat{\nu}, \eta)$

\[\alpha \left(\xi \left(\eta \uplus \{ \hat{\nu}, \hat{\varepsilon} \} \right) \right) \omega \]

\[\alpha \left(\xi \left(\eta \uplus \{ \hat{\nu}, \hat{\varepsilon} \} \right) \right) \kappa \]

$\kappa \leq \omega$

16. The $\text{Rw} \equiv \text{Ex}$ case

\[\kappa \left(\xi \left(\eta \uplus \{ \hat{\varepsilon}^{i-1} \} \right) \right) \omega \]

$\hat{\nu} \leq \nu \land \text{Ex}'(\hat{\nu}, \eta)$

\[\alpha \left(\xi \left(\eta \uplus \{ \hat{\nu}, \hat{\varepsilon} \} \right) \right) \omega \]

\[\kappa \left(\xi \left(\eta \uplus \{ \hat{\varepsilon}^{i-1} \} \right) \right) \omega \]

$\alpha \leq \kappa$

17. The $\text{Fw} \equiv \text{Cn}$ case

\[\alpha \left(\xi \left(\eta \uplus \{ \hat{\nu}, \hat{\varepsilon} \} \right) \right) \kappa \]

$\hat{\nu} \leftarrow \hat{\varepsilon} \land \text{Cn}'(\hat{\varepsilon}, \xi)$

\[\alpha \left(\xi \left(\eta \uplus \{ \hat{\nu}, \hat{\varepsilon} \} \right) \right) \omega \]

$\hat{\varepsilon} \leftarrow \hat{\varepsilon} \land \text{Cn}'(\hat{\varepsilon}, \xi)$

\[\left(\alpha \left(\xi \left(\eta \uplus \{ \hat{\varepsilon} \} \right) \right) \right) \left[\uparrow \hat{\epsilon} \right] \]

$\kappa \leq \omega$

\[\left(\alpha \left(\xi \left(\eta \uplus \{ \hat{\varepsilon} \} \right) \right) \right) \left[\uparrow \hat{\epsilon} \right] \]

$\hat{\nu} \leftarrow \hat{\varepsilon} \land \text{Cn}'(\hat{\varepsilon}, \xi)$
18. The $Rw \Leftrightarrow Cn$ case

19. The $Ti \Leftrightarrow Cn$ case when the Cn'ee appears after the Ti'ee

20. The $Ti \Leftrightarrow Cn$ case when the Cn'ee appears before the Ti'ee
21. The \(Ti \triangleleft Ex \) case when the Ex’ee appears after the Ti’ee

\[
\begin{align*}
\alpha [\xi (\mu, \rho \uplus \{ v \}) (\eta \uplus \{ v \}) (\eta' \uplus \{ v, \hat{v}^\xi \})] \omega \\
\hat{v} \leq_{\nu \varepsilon} \hat{v} \land \text{Ex}'(\hat{v}, \eta' \uplus \{ e \})
\end{align*}
\]

\[
\begin{align*}
\alpha [\xi (\mu, \rho \uplus \{ e \}) (\eta \uplus \{ e \}) (\eta' \uplus \{ e, \hat{e}^\xi \})] \omega \\
\hat{v} \leq_{\nu \varepsilon} \hat{v} \land \text{Ex}'(\hat{v}, \eta' \uplus \{ e \})
\end{align*}
\]

\[
\begin{align*}
\alpha [\xi (\mu, \rho \uplus \{ e \}) \eta \uplus \{ v, \hat{v}, \hat{e} \}] \omega \\
\hat{v} \leq_{\nu \varepsilon} \hat{v} \land \text{Ex}'(\hat{v}, \eta' \uplus \{ e \})
\end{align*}
\]

22. The \(Ti \triangleright Ex \) case when the Ex’ee appears before the Ti’ee

\[
\begin{align*}
\alpha [\xi (\mu, \rho \uplus \{ v \}) (\eta \uplus \{ v \}) (\eta' \uplus \{ v, \hat{v}, \hat{e} \})] \omega \\
\hat{v} \leq \hat{v} + \text{Cn}'(\hat{v}, \xi (\mu, \rho \uplus \{ v \}) \eta \uplus \{ v \})
\end{align*}
\]

\[
\begin{align*}
\alpha [\xi (\mu, \rho \uplus \{ e \}) (\eta \uplus \{ e \}) (\eta' \uplus \{ e, \hat{v}, \hat{e} \})] \omega \\
\hat{v} \leq \hat{v} + \text{Cn}'(\hat{v}, \xi (\mu, \rho \uplus \{ e \}) \eta \uplus \{ e \})
\end{align*}
\]

