Based on joint work with Ohad Kammar, Ori Lahav, and Gordon Plotkin: MONADIC AND ALGEBRAIC DENOTATIONAL SEMANTICS FOR CONCURRENT SHARED STATE

TARTU UNIVERSITY

2025

Brookes's Denotational Semantics for Shared State Concurrency

Algebraic Effects Refinement

Relaxed Memory Extension

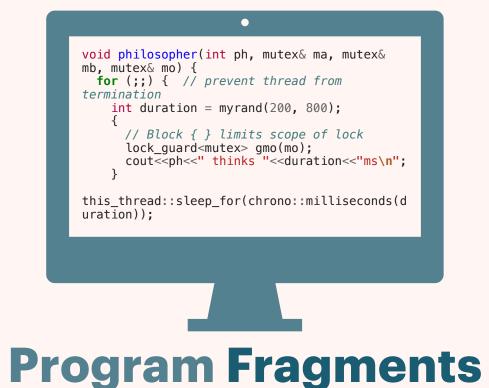
SEQUENTIAL SETTING

SMALL-STEP SEMANTICS

 $\sigma, (l := 0; ifz l? then "ok" else "bug")$ $\rightarrow \sigma[l \mapsto 0], (ifz l? then "ok" else "bug")$ $\rightarrow \sigma[l \mapsto 0], (ifz \ 0 \ then "ok" \ else "bug")$ $\rightarrow \sigma[l \mapsto 0], (\text{``ok''})$

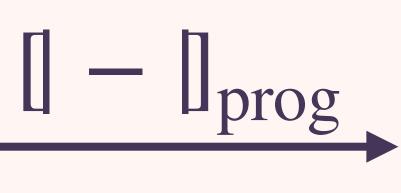
DENOTATIONAL SEMANTICS

World of Code



[l := 0; ifz l? then "ok" else "bu

World of Meaning



Denotational Domain

Sequential setting — state transformers: $\underline{TX} \triangleq (\mathbb{S} \to \mathbb{S} \times X)$

$$\begin{split} \mathsf{ug"}]_{\mathrm{prog}} &= \lambda \sigma. \left\langle \sigma[l \mapsto \mathsf{0}], \text{``ok''} \right\rangle \in \underline{T} \mathrm{String} \\ &= \llbracket l \coloneqq \mathsf{0} \text{ ; ``ok''} \rrbracket_{\mathrm{prog}} \end{split}$$

MONAD-BASED SEMANTICS

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$

* **Domain**: state transformers $\underline{TX} \triangleq (\mathbb{S} \to \mathbb{S} \times X)$ * Extends $e: X \to \underline{TY}$ to $= e: \underline{TX} \to \underline{TY}$ as follows: $f \geq e \triangleq \lambda \sigma$. let $\langle \rho, y \rangle = f \sigma$ in $ey \rho$ $\rangle =$ is associative η is neutral for $\rangle =$ * Unit: $\eta: X \to \underline{TX}$ $\eta x \triangleq \lambda \sigma. \langle \sigma, x \rangle$ * Write: $[l := v]_{\text{prog}} = \lambda \sigma. \langle \sigma[l \mapsto v], \langle \rangle \rangle \in \underline{T1}$ Read: $[l?]_{\text{prog}} = \lambda \sigma. \langle \sigma, \sigma_l \rangle \in \underline{TVal}$

 $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle \cdot \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b \cdot (\text{ifz } b \text{ then } \eta \text{``ok'' else } \eta \text{``bug''})$ $= \lambda \sigma. \langle \sigma[l \mapsto 0], \text{``ok''} \rangle \in TString$

(modified memory ρ propagates)

(no change or dependency on state σ)

Brookes's Denotational Semantics for Shared State Concurrency

Algebraic Effects Refinement

Relaxed Memory Extension

ALGEBRAIC EFFECTS

$\llbracket l \coloneqq 0 \text{ ; ifz } l? \text{ then "ok" else "bug"}_{\text{prog}} = \lambda \sigma. \langle \sigma[l \mapsto 0], \text{ "ok"} \rangle = \llbracket l \coloneqq 0 \text{ ; "ok"}_{\text{prog}}$

ALGEBRAIC EFFECTS Global State Axiom $(\mathbf{UL}) \mathbf{U}_l$ $U_{l,0}$ L_l ("ok", "bug")

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $[U_{l,0} L_l ("ok",$

 $\llbracket \mathsf{U}_{l,v} \rrbracket_{\mathrm{op}} f \triangleq \lambda \sigma \in \mathbb{S}. f \left(\sigma[l \mapsto v] \right)$ $\llbracket \mathsf{U}_{l,v} \langle \rangle \rrbracket_{\text{term}} = \llbracket \mathsf{U}_{l,v} \rrbracket_{\text{op}} (\eta \langle \rangle) = \llbracket l \coloneqq v \rrbracket_{\text{prog}}$

$$\begin{split} \llbracket \mathsf{L}_{l} \rrbracket_{\mathrm{op}}(f_{0}, f_{1}) &\triangleq \lambda \sigma \in \mathbb{S}. \ f_{\sigma_{l}} \sigma \\ \llbracket \mathsf{L}_{l}(\mathsf{0}, \mathsf{1}) \rrbracket_{\mathrm{term}} = \llbracket \mathsf{L}_{l} \rrbracket_{\mathrm{op}}(\eta \mathsf{0}, \eta \mathsf{1}) = \llbracket l? \rrbracket_{\mathrm{prog}}(\eta \mathsf{0}, \eta \mathsf{1}) \end{split}$$

GLOBAL STATE & NON-DETERMINISM

Global State:

- * Operators for updating $U_{l,v} : 1$ and looking up $L_l : 2$ bits in storage
- * Axioms such as (UL) $U_{l,v} L_l(x_0, x_1) = U_{l,v} x_v$

Adding Non-determinism:

- * Operators for choice: binary $\lor : 2$ and en
- * Axioms of semilattice, e.g.: (Symmetry) $x \lor y = y \lor x$ (N
- * Axioms of interaction, e.g.: $(\lor -U) U_{l,v}$

$$t \ge r \triangleq t \lor r = t$$

Countable non-determinism is similar
mpty
$$\perp : 0$$

 $x \lor y = y \lor x$ (Neutrality) $x \lor \perp = x$

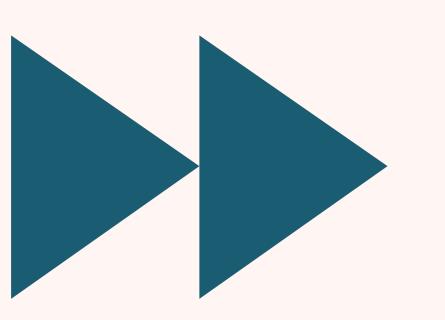
$$(x \lor y) = (\mathsf{U}_{l,v} x) \lor (\mathsf{U}_{l,v} y) \quad (\bot \mathsf{-U}) \ \mathsf{U}_{l,v} \bot = \mathsf{U}_{l,v} \lor \mathsf{U}_{l,v} = \mathsf{U}_{l,v} \lor \mathsf{U}_{l,v} \lor \mathsf{U}_{l,v}$$

COPERATIVE CONCURRENCY

SMALL-STEP SEMANTICS

 $\sigma, (l \coloneqq 1 \parallel l \coloneqq 0; \mathbf{yield}; \mathbf{ifz} \ l? \mathbf{then} \ "\mathsf{ok}" \ \mathbf{else} \ "\mathsf{bug}") \\ \rightarrow \sigma, (l \coloneqq 1 \parallel) \ l \coloneqq 0; \mathbf{yield}; \mathbf{ifz} \ l? \mathbf{then} \ "\mathsf{ok}" \ \mathbf{else} \ "\mathsf{bug}") \\ \rightarrow \sigma[l \mapsto 0], (l \coloneqq 1 \parallel) \mathbf{yield}; \mathbf{ifz} \ l? \mathbf{then} \ "\mathsf{ok}" \ \mathbf{else} \ "\mathsf{bug}") \\ \rightarrow \sigma[l \mapsto 0], (l \coloneqq 1 \parallel) \mathbf{yield}; \mathbf{then} \ "\mathsf{ok}" \ \mathbf{else} \ "\mathsf{bug}") \\ \rightarrow \dots$

MONAD-BASED SEMANTICS



ALGEBRAIC EFFECTS: RESUMPTIONS [l := 0; ifz l? then "ok" else (yield; "bug

The theory of resumptions Res takes non-deterministic global state and adds:

- * Operator for yielding to the concurrent environment Y : 1
- * Axioms of closure: (Pure) $Y x \ge$
- * Axioms of interaction: $(\vee -Y) Y(x)$

$$\begin{bmatrix} \mathbf{J}^{*} \\ \mathbf{J}^{*} \end{bmatrix}_{\text{prog}} = \left[\begin{bmatrix} \mathsf{U}_{l,0} \, \mathsf{L}_{l} \, (\text{``ok''}, \mathbf{Y} \, \text{``bug''}) \end{bmatrix}_{\text{term}} \\ \begin{bmatrix} (\mathsf{UL}) \\ = \end{bmatrix} \left[\begin{bmatrix} \mathsf{U}_{l,0} \, \text{``ok''} \end{bmatrix}_{\text{term}} = \left[\begin{bmatrix} l := 0 ; \, \text{``ok''} \end{bmatrix}_{\text{term}} \right]$$

$$\geq x \quad (\mathsf{Join}) \ \mathsf{Y} \,\mathsf{Y} \, x = \mathsf{Y} \, x \\ x \lor y) = (\mathsf{Y} \, x) \lor (\mathsf{Y} \, y) \quad (\bot \mathsf{-Y}) \ \mathsf{Y} \bot = \bot$$

ALGEBRAIC EFFECTS: RESUMPTIONS

- $$\begin{split} \llbracket l \coloneqq \mathbf{0} \ ; \ \mathbf{yield} \ ; \ \mathbf{ifz} \ l? \ \mathbf{then} \ ``\mathsf{ok}'' \ \mathbf{else} \ ``\mathsf{bug}''] \\ & \stackrel{(\mathsf{Pure})}{\geq} \ \llbracket \mathsf{U}_{l,\mathbf{0}} \ \mathsf{L}_l \ (``\mathsf{ok}'', ``\mathsf{b}) \end{split}$$
 - The theory of resumptions Res takes non-deterministic global state and adds:
 - * Operator for yielding to the concurrent environment $\mathbf{Y}:\mathbf{1}$
 - * Axioms of closure: (Pure) $Yx \ge$
 - * Axioms of interaction: $(\vee Y) Y($

$$\begin{bmatrix} \mathbf{U}_{l,0} \\ \mathbf{V} \\ \mathbf{L}_{l} \\ (\text{``ok''}, \text{``bug''}) \end{bmatrix}_{\text{term}} \begin{bmatrix} \mathbf{U}_{l,0} \\ \mathbf{U}_{l,0} \\ \mathbf{U}_{l,0} \\ \mathbf{U}_{l,0} \end{bmatrix}_{\text{term}} = \begin{bmatrix} l := 0 \\ \mathbf{U}_{l,0} \\ \mathbf{U}_{l,0} \\ \mathbf{U}_{l,0} \end{bmatrix}_{\text{term}} = \begin{bmatrix} l := 0 \\ \mathbf{U}_{l,0} \\ \mathbf{U$$

$$\geq x \quad (\text{Join}) \ \mathsf{Y} \,\mathsf{Y} \, x = \mathsf{Y} \, x \\ x \lor y) = (\mathsf{Y} \, x) \lor (\mathsf{Y} \, y) \quad (\bot \mathsf{-Y}) \ \mathsf{Y} \bot = \bot$$

 rog

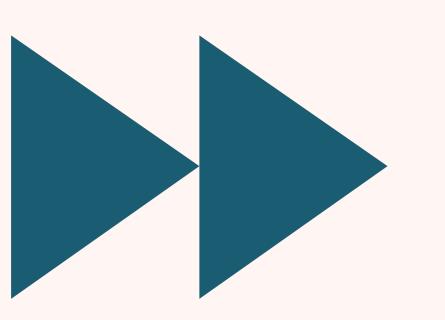
PREEMPTIVE CONCURRENCY

SMALL-STEP SEMANTICS

 $\sigma, (l \coloneqq 1 \parallel l \coloneqq 0; \text{ ifz } l? \text{ then "ok" else "bug"}) \\ \rightarrow \sigma[l \mapsto 0], (l \coloneqq 1 \parallel \text{ ifz } l? \text{ then "ok" else "bug"}) \\ \rightarrow \sigma[l \mapsto 1], (\langle \rangle \parallel \text{ ifz } l? \text{ then "ok" else "bug"})$

 \rightarrow ...

MONAD-BASED SEMANTICS



Problem: does the read construct yield?

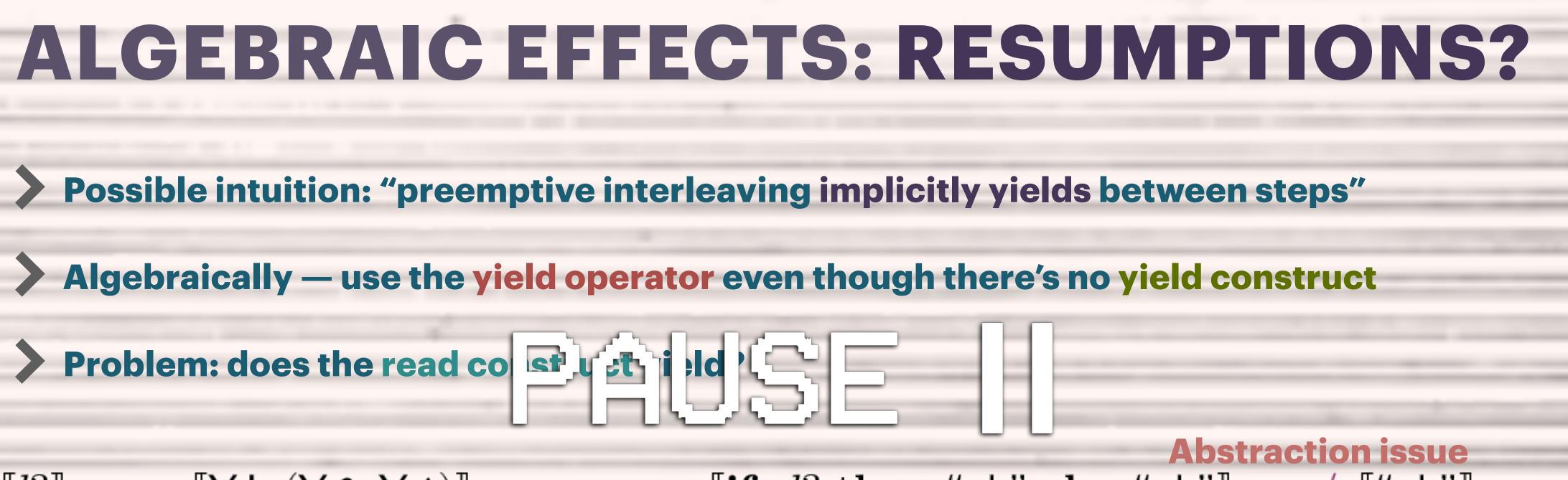
$$\llbracket l? \rrbracket_{\text{prog}} = \llbracket \mathsf{YL}_l(\mathsf{Y0}, \mathsf{Y1}) \rrbracket_{\text{term}}$$

 $\llbracket l? \rrbracket_{\text{prog}} = \llbracket \mathsf{L}_l(\mathsf{0}, \mathsf{1}) \rrbracket_{\text{term}}$

ALGEBRAIC EFFECTS: RESUMPTIONS?

Abstraction issue $\llbracket \mathbf{ifz} \ l? \mathbf{then} \ \mathbf{`ok'' \ else} \ \mathbf{`ok''} \rrbracket_{\mathrm{prog}} \neq \llbracket \mathbf{`ok''} \rrbracket_{\mathrm{prog}}$ Not even sound $\llbracket \mathbf{ifz} \ l? \mathbf{then} \ l? \mathbf{else} \ \mathbf{0} \rrbracket_{\mathrm{prog}} = \llbracket \mathbf{0} \rrbracket_{\mathrm{prog}}$

Variations fail too (no-go theorem)



$$\llbracket l? \rrbracket_{\text{prog}} = \llbracket \mathsf{YL}_l(\mathsf{Y0},\mathsf{Y1}) \rrbracket_{\text{term}}$$

 $\llbracket l? \rrbracket_{\text{prog}} = \llbracket \mathsf{L}_l(\mathsf{0}, \mathsf{1}) \rrbracket_{\text{term}}$

Variations fail too (no-go theorem)

 $\llbracket \mathbf{ifz} \ l? \mathbf{then} \ \mathbf{``ok'' \ else} \ \mathbf{``ok''} \rrbracket_{\mathrm{prog}} \neq \llbracket \mathbf{``ok''} \rrbracket_{\mathrm{prog}}$

Not even sound $\llbracket \mathbf{ifz} \ l? \ \mathbf{then} \ l? \ \mathbf{else} \ \mathbf{0} \rrbracket_{\mathrm{prog}} = \llbracket \mathbf{0} \rrbracket_{\mathrm{prog}}$

Setting	Sequential	Cooperative Concurrency	Preemptive Concurrency
Monad	State Transformers		??
Alg. Theory	Global State	Resumptions	

the process is a kind of reverse engineering ~ Hyland & Power, 2007

TARGET: THE BROOKES MONAD

Setting	Sequential	Cooperative Concurrency	Preemptive Concurrency
Monad	State Transformers		Brookes Monad .
Alg. Theory	Global State	Resumptions	??