23. The \(Ti \triangleright Cn \) case when the Cn’ee appears after the Ti’ee, and the Ti’ee is not the Cn’er
24. The \(Ti \Leftrightarrow Cn \) case when the \(Cn'ee \) appears after the \(Ti'ee \), and the \(Ti'ee \) is the \(Cn'er \)

25. The \(Ti \Leftrightarrow Cn \) case when the \(Cn'ee \) appears before the \(Ti'ee \)

26. The \(Ab \Leftrightarrow Ls \) case when the \(Ls'ee \) appears after the \(Ab'ee \)
A Denotational Approach to Release/Acquire Concurrency

27. The $\text{Ab} \subseteq \text{Ls}$ case when the Ls’ee appears before the Ab’ee

28. The $\text{Ab} \subseteq \text{Ex}$ case when the Ex’ee appears after the Ab’ee

29. The $\text{Ab} \subseteq \text{Ex}$ case when the Ex’ee appears before the Ab’ee
30. The \(\text{Ab} \Leftrightarrow \text{Cn} \) case when the Cn’ee appears after the Ab’er, and the Ab’er is not the Cn’er

\[\alpha [\tilde{x} (\mu, \rho \cup \{v, e\}) (\eta \cup \{v, e, \tilde{v}, \tilde{e}\}) \omega] \]

31. The \(\text{Ab} \Leftrightarrow \text{Cn} \) case when the Cn’ee appears after the Ab’er, and the Ab’er is the Cn’er

\[\alpha [\tilde{x} (\mu, \rho \cup \{v, e\}) (\eta \cup \{v, e, \tilde{v}, \tilde{e}\}) \omega] \]

32. The \(\text{Ab} \Leftrightarrow \text{Cn} \) case when the Cn’ee appears before the Ab’er

\[\alpha [\tilde{x} (\mu, \rho \cup \{v, e\}) (\eta \cup \{v, e, \tilde{v}, \tilde{e}\}) \omega] \]
33. The $\text{Di} \iff \text{Ls}$ case when the Ls’ee appears after the Di’ee

$$\alpha (\xi (\mu, v) \cup (v)) \cup (\eta \cup (v)) \cup (\nu \cup (v, \hat{v})) [\epsilon]$$

$$\hat{\nu} [\epsilon] \leq \nu \epsilon [\epsilon] \land \text{Ls}'(\hat{\nu} [\epsilon], (\nu \cup (v)) [\epsilon])$$

$$\text{Ls} \quad \hat{\nu} \leq \nu \epsilon [\epsilon] \land \text{Ls}'(\hat{\nu}, \hat{v} \cup (v))$$

$$\alpha (\xi (\mu, v) \cup (v)) \cup (\eta \cup (v)) \cup (\nu \cup (v, \hat{v})) [\epsilon]$$

$$\text{Di} \quad \hat{\nu} \leq \nu \epsilon [\epsilon] \land \text{Ls}'(\hat{\nu}, \hat{v} \cup (v))$$

$$\alpha (\xi (\mu, v) \cup (v), \nu \cup (v, \hat{v})) \cup (\eta \cup (v, \hat{v})) [\epsilon]$$

34. The $\text{Di} \iff \text{Ls}$ case when the Ls’ee appears before the Di’ee, and the Di’er is not the Ls’ee

$$\alpha (\xi (\mu, v) \cup (v), \nu \cup (v, \hat{v})) \cup (\eta \cup (v, \hat{v})) [\epsilon]$$

$$\hat{\nu} [\epsilon] \leq \nu \epsilon [\epsilon] \land \text{Ls}'(\hat{\nu} [\epsilon], (\nu \cup (v)) [\epsilon])$$

$$\text{Ls} \quad \hat{\nu} \leq \nu \epsilon [\epsilon] \land \text{Ls}'(\hat{\nu}, \hat{v} \cup (v))$$

$$\alpha (\xi (\mu, v) \cup (v), \nu \cup (v, \hat{v})) \cup (\eta \cup (v, \hat{v})) [\epsilon]$$

$$\text{Di} \quad \hat{\nu} \leq \nu \epsilon [\epsilon] \land \text{Ls}'(\hat{\nu}, \hat{v} \cup (v))$$

$$\alpha (\xi (\mu, v) \cup (v), \nu \cup (v, \hat{v})) \cup (\eta \cup (v, \hat{v})) [\epsilon]$$