- * Highly Abstract: e.g. has **[ifz** l? then '

'ok" else ''ok"]
$$_{\mathrm{prog}} = \llbracket$$
''ok"] $_{\mathrm{prog}}$

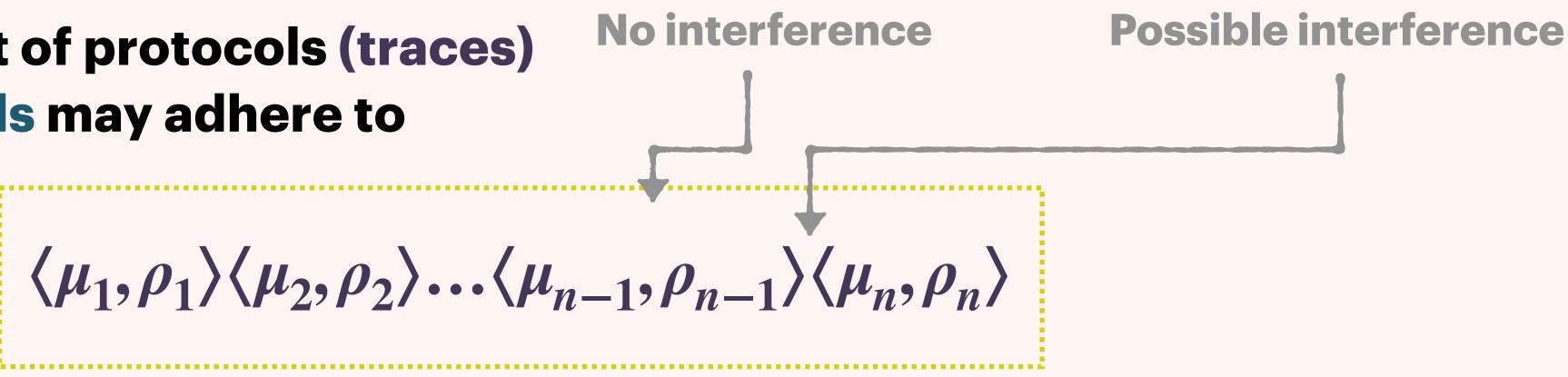
* Extensible: e.g. infinite executions, type-and-effect systems, allocations, relaxed memory

Brookes's Denotational Semantics for Shared State Concurrency

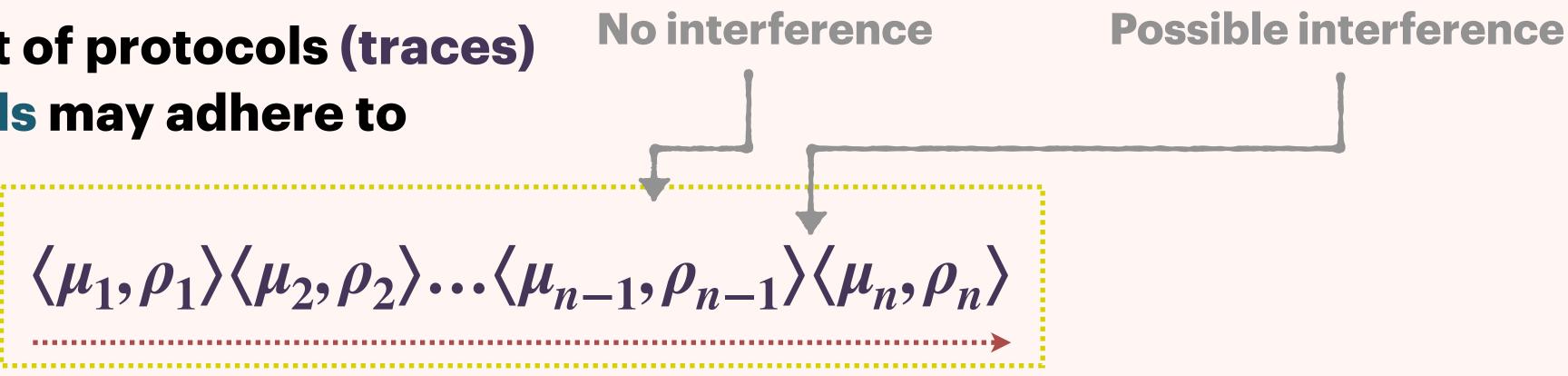
Algebraic Effects Refinement

Relaxed Memory Extension

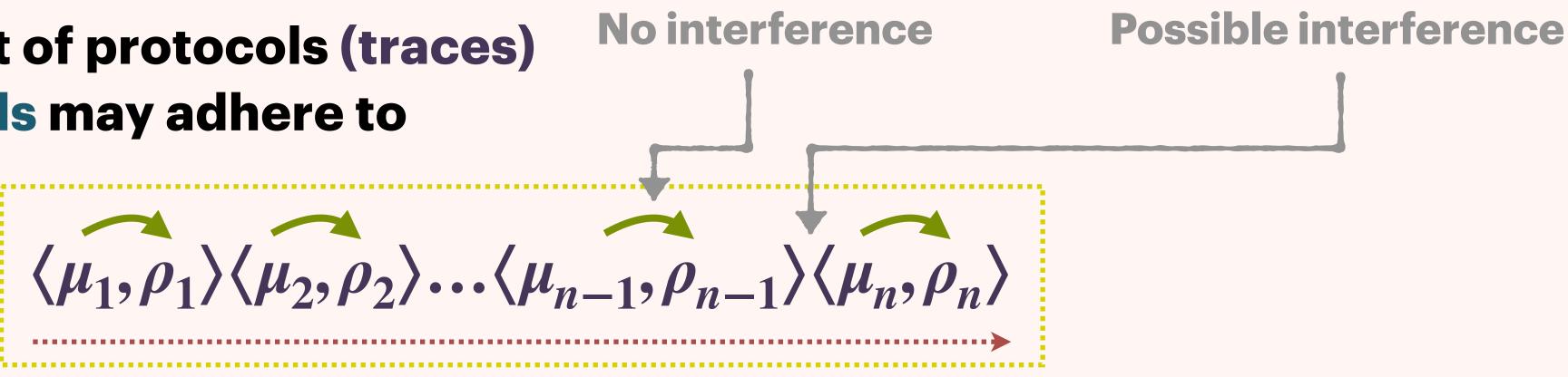
A denotation is a set of protocols (traces) that a pool of threads may adhere to



A denotation is a set of protocols (traces) that a pool of threads may adhere to

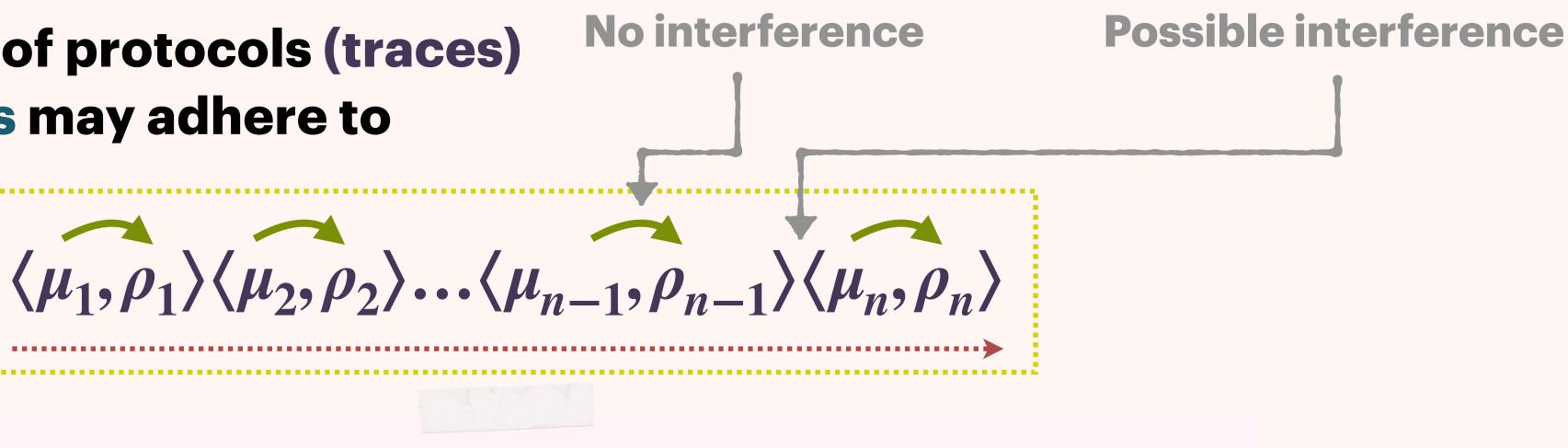


A denotation is a set of protocols (traces) that a pool of threads may adhere to



A denotation is a set of protocols (traces) that a pool of threads may adhere to

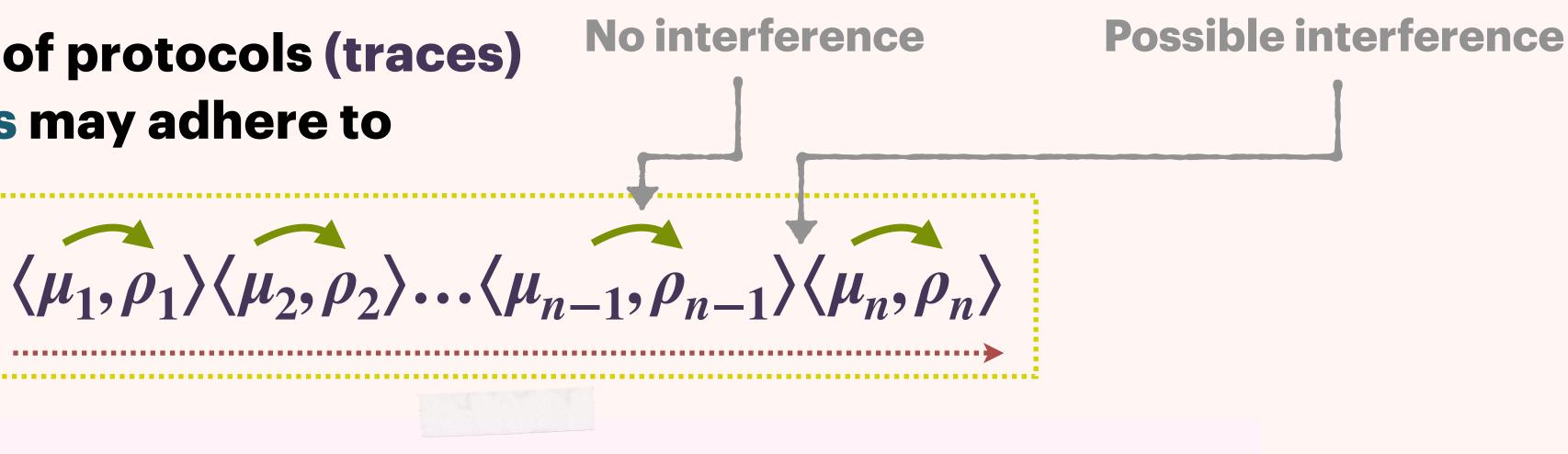
 $\langle \mu_1, \mu'_1 \rangle \langle \mu_2, \mu'_2 \rangle \dots \langle \mu_n, \mu'_n \rangle$



 $\langle \rho_1, \rho_1' \rangle \langle \rho_2, \rho_2' \rangle \dots \langle \rho_n, \rho_n' \rangle$

A denotation is a set of protocols (traces) that a pool of threads may adhere to

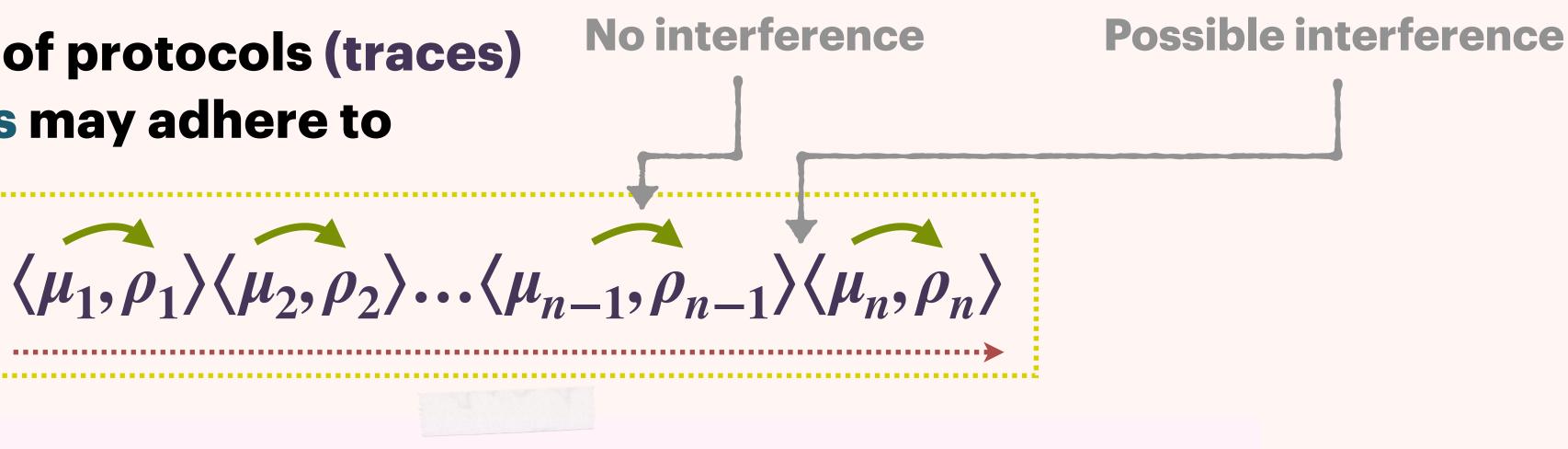
 $\langle \mu_1, \mu'_1 \rangle \langle \mu_2, \mu'_2 \rangle \dots \langle \mu_n, \mu'_n \rangle \langle \rho_1, \rho'_1 \rangle \langle \rho_2, \rho'_2 \rangle \dots \langle \rho_n, \rho'_n \rangle$



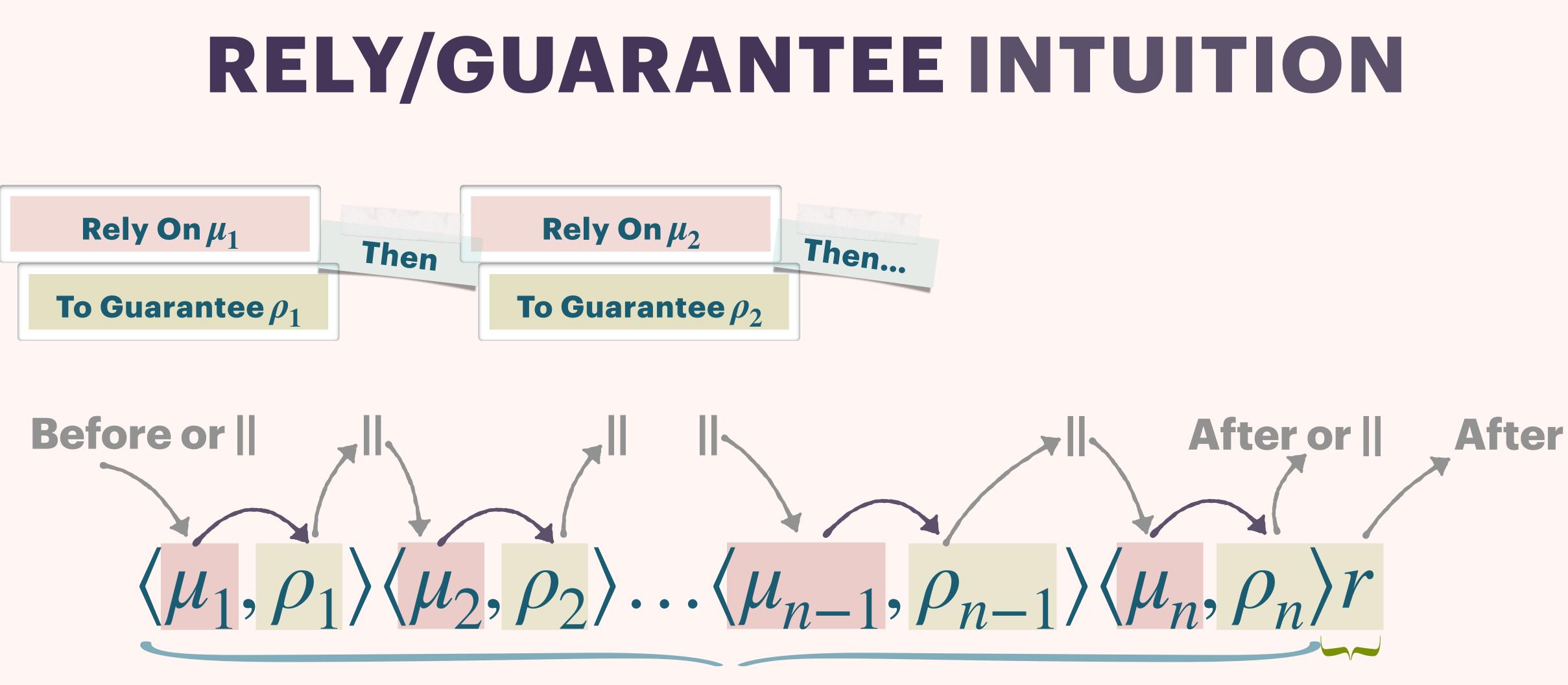
SEQUENCE

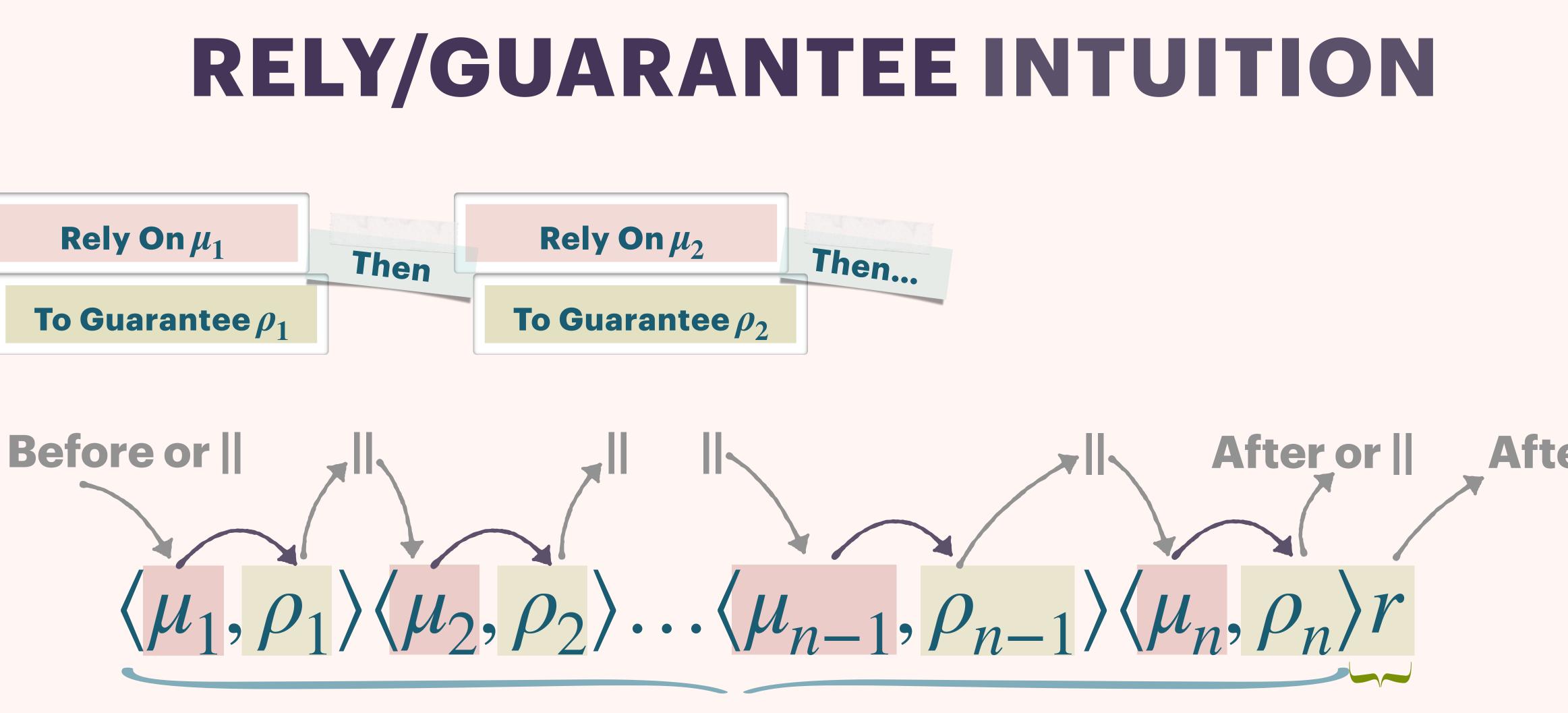
A denotation is a set of protocols (traces) that a pool of threads may adhere to

$\langle \rho_1, \rho'_1 \rangle \langle \mu_1, \mu'_1 \rangle \langle \mu_2, \mu'_2 \rangle \langle \rho_2, \rho'_2 \rangle \dots \langle \mu_n, \mu'_n \rangle \langle \rho_n, \rho'_n \rangle$



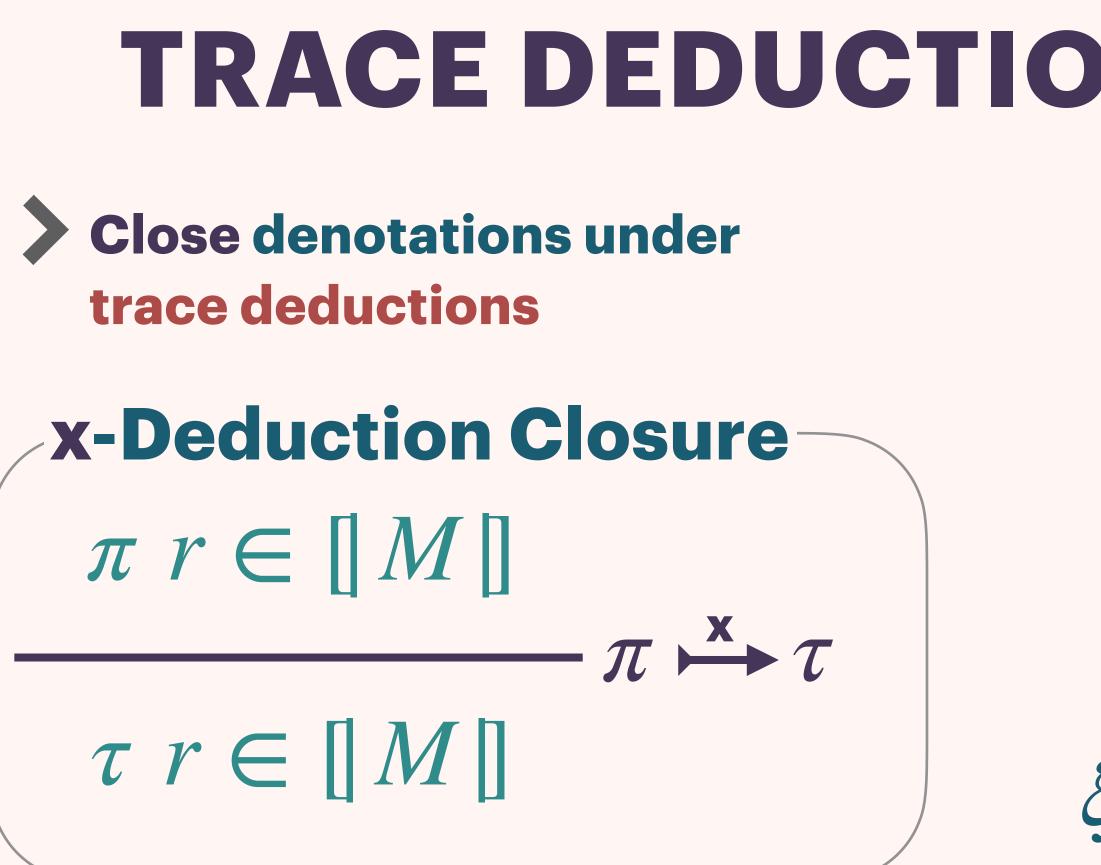
INTERLEAVE





Sequence of Transitions

Returns



> Never introduce externally observable behavior

TRACE DEDUCTIONS CLOSURE RULES

$\xi\eta \xrightarrow{\text{stutter}} \xi\langle\mu,\mu\rangle\eta$

Propagate Reliance as a Guarantee

 $\xi \langle \mu, \rho \rangle \langle \rho, \theta \rangle \eta \xrightarrow{\text{mumble}} \xi \langle \mu, \theta \rangle \eta$ Rely on an omitted Guarantee

THE BROOKES MONAD

* Domain: †-closed sets of traces $\underline{BX} \triangleq \mathcal{P}^{\dagger}(\mathsf{T}X)$ * Unit: $\eta: X \to \underline{BX}$ $\eta x \triangleq \{\langle \sigma, \sigma \rangle x \mid \sigma \in \mathbb{S}\}^{\dagger}$ * Extends $e: X \to \underline{BY}$ to $\gg e: \underline{BX} \to \underline{BY}$ as follows:

 $|K\rangle$

* Write: $[l := v]_{prog} \triangleq \{\langle \sigma, \sigma[v] \}$ * Read: $[l?]_{prog} \triangleq \{ \langle \sigma, \sigma \rangle \sigma_l \mid$

$$\models e \triangleq \{\xi_1 \xi_2 y \mid \xi_1 x \in K, \xi_2 y \in ex\}^{\dagger}$$

$$[l \mapsto v] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \in \underline{B1}$$

 $\sigma \in \mathbb{S} \}^{\dagger} \in \underline{BVal}$

 $\begin{bmatrix} l := 0 ; \text{ ifz } l? \text{ then "ok" else "bug"} \end{bmatrix}_{\text{prog}}$ $= \begin{bmatrix} l := 0 \end{bmatrix}_{\text{prog}} \gg \lambda \langle \rangle . \begin{bmatrix} l? \end{bmatrix}_{\text{prog}} \gg \lambda b. \eta \text{ (ifz } b \text{ then "ok" else "bug")}$

 $\llbracket l := 0 ; \text{``ok''} \rrbracket_{\text{prog}}$

 $\llbracket l := 0 \ ; \mathbf{ifz} \ l? \mathbf{then} \ "\mathsf{ok}" \ \mathbf{else} \ "\mathsf{bug"}
rbracket_{\operatorname{prog}}$

 $= \llbracket l \coloneqq 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b. \eta \text{ (ifz } b \text{ then "ok" else "bug")} \\ = \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \gg \lambda \langle \rangle.$

 $\llbracket l := 0 ; \text{``ok''} \rrbracket_{\text{prog}}$

$$\begin{split} \llbracket l &:= 0 \text{ ; ifz } l \text{? then "ok" else "bug"} \rrbracket_{\text{prog}} \\ &= \llbracket l \coloneqq 0 \rrbracket_{\text{prog}} \hspace{0.2cm} \rangle \hspace{-0.2cm} = \lambda \langle \rangle . \hspace{0.2cm} \llbracket l \text{?} \rrbracket_{\text{prog}} \hspace{0.2cm} \rangle \hspace{-0.2cm} = \lambda b . \hspace{0.2cm} \eta \text{ (ifz } b \text{ then "ok" else "bug")} \\ &= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \hspace{0.2cm} \rangle \hspace{-0.2cm} = \lambda \langle \rangle . \\ &\quad \{ \langle \rho, \rho \rangle \rho_l \mid \rho \in \mathbb{S} \}^{\dagger} \hspace{0.2cm} \rangle \hspace{-0.2cm} = \lambda b . \end{split}$$

 $[\![l := 0 ; "ok"]\!]_{\text{prog}}$

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $\{\langle \rho, \rho \rangle \rho_l \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug") } \mid \theta \in \mathbb{S}\}^{\dagger}$

$$\llbracket l \coloneqq \mathsf{0} \ ; \ ``\mathsf{ok}" \rrbracket_{\mathrm{prog}}$$

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$

 $\{\langle \rho, \rho \rangle \rho_1 \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug") } \mid \theta \in \mathbb{S}\}^{\dagger}$

 $\{\langle \rho, \rho \rangle \langle \theta, \theta \rangle \text{ (ifz } \rho_l \text{ then "ok" else "bug") } | \rho, \theta \in \mathbb{S} \}^{\dagger}$

 $\llbracket l := 0 ; \text{``ok''} \rrbracket_{\text{prog}}$

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$

 $\{\langle \rho, \rho \rangle \rho_1 \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug") } \mid \theta \in \mathbb{S}\}^{\dagger}$

 $\{\langle \rho, \rho \rangle \langle \theta, \theta \rangle \text{ (ifz } \rho_l \text{ then "ok" else "bug") } | \rho, \theta \in \mathbb{S} \}^{\dagger}$

 $\llbracket l := 0 ; \text{``ok''} \rrbracket_{\text{prog}}$

- $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$
- $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rho, \rho \rangle \text{ (ifz } \rho_l \text{ then "ok" else "bug") } | \sigma, \rho \in \mathbb{S} \}^{\dagger}$

 $\{\langle \rho, \rho \rangle \rho_1 \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug")} \mid \theta \in \mathbb{S}\}^{\dagger}$

 $\{\langle \rho, \rho \rangle \langle \theta, \theta \rangle (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \mid \rho, \theta \in \mathbb{S}\}^{\dagger}$ $\llbracket l := 0 ; \text{``ok''} \rrbracket_{\text{prog}}$

- $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$
- $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rho, \rho \rangle \text{ (ifz } \rho_l \text{ then "ok" else "bug") } | \sigma, \rho \in \mathbb{S} \}^{\dagger}$

 $\{\langle \rho, \rho \rangle \rho_1 \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug")} \mid \theta \in \mathbb{S}\}^{\dagger}$

 $\{\langle \rho, \rho \rangle \langle \theta, \theta \rangle (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \mid \rho, \theta \in \mathbb{S}\}^{\dagger}$ $\llbracket l := 0 ; \text{``ok''} \rrbracket_{\text{prog}}$

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rho, \rho \rangle \text{ (ifz } \rho_l \text{ then "ok" else "bug") } | \sigma, \rho \in \mathbb{S} \}^{\dagger}$

 $\{\langle \rho, \rho \rangle \rho_I \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug") } \mid \theta \in \mathbb{S}\}^{\dagger}$

 $\{\langle \rho, \rho \rangle \langle \theta, \theta \rangle (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \mid \rho, \theta \in \mathbb{S}\}^{\dagger}$ $\supseteq \left\{ \langle \sigma, \sigma[l \mapsto \mathbf{0}] \rangle^{\text{``ok''}} \mid \sigma \in \mathbb{S} \right\}^{\dagger} = \dots = \llbracket l \coloneqq \mathbf{0} \ ; \ \text{``ok''} \rrbracket_{\text{prog}}$

 $[l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 0 \rrbracket_{\text{prog}} \gg \lambda \langle \rangle . \llbracket l? \rrbracket_{\text{prog}} \gg \lambda b . \eta \text{ (ifz } b \text{ then "ok" else "bug")}$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rangle \mid \sigma \in \mathbb{S} \}^{\dagger} \rangle = \lambda \langle \rangle.$ $= \{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rho, \rho \rangle (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \mid \sigma, \rho \in \mathbb{S} \}^{\dagger}$

 $\{\langle \rho, \rho \rangle \rho_1 \mid \rho \in \mathbb{S}\}^{\dagger} \geq \lambda b. \{\langle \theta, \theta \rangle \text{ (ifz } b \text{ then "ok" else "bug") } \mid \theta \in \mathbb{S}\}^{\dagger}$

 $\{\langle \rho, \rho \rangle \langle \theta, \theta \rangle (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \mid \rho, \theta \in \mathbb{S}\}^{\dagger}$ $\supseteq \left\{ \langle \sigma, \sigma[l \mapsto \mathbf{0}] \rangle \text{``ok''} \mid \sigma \in \mathbb{S} \right\}^{\dagger} = \dots = \llbracket l \coloneqq \mathbf{0} \text{ ; ``ok''} \rrbracket_{\text{prog}}$

BROOKES INTERLEAVING

 $[l := 1 || l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 1 \rrbracket_{\text{prog}} \ \llbracket l := 0 ; \text{ ifz } l? \text{ then "ok" else "bug"}_{\text{prog}}$

BROOKES INTERLEAVING

 $[l := 1 || l := 0; ifz l? then "ok" else "bug"]_{prog}$ $= \llbracket l := 1 \rrbracket_{\text{prog}} \parallel \llbracket l := 0 ; \text{ ifz } l? \text{ then "ok" else "bug"} \rrbracket_{\text{prog}}$

 $= \{ \langle \boldsymbol{\theta}, \boldsymbol{\theta}[\boldsymbol{l} \mapsto \boldsymbol{1}] \rangle \langle \sigma, \sigma[\boldsymbol{l} \mapsto \boldsymbol{0}] \rangle \langle \rho, \rho \rangle \langle \langle \rangle, (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \rangle \mid \sigma, \rho, \boldsymbol{\theta} \in \mathbb{S} \}^{\dagger}$ $\cup \{\langle \sigma, \sigma[l \mapsto 0] \rangle \langle \theta, \theta[l \mapsto 1] \rangle \langle \rho, \rho \rangle \langle \langle \rangle, (ifz \rho_l then "ok" else "bug") \rangle \mid \sigma, \rho, \theta \in \mathbb{S} \}^{\dagger}$ $\cup \{\langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rho, \rho \rangle \langle \theta, \theta[l \mapsto 1] \rangle \langle \langle \rangle, (\text{ifz } \rho_l \text{ then "ok" else "bug"}) \rangle \mid \sigma, \rho, \theta \in \mathbb{S} \}^{\dagger}$

Brookes's Denotational Semantics for Shared State Concurrency

Algebraic Effects Refinement

Relaxed Memory Extension

ALGEBRAIC BROOKES

Setting	Sequential	Cooperative Concurrency	Preemptive Concurrency
$[\![l:=0]\!]_{\rm prog}$	$\lambda\sigma.\left\langle\sigma[l\mapsto0],\left\langle\right\rangle\right\rangle$		$\left \left\{ \left\langle \sigma, \sigma[l \mapsto 0] \right\rangle \left\langle \right\rangle \mid \sigma \in \mathbb{S} \right\}^{\dagger} \right.$
Alg. Rep.	$\llbracket U_{l,o}\langle\rangle \rrbracket_{\mathrm{term}}$	$\llbracket U_{l,o}\langle\rangle \rrbracket_{\mathrm{term}}$??