35. The $\text{Di} \iff \text{Ls}$ case when the Ls’ee appears before the Di’ee, and the Di’er is the Ls’ee
36. The Di \Leftrightarrow Ex case when the Ex’er appears after the Di’ee

$$\alpha\left(\xi (\mu \cup \{v\}) (\eta \cup \{v, \tilde{e}^{1}\}) \eta \cup \{v, e, \tilde{e}^{1}\}\right) \omega \quad [\text{Di}]$$

$$\alpha\left(\xi (\mu \cup \{v, e\}) (\eta \cup \{v, e, \tilde{e}^{1}\}) \eta \cup \{v, e, \tilde{e}^{1}\}\right) \omega \quad [\text{Di}]$$

$$\alpha\left(\xi (\mu \cup \{v\}) (\eta \cup \{v, \tilde{e}\}) \eta \cup \{v, \tilde{e}, \tilde{e}\}\right) \omega \quad [\text{Di}]$$

$$\alpha\left(\xi (\mu \cup \{v, e\}) (\eta \cup \{v, e, \tilde{e}\}) \eta \cup \{v, e, \tilde{e}\}\right) \omega \quad [\text{Di}]$$

37. The Di \Leftrightarrow Ex case when the Ex’er appears before the Di’ee, and the Di’er is not the Ex’er

$$\alpha\left(\xi (\tilde{e}^{1} \cup \tilde{e}^{1}) (\mu \cup \{\tilde{e}^{1}\}, \rho \cup \{v, e, \tilde{e}^{1}\}) \eta \cup \{v, e, \tilde{e}^{1}\}\right) \omega \quad [\text{Di}]$$

$$\alpha\left(\xi (\tilde{e}^{1} \cup \tilde{e}^{1}) (\mu \cup \{v, e\}, \rho \cup \{v, e, \tilde{e}^{1}\}) \eta \cup \{v, e, \tilde{e}^{1}\}\right) \omega \quad [\text{Di}]$$

$$\alpha\left(\xi (\tilde{e}^{1} \cup \tilde{e}^{1}) (\mu \cup \{v\}, \rho \cup \{v, e, \tilde{e}^{1}\}) \eta \cup \{v, e, \tilde{e}^{1}\}\right) \omega \quad [\text{Di}]$$

$$\alpha\left(\xi (\tilde{e}^{1} \cup \tilde{e}^{1}) (\mu \cup \{\tilde{e}\}, \rho \cup \{\tilde{e}, \tilde{e}\}) \eta \cup \{\tilde{e}, \tilde{e}\}\right) \omega \quad [\text{Di}]$$

38. The Di \Leftrightarrow Ex case when the Ex’er appears before the Di’ee, and the Di’er is the Ex’er
39. The Di ⇨ Cn case when the Cn’ee appears after the Di’ee, and the Di’ee is not the Cn’er

40. The Di ⇨ Cn case when the Cn’ee appears before the Di’ee, and the Di’er is not the Cn’ee

41. The Di ⇨ Cn case when the Cn’ee appears after the Di’ee, and the Di’ee is the Cn’er
42. The $\text{Di} \Leftrightarrow \text{Cn}$ case when the Cn’ee appears before the Di’ee, and the Di’er is the Cn’ee

43. The $\text{Ti} \Leftrightarrow \text{St}$ case when the Ti’ee does not appear across the St’ee

44. The $\text{Ti} \Leftrightarrow \text{St}$ case when the Ti’ee appears across the St’ee
45. The \(\text{Ab} \iff \text{St} \) case when the \(\text{Ab} \)’ee does not appear across the \(\text{St} \)’ee

\[
\begin{align*}
\text{Ab} & \quad \nu \not\prec \epsilon \\
\alpha [\xi (\hat{\mu}, \hat{\rho} \cup \{v, \epsilon\}) (\eta' \uplus \{v, \epsilon\})] \omega \\
\text{St'}(\alpha, \mu) & \quad \text{St} \\
\alpha [\xi (\mu, \mu) \eta (\hat{\mu}, \hat{\rho} \cup \{v, \epsilon\}) (\eta' \uplus \{v, \epsilon\})] \omega \\
\text{St'}(\alpha, \mu) & \quad \nu \not\prec \epsilon \\
\text{St} & \quad \text{Ab}
\end{align*}
\]