_

ALGEBRAIC BROOKES

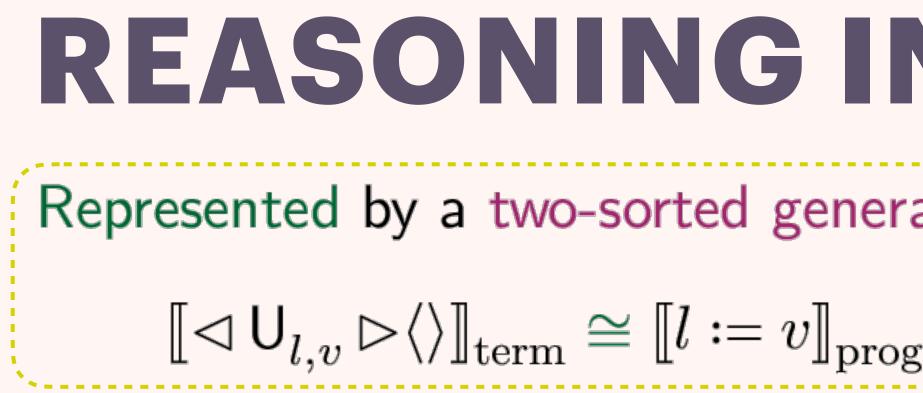
Setting	Sequential	Cooperative Concurrency	Preemptive Concurrency
$\llbracket l := O \rrbracket_{\mathrm{prog}}$	$\lambda \sigma. \langle \sigma[l \mapsto 0], \langle \rangle \rangle$		$\left \left\{ \left\langle \sigma, \sigma[l \mapsto 0] \right\rangle \left\langle \right\rangle \mid \sigma \in \mathbb{S} \right\}^{\dagger} \right.$
Alg. Rep.	$[\![U_{l,0}\langle\rangle]\!]_{term}$	$\llbracket U_{l,0}\langle\rangle \rrbracket_{\mathrm{term}}$	$\llbracket \triangleleft U_{l,0} \triangleright \langle \rangle \rrbracket_{\mathrm{term}}$

_

- * Sorts: Hold (●) & Cede (○)
- * Operators:
 - » ●-sorted update $U_{l,v}$: $\langle \bullet \rangle$ and lookup L_l : $\langle \bullet, \bullet \rangle$
 - » choice in each sort
 - » acquire $\triangleleft : \diamond \land \bullet \rangle$ release
- * Axioms:
 - » •-copy of the global state axioms

 - » Standard choice axioms (including distributivity and strictness) » Closure pair axioms: (Empty) $\lhd \triangleright x = x$ (Fuse) $\triangleright \lhd x \ge x$

$$\mathbf{e} \triangleright : \mathbf{\bullet} \langle \mathbf{o} \rangle$$

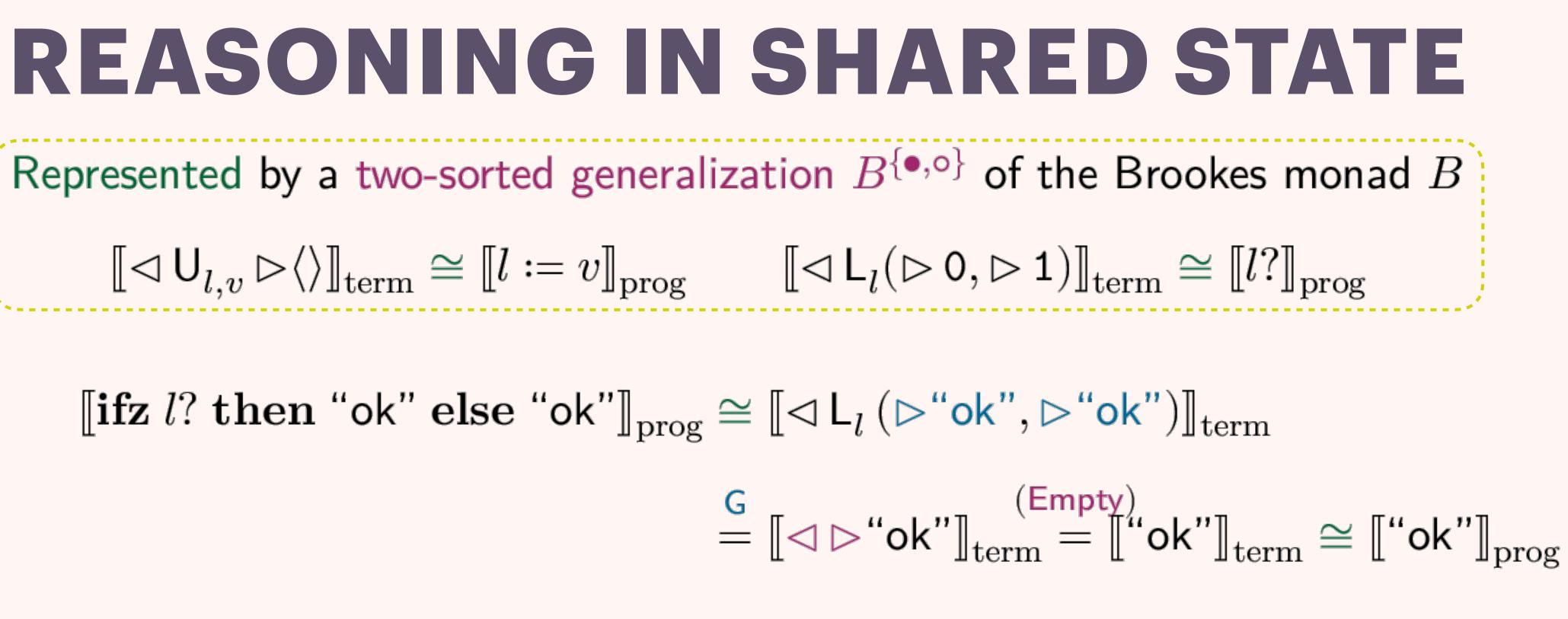


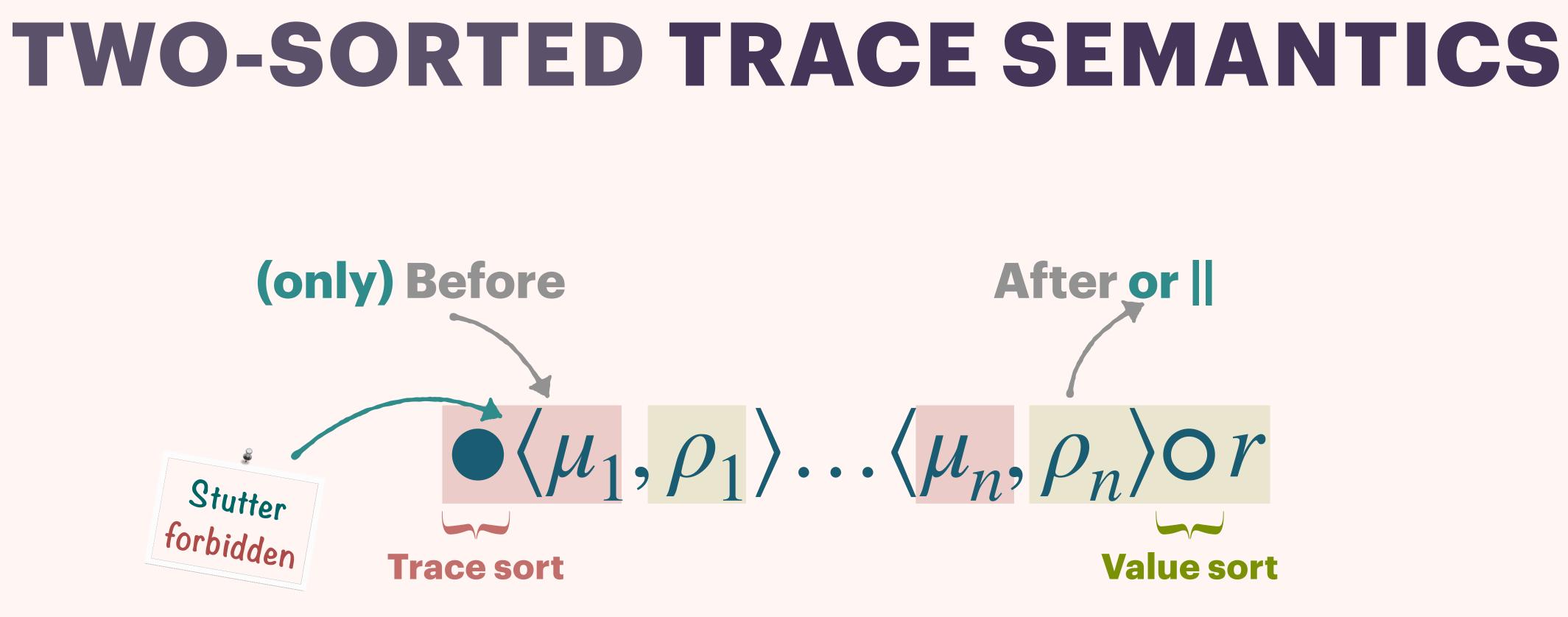
 $[l := 0; ifz l? then "ok" else "bug"]_{pro}$

(Fuse) ($\triangleright \lhd x \ge x$): fusing atomic blocks eliminates potential interference

Shared State
alization
$$B^{\{\bullet,\circ\}}$$
 of the Brookes monad B
 $[\triangleleft L_l (\rhd 0, \rhd 1)]]_{term} \cong [l?]_{prog}$
 $\log \cong [\triangleleft U_{l,0} \rhd \triangleleft L_l (\rhd^* ok^*, \rhd^* bug^*)]]_{term}$
 $\stackrel{(\mathsf{Fuse})}{\supseteq} [\triangleleft U_{l,0} L_l (\rhd^* ok^*, \rhd^* bug^*)]]_{term}$
 $\stackrel{(\mathsf{UL})}{=} [\triangleleft U_{l,0} \rhd^* ok^*]]_{term} \cong [l := 0; "ok"]_{prog}$

(Empty) ($\lhd \triangleright x = x$): empty atomic blocks have no observable effect





TWO-SORTED BROOKES MONAD Domain for each sort \square : closed sets of \square -sorted traces $\underline{B^{\{\bullet,\circ\}}X}_{\square} \triangleq \mathcal{P}^{\dagger}((\mathbb{T}X)_{\square})$

 $\llbracket \mathsf{U}_{l,v} \rrbracket_{\mathrm{op}} K \triangleq \bigcup_{\sigma \in \mathbb{S}} \left(\sigma, \sigma[l \mapsto v] \right) K$ $\llbracket \mathsf{L}_{l} \rrbracket_{\mathrm{op}}(K_{0}, K_{1}) \triangleq \bigcup_{\sigma \in \mathfrak{S}} (\sigma, \sigma) K_{\sigma_{l}}$

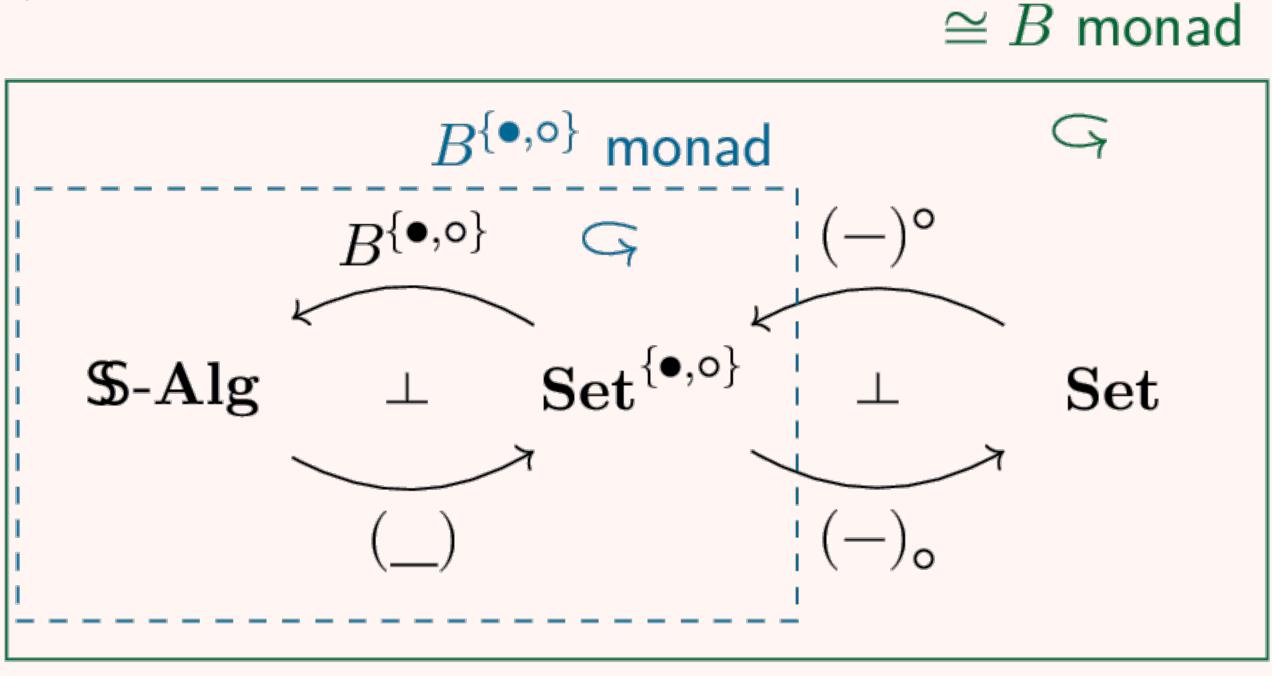
where $(\sigma, \rho) K \triangleq \{ \bullet \langle \sigma, \theta \rangle \xi \otimes x \mid \bullet \langle \rho, \theta \rangle \xi \otimes x \in K \}$

 $\llbracket \bigvee \rrbracket_{\text{op}} \triangleq \bigcup$

$\llbracket \lhd \rrbracket_{\mathrm{op}} K \triangleq \{ \mathsf{o}\xi \otimes x \mid \mathsf{o}\xi \otimes x \in K \}^{\dagger} \quad \llbracket \vartriangleright \rrbracket_{\mathrm{op}} K \triangleq \{ \mathsf{o}\langle\sigma,\sigma\rangle\xi \otimes x \mid \sigma \in \mathbb{S}, \mathsf{o}\xi \otimes x \in K \}^{\dagger}$

RECOVERING BROOKES

- * Monad $B^{\{\bullet,\circ\}}$ transformed along $(-)^{\circ} \dashv (-)_{\circ} \cong$ Brookes's monad B
 - » $X^{\circ} \triangleq \{x : \mathbf{o} \mid x \in X\}$
 - » $\underline{B^{\{\bullet,\circ\}}X^{\circ}}_{\circ} = \mathcal{P}^{\dagger}((\mathbb{T}X^{\circ})_{\circ}) \cong \mathcal{P}^{\dagger}(\mathsf{T}X) = \underline{BX}$
 - » $\llbracket \triangleleft \mathsf{U}_{l,v} \triangleright \langle \rangle \rrbracket_{\text{term}} \cong \llbracket l := v \rrbracket_{\text{prog}}$
 - » $\llbracket \triangleleft \mathsf{L}_l(\rhd \mathsf{0}, \rhd \mathsf{1}) \rrbracket_{\operatorname{term}} \cong \llbracket l? \rrbracket_{\operatorname{prog}}$

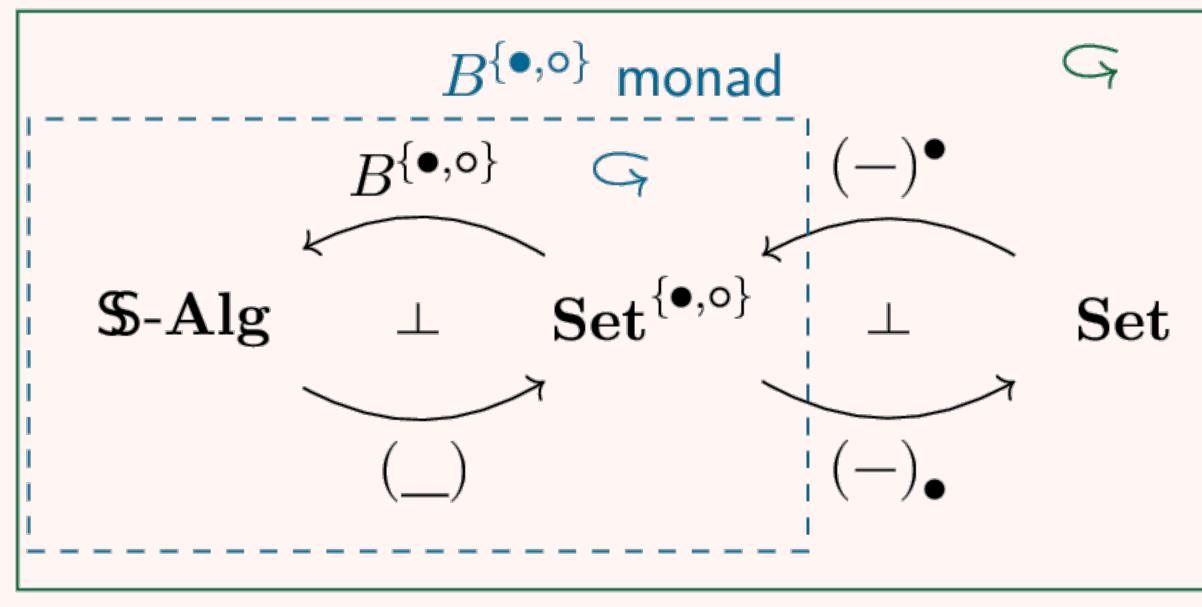


RECOVERING RESUMPTIONS

- » Closure axioms $(Y \mapsto \rhd \lhd)$ * (Pure) $\vartriangleright \lhd x \ge x$
 - * (Join) $\triangleright \lhd \triangleright \lhd x = \triangleright \lhd x$
 - » $\llbracket \triangleright \triangleleft \langle \rangle \rrbracket_{\text{term}} \cong \llbracket \text{yield} \rrbracket_{\text{prog}}$
 - » $\llbracket \mathsf{U}_{l,v} \langle \rangle \rrbracket_{\text{term}} \cong \llbracket l := v \rrbracket_{\text{prog}}$
 - » $\llbracket L_l(0,1) \rrbracket_{term} \cong \llbracket l? \rrbracket_{prog}$

* Monad $B^{\{\bullet,o\}}$ transformed along $(-)^{\bullet} \dashv (-)_{\bullet}$ represents the resumptions theory Res

represents Res



SUMMARY

- A two-sorted algebraic effects theory for shared state concurrency S: (the first example of a multi-sorted algebraic effects theory)
 - * The sorts Hold & Cede o declare exclusive access to memory
 - * Classic algebraic effects theories: Global State in ●, Choice (semilattice) in and O
 - * The Closure Pair theory for managing access: (Empty) $\triangleleft \triangleright x = x$ (Fuse) $\triangleright \triangleleft x \ge x$
 - * Represented by a two-sorted model recovering known models in each sort:

 - » The o-adjunction recovers Brookes's model (preemptive concurrency) » The -adjunction represents Resumptions (cooperative concurrency)

Brookes's Denotational Semantics for Shared State Concurrency

Algebraic Effects Refinement

Relaxed Memory Extension

RELAXING TRACE-BASED SEMANTICS

Paper	Memory Model	Operational Semantics
Brookes [1996]	Sequential Consistency (SC) idealized model	straightforward interleaving
Jagadeesan, Petri, Riely [2012]	Total-Store Order (TSO) hardware model	write buffer per thread
THIS WORK [2024]	Release/Acquire (RA) software model	decentralized communication

WHY RELEASE/ACQUIRE?

RA is an important fragment of C11, enables decentralized architectures (POWER)

First adaptation of Brookes's traces to a relaxed-memory software model

Intricate causal semantics, not overwhelmingly detailed

acyclic $(po \cup rf)^+|_{loc} \cup mo \cup rb$

Threads can disagree about the order of writes (non-multi-copy-atomic)

Supports flag-based synchronization (e.g. for signaling a data structure is ready)

Supports important transformations (e.g. thread sequencing, write-read-reorder)

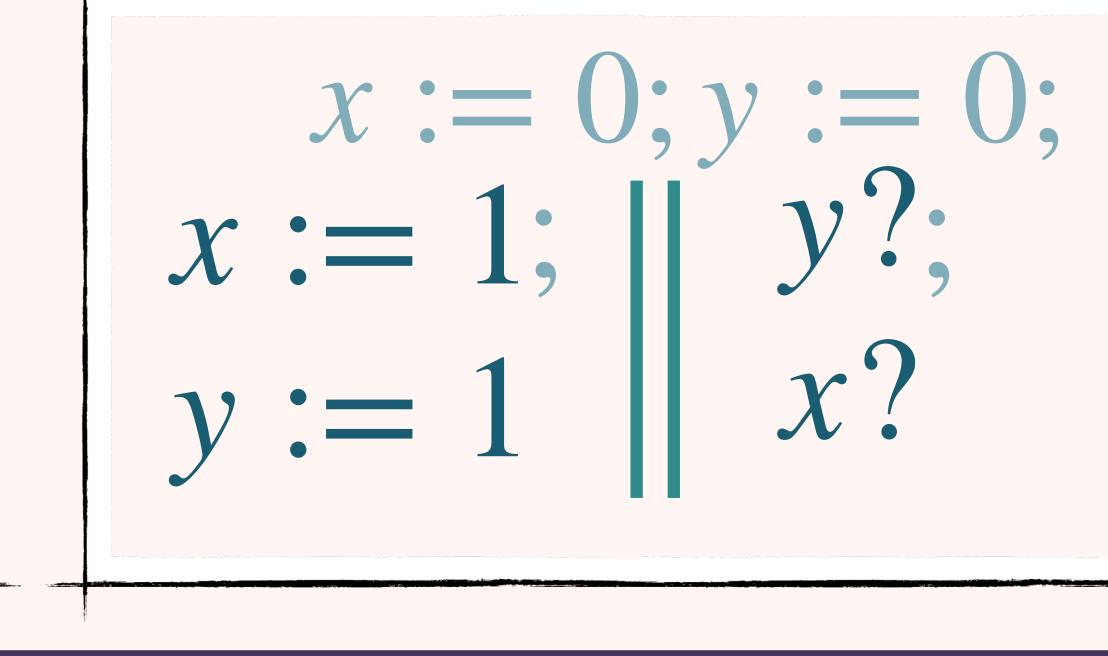
Supports read-modify-write atomicity (e.g. atomic compare-and-swap)

INTUITION VIA LITMUS TESTS

Store Buffering

$\begin{array}{c} x := 0; y := 0; \\ x := 1; \\ y? \\ x? \end{array} \begin{array}{c} y := 1; \\ x? \end{array}$

Message Passing

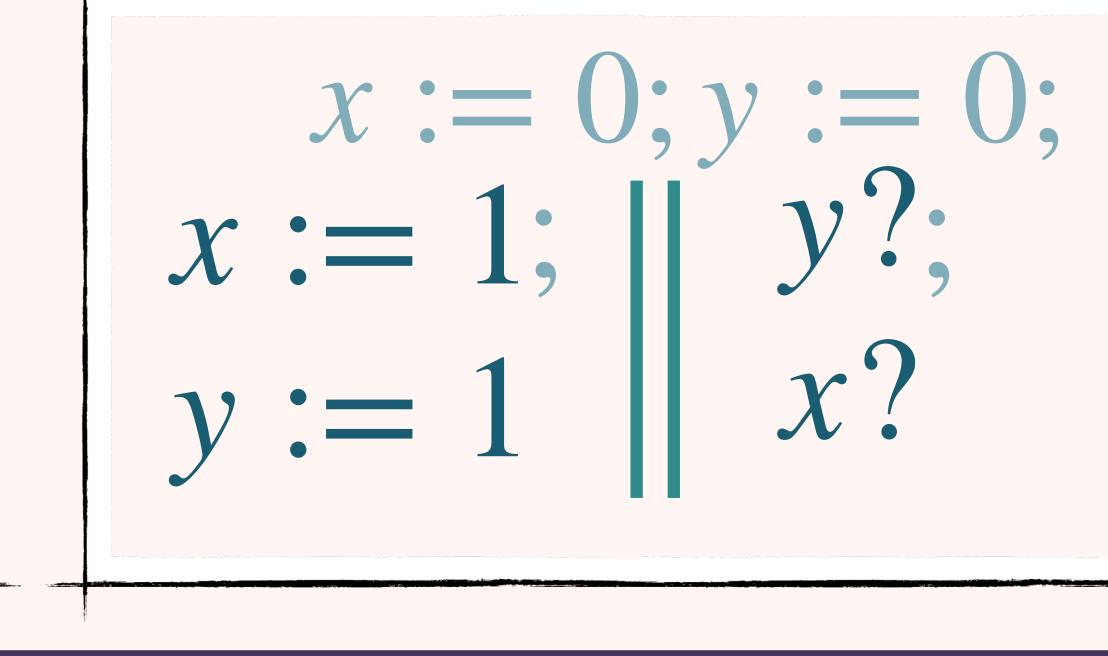


INTUITION VIA LITMUS TESTS

Store Buffering

$\begin{array}{c} x := 0; y := 0; \\ x := 1; & y := 1; \\ y? / 0 & x? / 0 \end{array}$

Message Passing

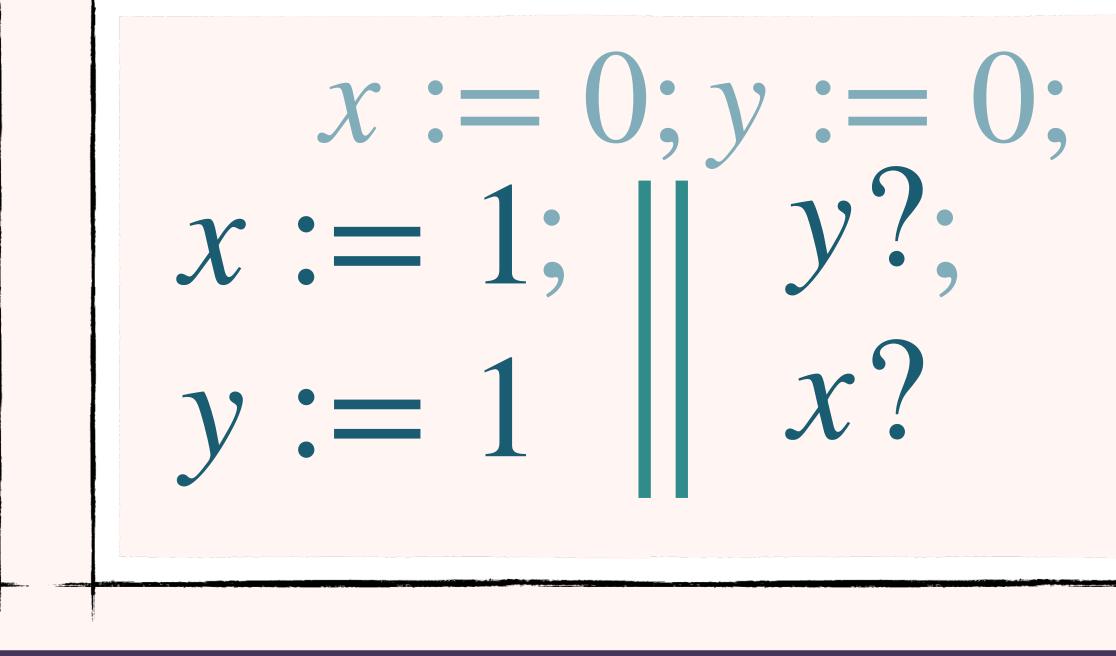


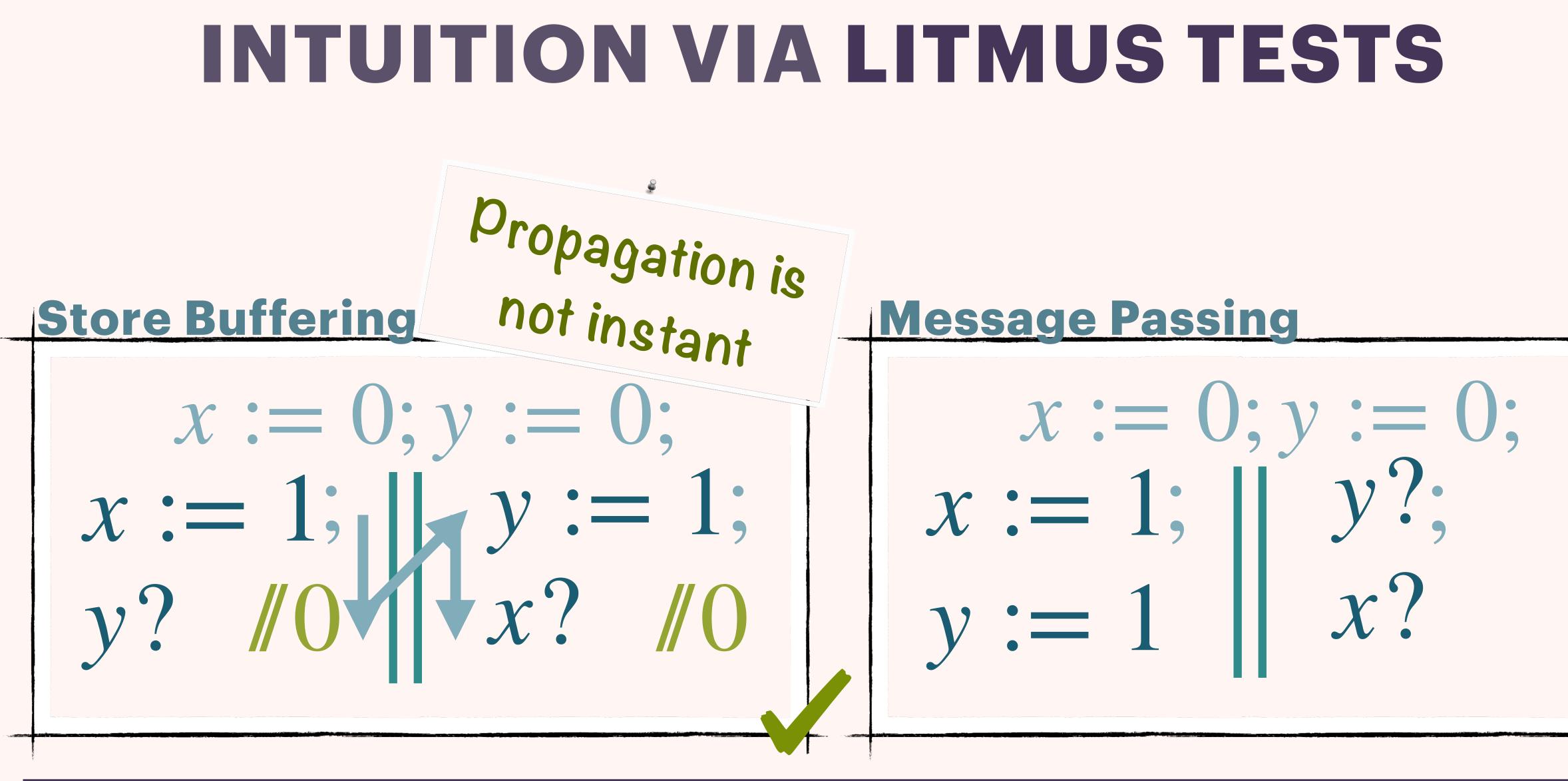
INTUITION VIA LITMUS TESTS

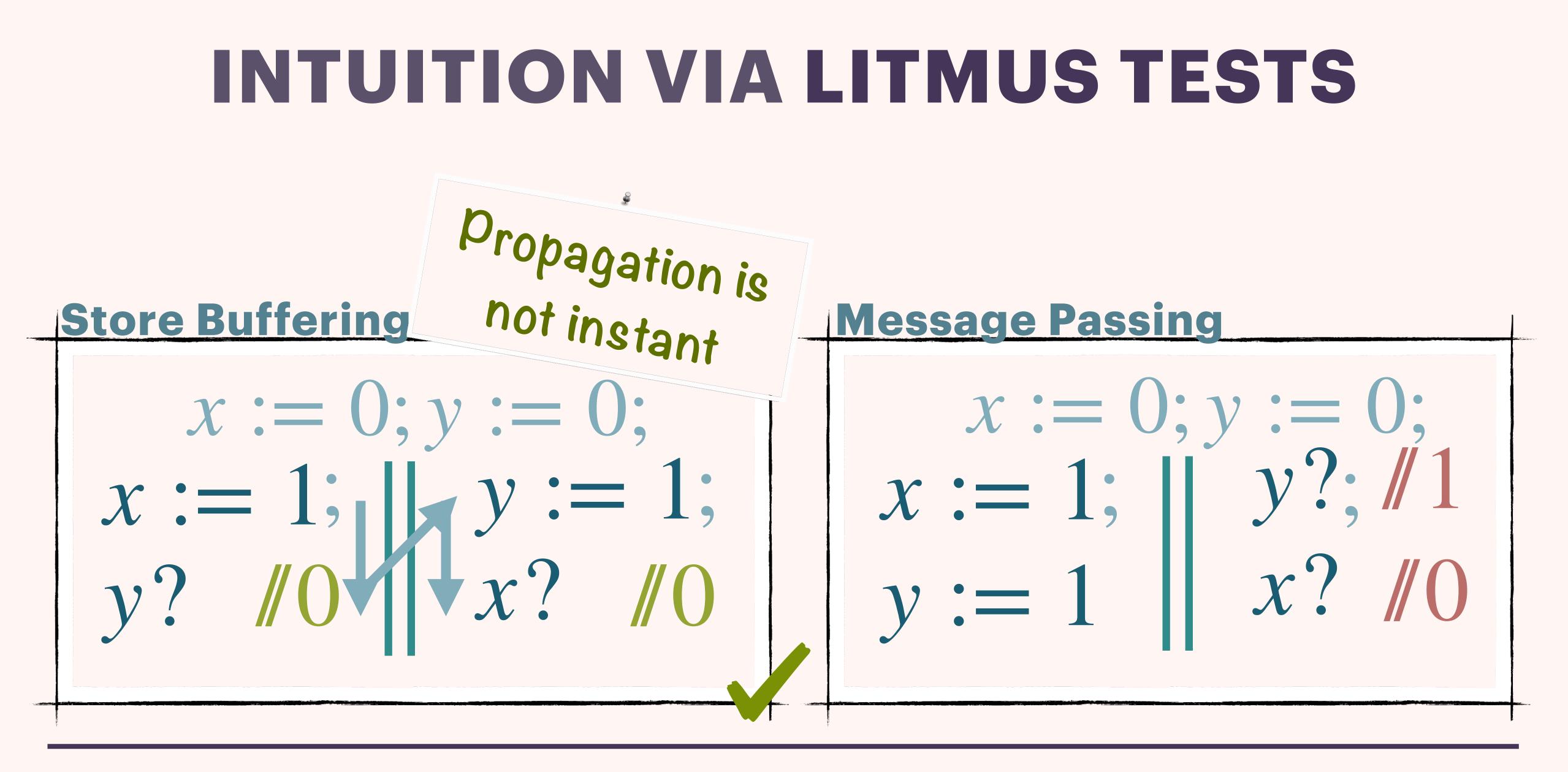
Store Buffering

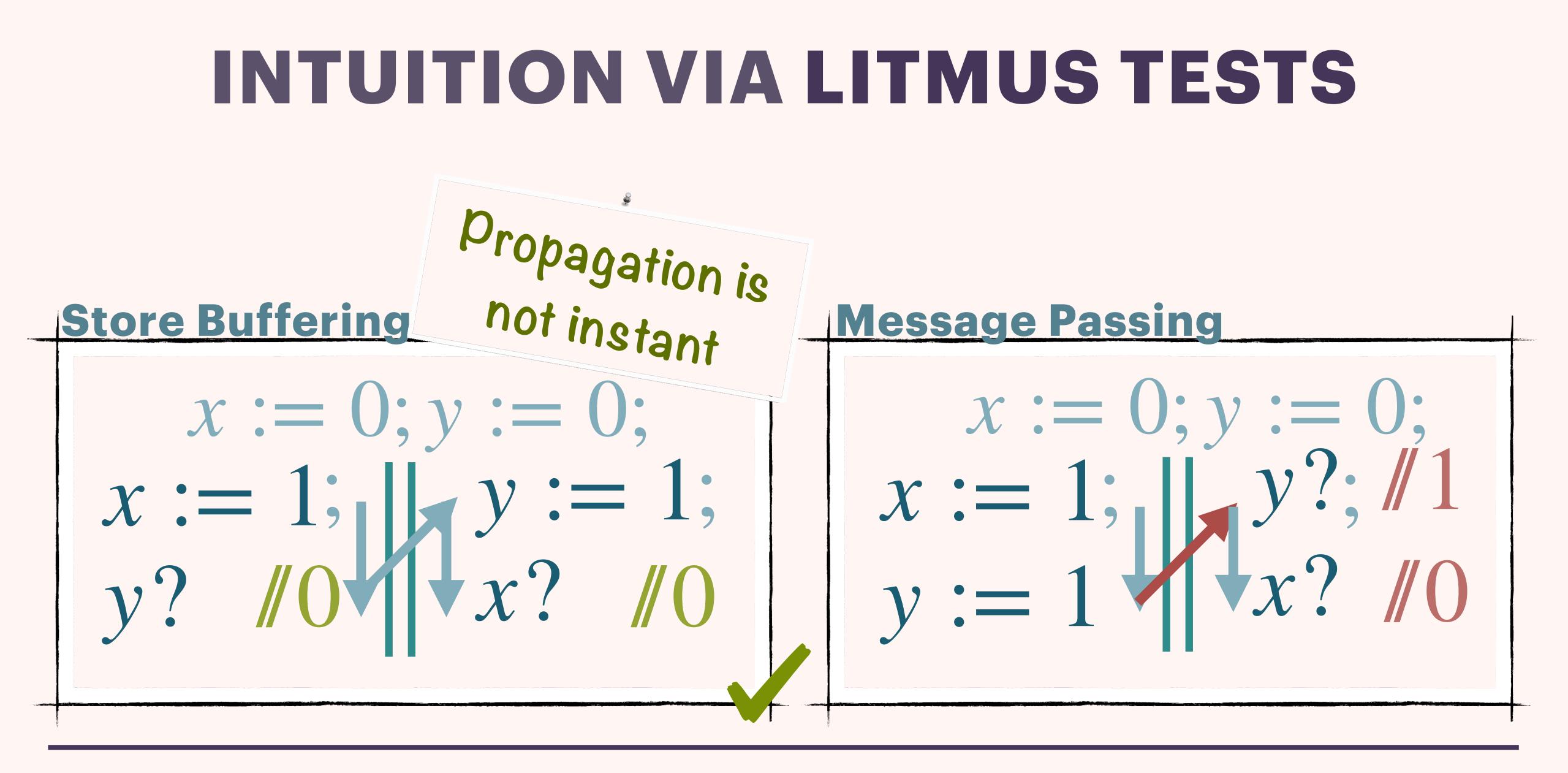
x := 0; y := 0; x := 1; y := 1;y? /0 x? /0