46. The \(\text{Ab} \iff \text{St} \) case when the \(\text{Ab} \)’ee appears across the \(\text{St} \)’ee

\[
\begin{align*}
\text{Ab} & \quad \nu \not\prec \epsilon \\
\alpha [\xi (\hat{\mu}, \hat{\rho} \cup \{v, \epsilon\}) (\xi' \uplus \{v, \epsilon\}) (\eta \uplus \{v, \epsilon\})] \omega \\
\text{St'}(\alpha, \mu \cup \{\xi^{v_{1}}\}) & \quad \text{St} \\
\alpha [\xi (\hat{\mu}, \hat{\rho} \cup \{\xi^{v_{1}}\}) (\xi' \uplus \{\xi^{v_{1}}\}) (\eta \uplus \{\xi^{v_{1}}\})] \omega \\
\text{St'}(\alpha, \mu \cup \{\xi^{v_{1}}\}) & \quad \nu \not\prec \epsilon \\
\text{St} & \quad \text{Ab}
\end{align*}
\]

47. The \(\text{Di} \iff \text{St} \) case when the \(\text{Di} \)’ee does not appear across the \(\text{St} \)’ee

\[
\begin{align*}
\text{Di} & \quad \nu \not\prec \epsilon \\
\alpha [\xi (\hat{\mu}, \hat{\rho} \cup \{v\}) (\eta' \uplus \{v\})] \omega \\
\text{St'}(\alpha [\eta], \mu [\eta]) & \quad \text{St} \\
\alpha [\xi (\hat{\mu}, \hat{\rho} \cup \{v\}) (\eta' \uplus \{v\})] \omega \\
\text{St'}(\alpha [\eta], \mu [\eta]) & \quad \nu \not\prec \epsilon \\
\text{St} & \quad \text{Di}
\end{align*}
\]
48. The $\text{Di} \Leftrightarrow \text{St}$ case when the $\text{Di}’\text{ee}$ appears across the $\text{St}’\text{ee}$

49. The $\text{Ti} \Leftrightarrow \text{Mu}$ case when the $\text{Ti}’\text{ee}$ does not appear across the $\text{Mu}’\text{ee}$

50. The $\text{Ti} \Leftrightarrow \text{Mu}$ case when the $\text{Ti}’\text{ee}$ appears across the $\text{Mu}’\text{ee}$
A Denotational Approach to Release/Acquire Concurrency

51. The Ti ⇔ Mu case when the Ti’ee makes its appearance in the first Mu’er

52. The Ti ⇔ Mu case when the Ti’ee makes its appearance in the second Mu’er

53. The Ab ⇔ Mu case when the Ab’ee does not appear across the Mu’ee
54. The Ab ⇔ Mu case when the Ab’ee appears across the Mu’ee

55. The Ab ⇔ Mu case when the Ab’ee makes its appearance in the first Mu’er

56. The Ab ⇔ Mu case when the Ab’ee makes its appearance in the second Mu’er
A Denotational Approach to Release/Acquire Concurrency

$$\alpha \xi (\mu, \rho \uplus \{ v \}) \eta (\hat{\mu}, \hat{\rho} \uplus \{ v \}) \eta' (\{ v \} \cup \{ v \}) \omega [\top]$$

57. The Di ⇔ Mu case when the Di’ee does not appear across the Mu’ee

$$\alpha \xi (\mu, \rho \uplus \{ v \}) \eta (\hat{\mu}, \hat{\rho} \uplus \{ v \}) \eta' (\{ v \} \cup \{ v \}) \omega$$

58. The Di ⇔ Mu case when the Di’ee appears across the Mu’ee

$$\alpha \xi (\mu, \rho \uplus \{ v \}) \eta (\hat{\mu}, \hat{\rho} \uplus \{ v \}) \eta' (\{ v \} \cup \{ v \}) \omega$$

59. The Di ⇔ Mu case when the Di’ee makes its appearance in the first Mu’er
60. The Di ⇐ Mu case when the Di’ee makes its appearance in the second Mu’er

61. The Ti ⇐ Fw case

62. The Ti ⇐ Rw case
A Denotational Approach to Release/Acquire Concurrency

63. The $\text{Ab} \equiv \text{Fw}$ case

64. The $\text{Ab} \equiv \text{Rw}$ case

65. The $\text{Di} \equiv \text{Fw}$ case
66. The $\text{Di} \equiv \text{Rw}$ case