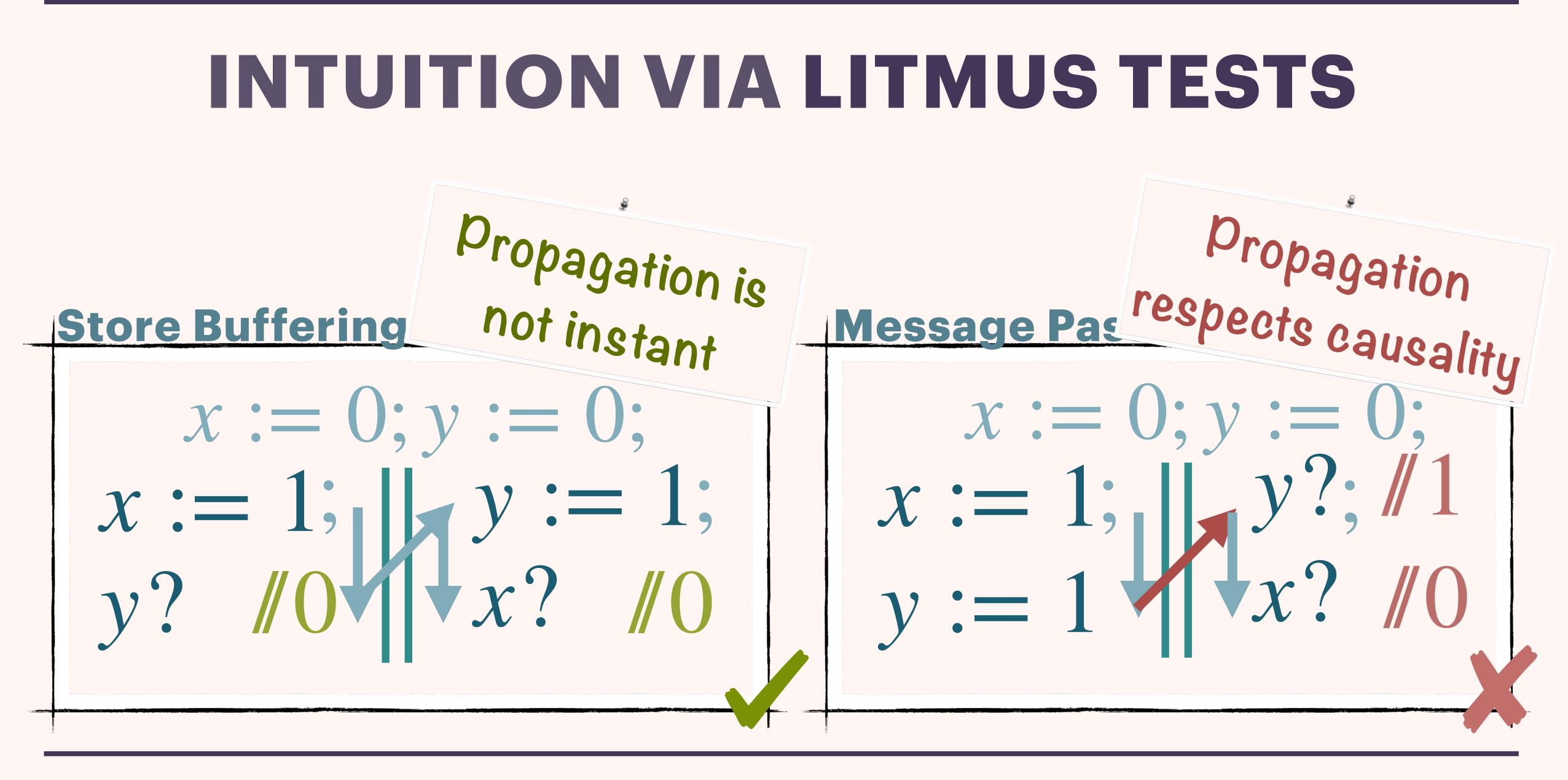
Message Passing





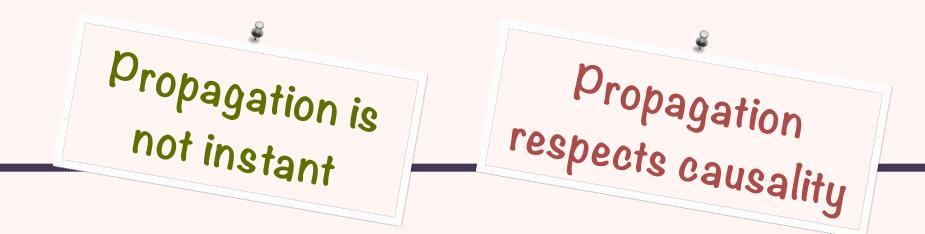


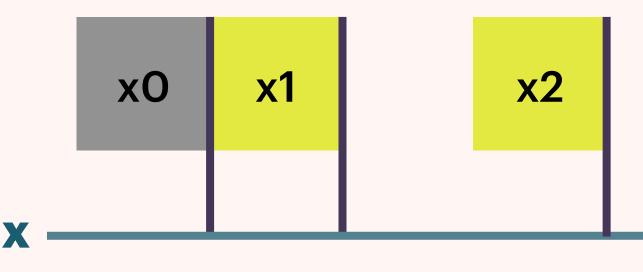


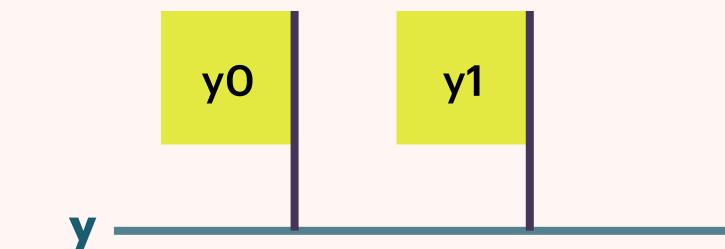


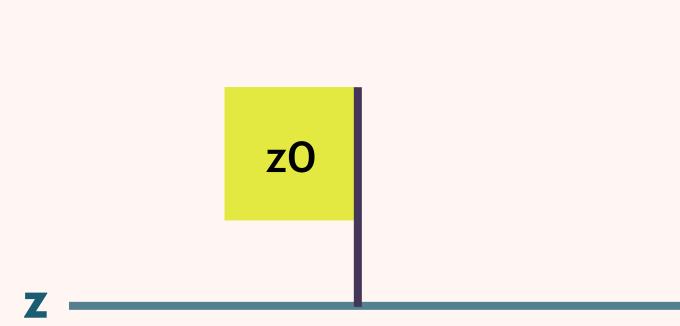
RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS Kang et al. [2017]

- **Memory:** Timeline per location
- Populated with immutable messages holding values
- Each view points to msgs on each timeline
- **Threads have views cannot read from "the past"**
- **Msgs have views for enforcing causal propagation**



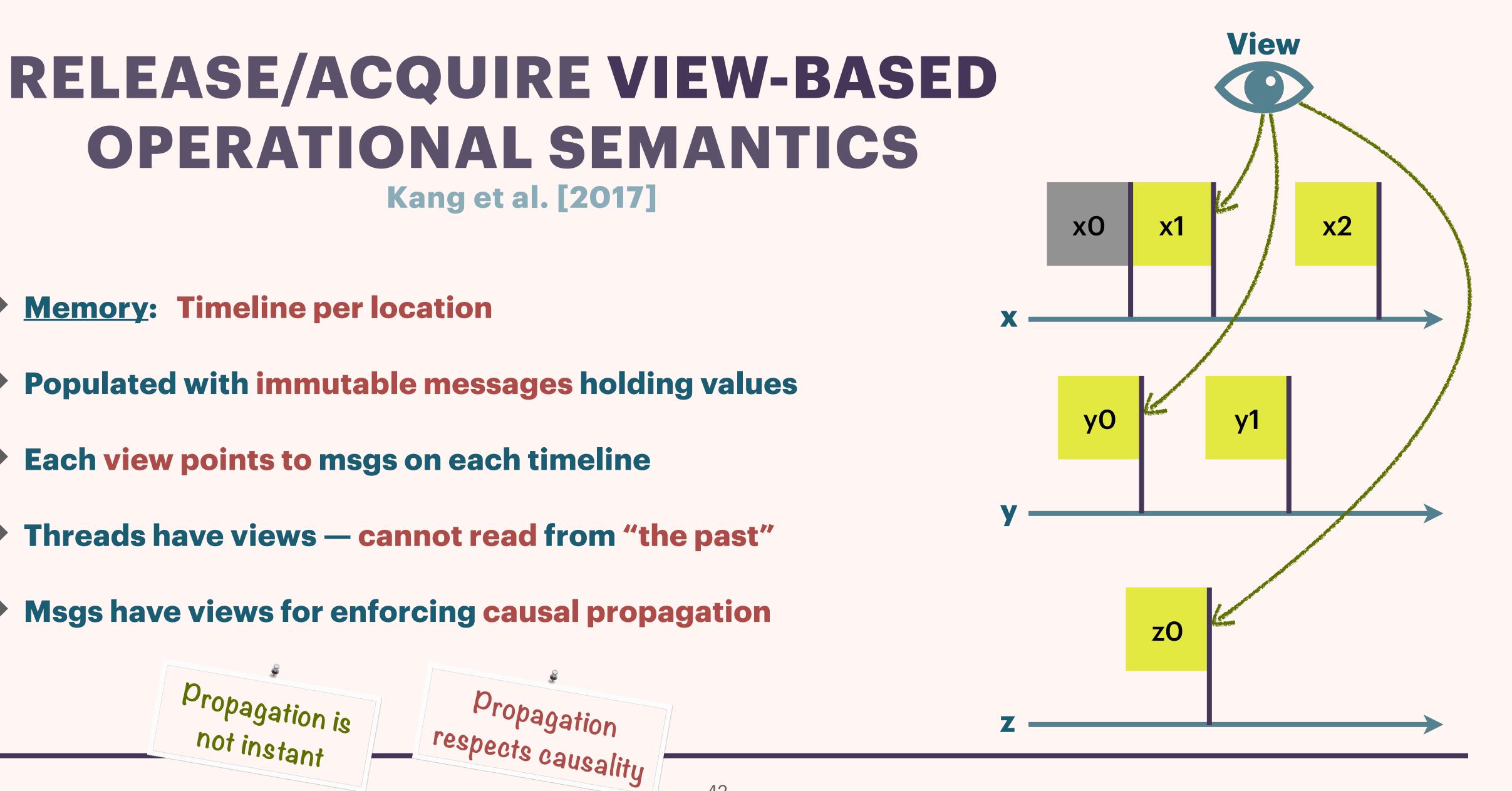






Kang et al. [2017]

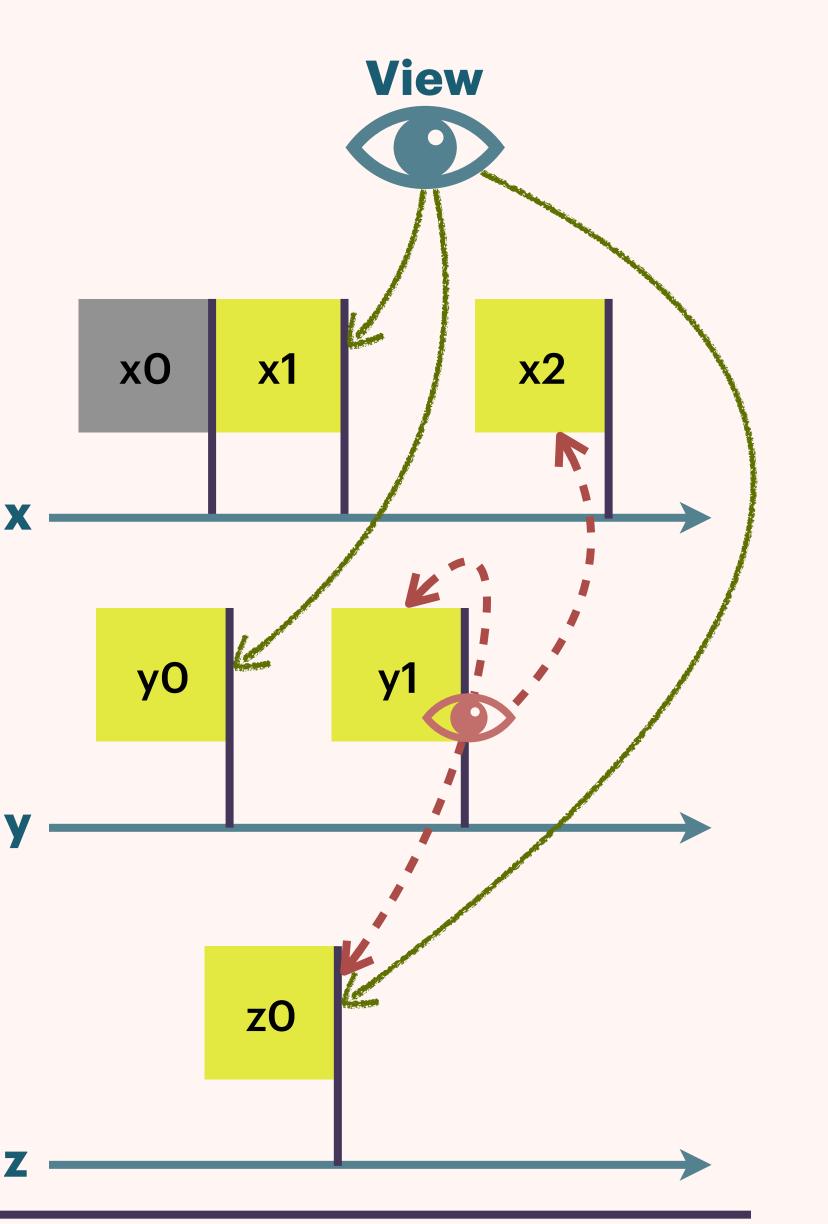
- **<u>Memory</u>: Timeline per location**
- Populated with immutable messages holding values
- Each view points to msgs on each timeline
- **Threads have views cannot read from "the past"**
- **Msgs have views for enforcing causal propagation**



RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS Kang et al. [2017]

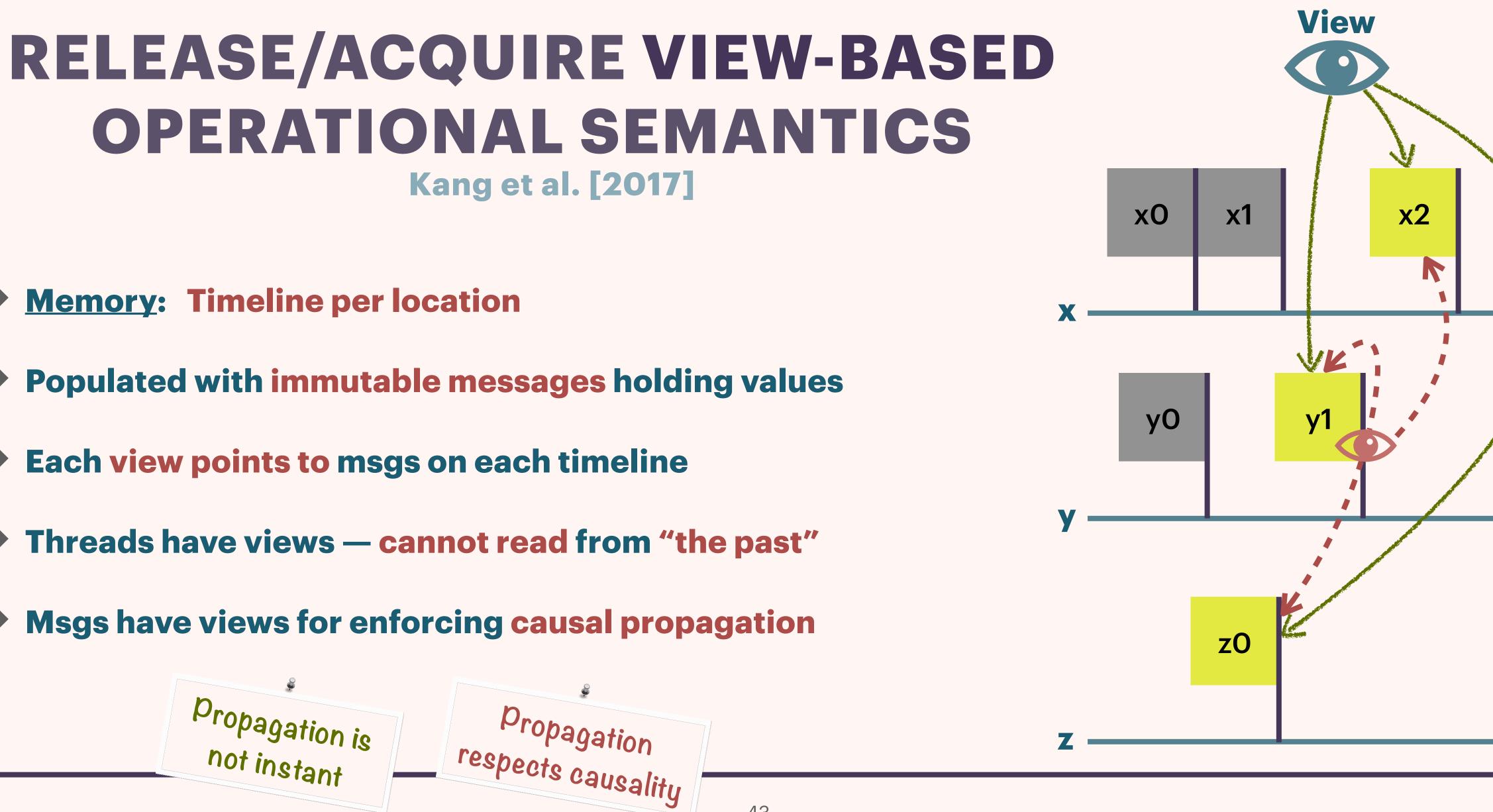
- **<u>Memory</u>: Timeline per location**
- **Populated with immutable messages holding values**
- Each view points to msgs on each timeline
- **Threads have views cannot read from "the past"**
- **Msgs have views for enforcing causal propagation**





Kang et al. [2017]

- **Memory: Timeline per location**
- Each view points to msgs on each timeline
- **Threads have views cannot read from "the past"**
- **Msgs have views for enforcing causal propagation**



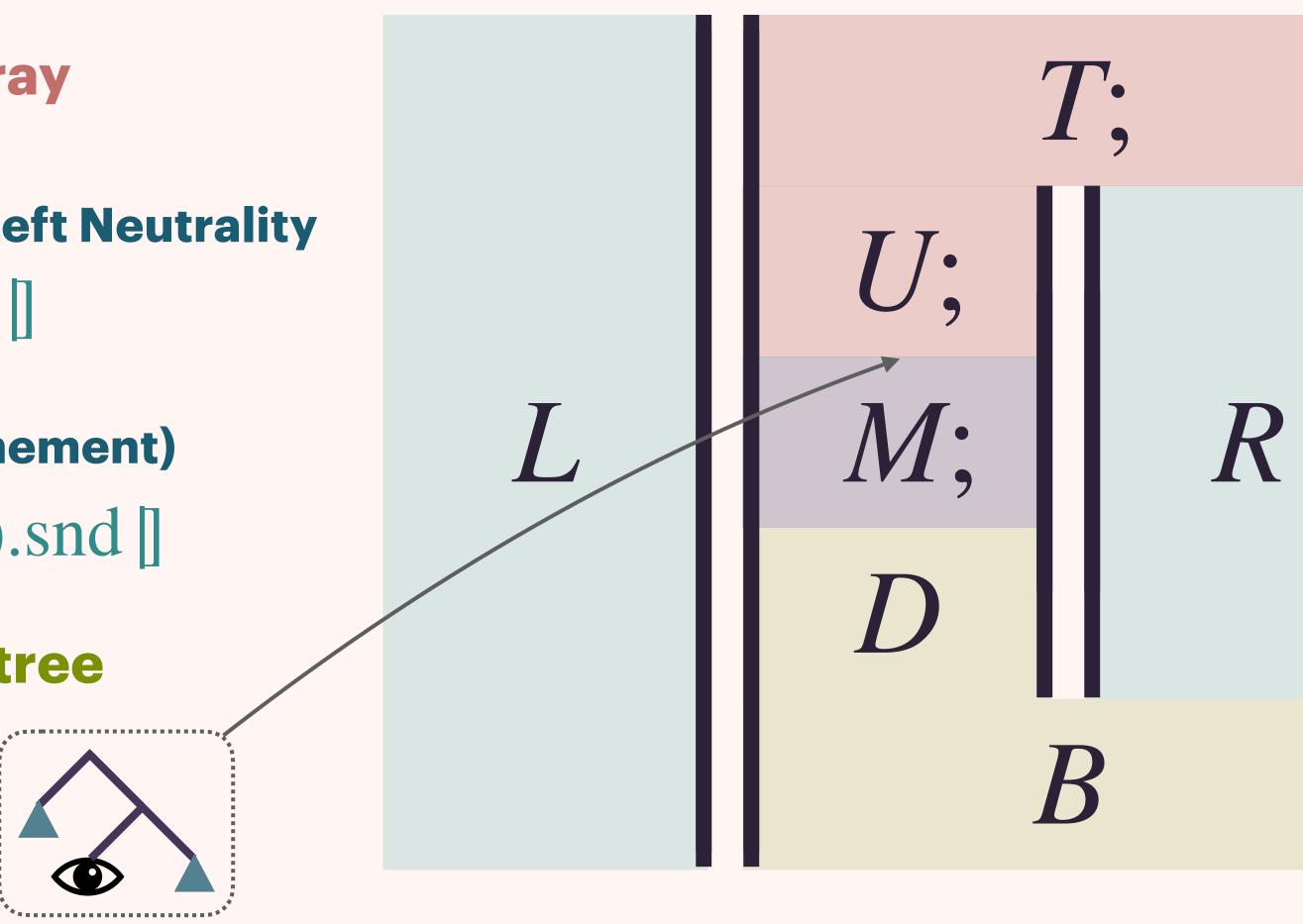
SUPPORTING FIRST-CLASS PARALLELISM In the operational semantics

Traditional op-sem: static view-array

Laws of Parallel Programming, e.g. Left Neutrality $[|M|] = [|(\langle \rangle || M).snd []$

Write-Read Deorder (Crucial RA refinement) $[|x := 1; y?[] \supseteq [|(x := 1 || y?).snd[]$

Extended op-sem: dynamic view-tree



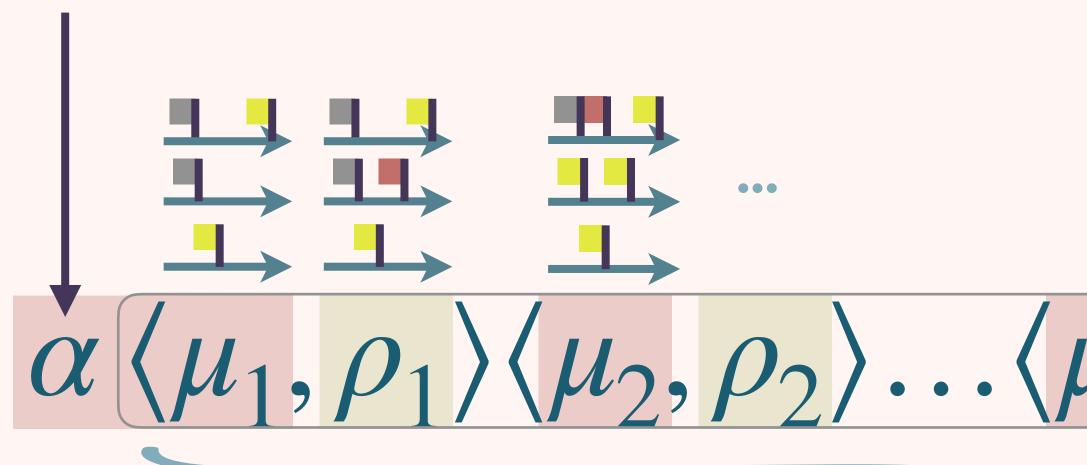
Brookes's Denotational Semantics for Shared State Concurrency

Algebraic Effects Refinement

Relaxed Memory Extension

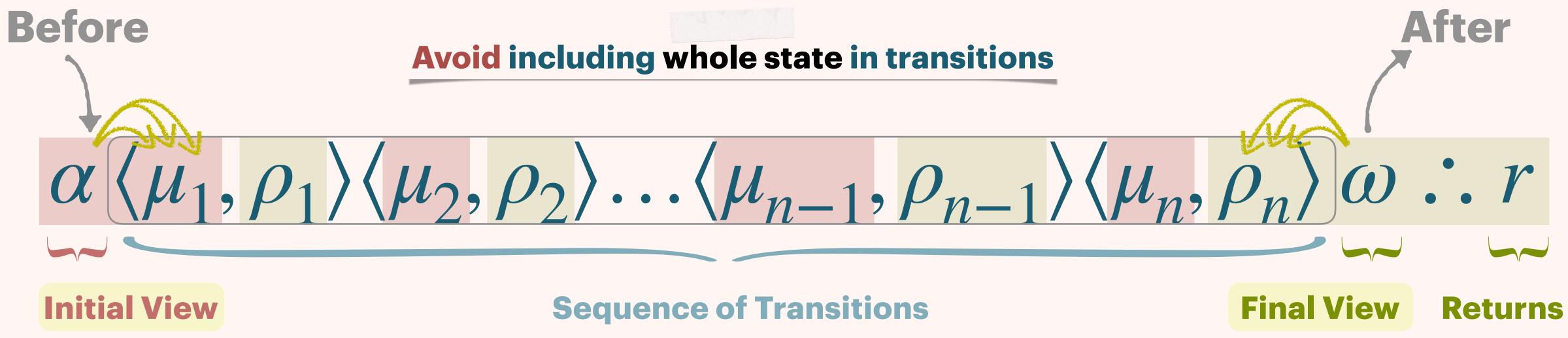
TRACE-BASED SEMANTICS IN RA **Final View** $\langle \mu_2, \rho_2 \rangle \dots \langle \mu_{n-1}, \rho_{n-1} \rangle \langle \mu_n, \rho_n \rangle \omega \therefore r$ **Sequence of Transitions** Returns

Initial View



TRACE-BASED SEMANTICS IN RA

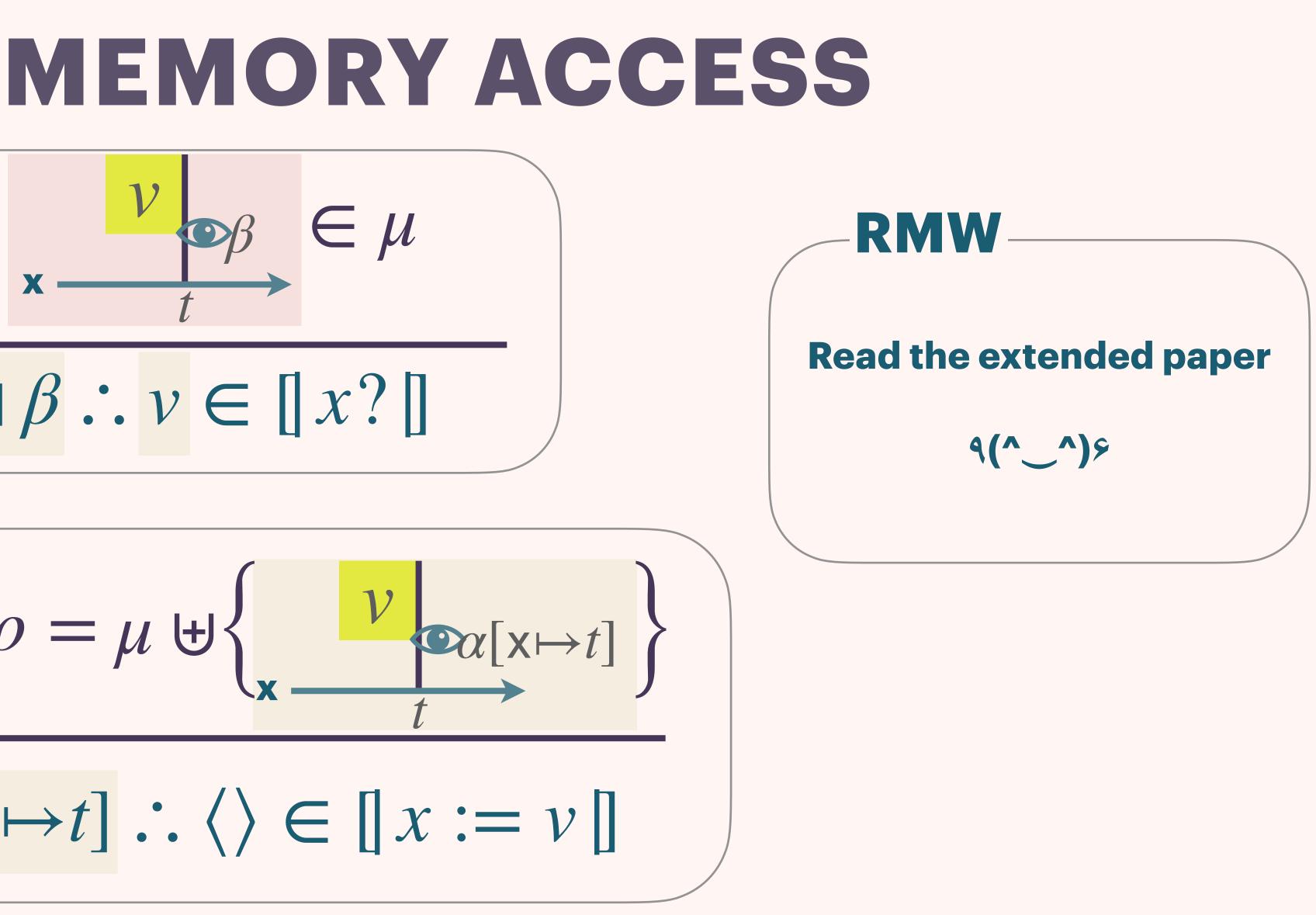
Rely on the sequential environment to reveal messages

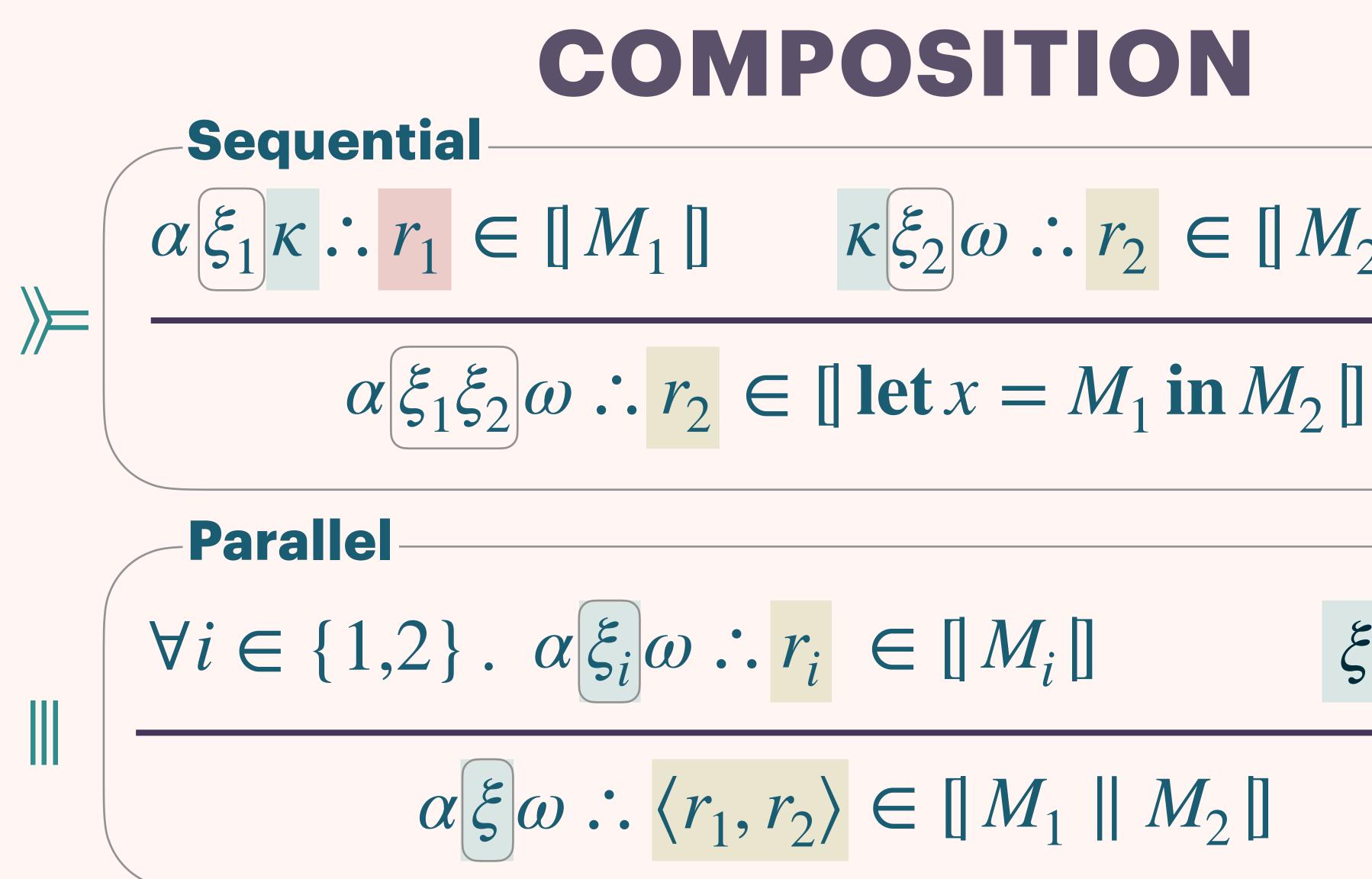


Guarantee to the sequential environment to reveal messages



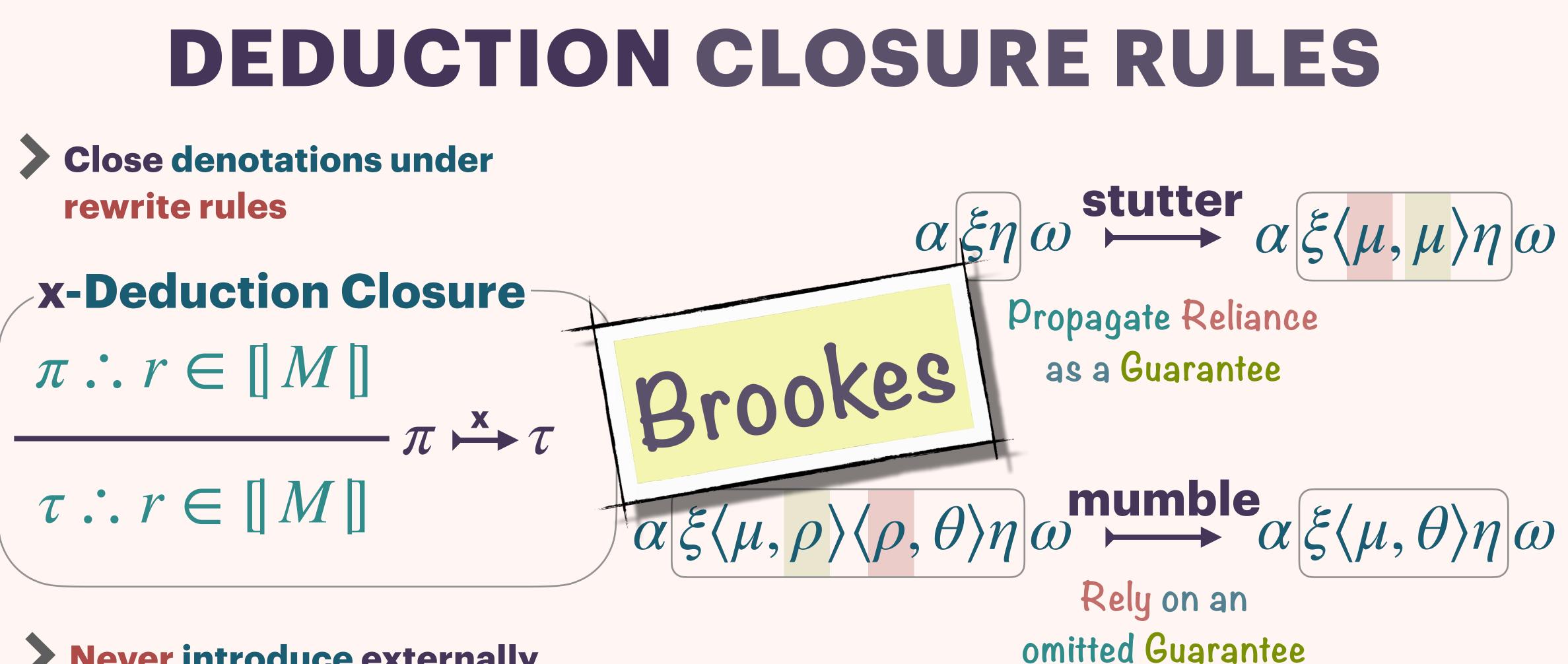
Read V $\alpha(x) \leq t$ $\in \mu$ X $\alpha\langle \mu, \mu \rangle \alpha \sqcup \beta \therefore \nu \in [x?]$ Write $\alpha(x) < t \quad \rho = \mu \, \uplus \, \{$ $\alpha\langle \langle \mu, \rho \rangle | \alpha[\mathsf{x} \mapsto t] : : \langle \rangle \in [] x := v[]$



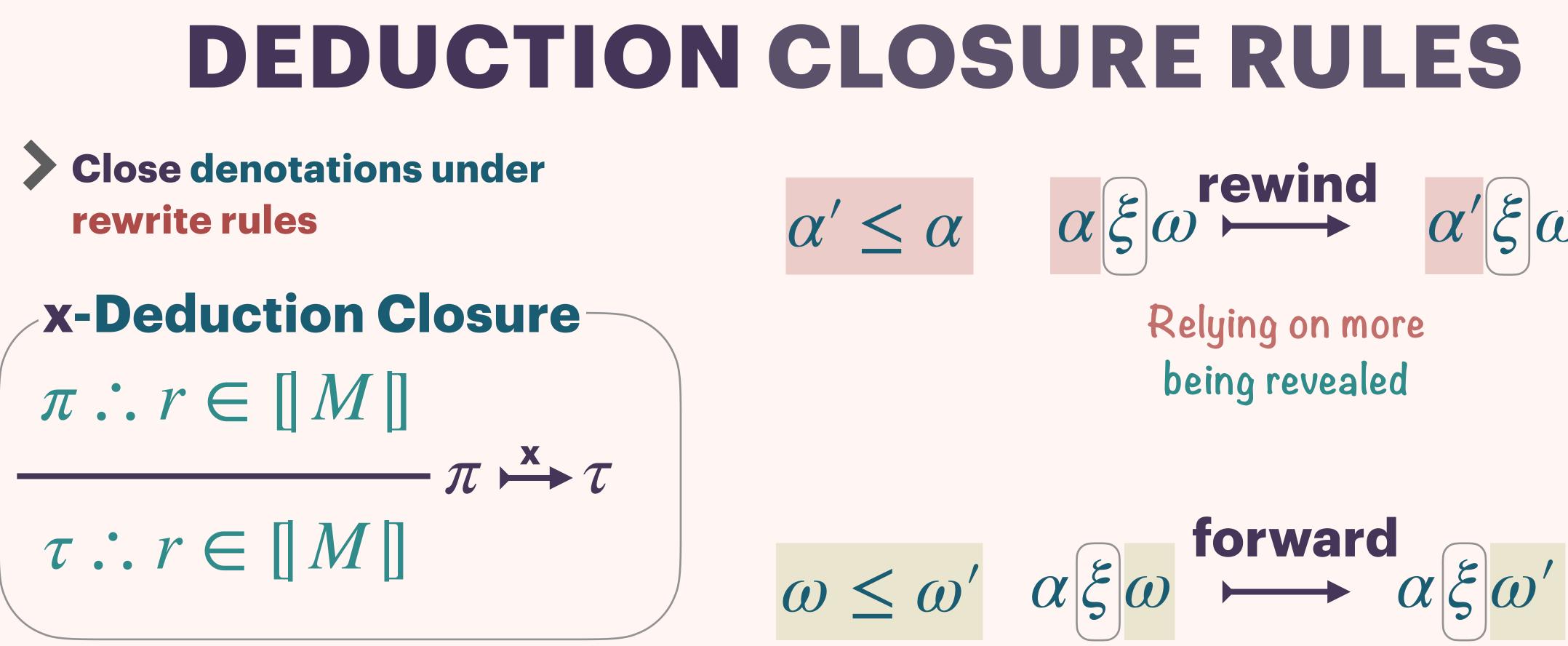


 $\kappa[\xi_2]\omega: r_2 \in [M_2][x \mapsto r_1]$

$\in [M_i]$	$\xi \in \xi_1 \ \xi_2$	
$\in [M_1 \parallel M_2]$		



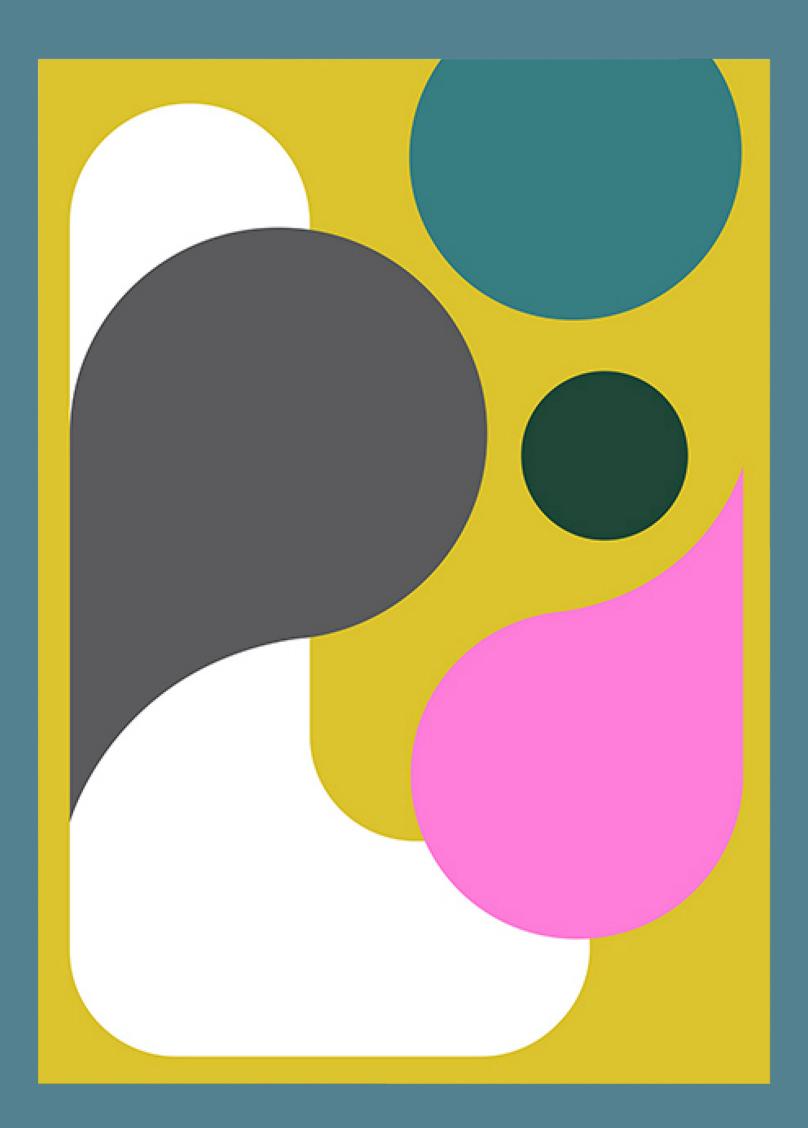
Never introduce externally observable behavior



Never introduce externally observable behavior

$\alpha \xi \omega \xrightarrow{\text{rewind}} \alpha' \xi \omega$

Guaranteeing less being revealed



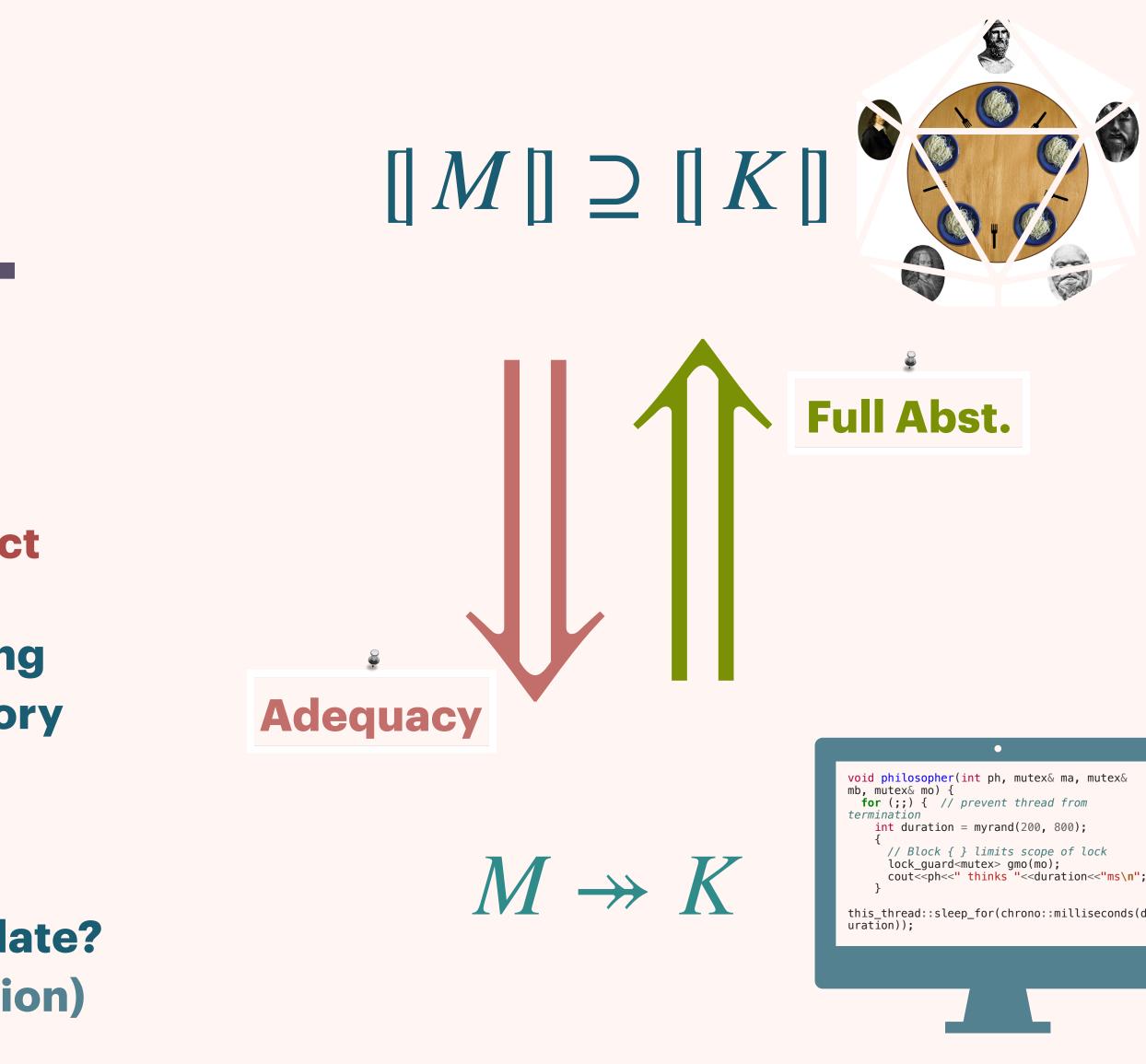
ABSTRACTION

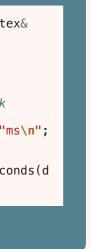
ABSTRACT DENOTATIONAL SEMANTICS

Brookes's denotations are fully-abstract

Proof relies on unrealistically holding exclusive access to the entire memory

Which transformations can we validate? (look for counter-ex to full-abstraction)





STRUCTURAL AND PARALLEL LAWS

Monad laws — structural equivalences for free, e.g. Hoisting

- $[[if K_{pure} then M; P_1 else M; P_2]] = [[M; if K_{pure} then P_1 else P_2]]$

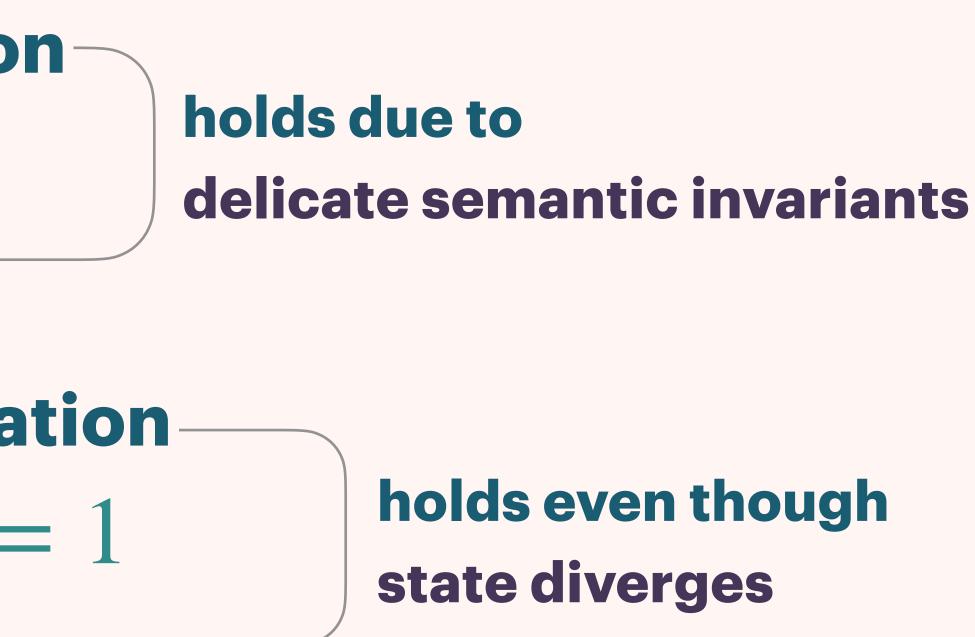
- Interleaving properties of parallel composition, e.g. generalized sequencing
 - $[(M_1; M_2) || (K_1; K_2)] \supseteq [(M_1 || K_1); (M_2 || K_2)]$

SOPHISTICATION REQUIRED

Some transformations are valid due to more complicated reasons, e.g.:

Redundant Read Elimination $y?; M \twoheadrightarrow M$

Overwritten Write Elimination $x := 0; x := 1 \rightarrow x := 1$



DELICATE SEMANTIC INVARIANTS Redundant Read Elimination $y?; \mathcal{M} \twoheadrightarrow \mathcal{M}$

we identify operational invariants and impose them as denotational requirements

$$\kappa\langle\!\langle\mu,\mu\rangle\rangle\kappa \therefore \langle\rangle \in [\langle\rangle] \implies \exists v \, \kappa\langle\!\langle\mu,\mu\rangle\rangle$$



DIVERGING STATE Overwritten Write Elimination $x := 0; x := 1 \twoheadrightarrow x := 1$

$[x := 0; x := 1] \supseteq [x := 1]$

$\alpha \langle \mu, \mu \forall \{ 1 \} \rangle \omega ... \langle \rangle$ $[x := 0; x := 1] \supseteq [x := 1]$

$\alpha \langle \mu, \mu \uplus \{ \circ \} \rangle \langle \mu \uplus \{ \circ \}, \mu \uplus \{ \circ 1 \} \rangle \omega \therefore \langle \rangle$

$\alpha \langle \mu, \mu \forall \{ 1 \} \rangle \omega :. \langle \rangle$ $[x := 0; x := 1] \supseteq [x := 1]$

DIVERGING STATE Overwritten Write Elimination $x := 0; x := 1 \Rightarrow x := 1$ $\alpha \langle \mu, \mu \rangle$

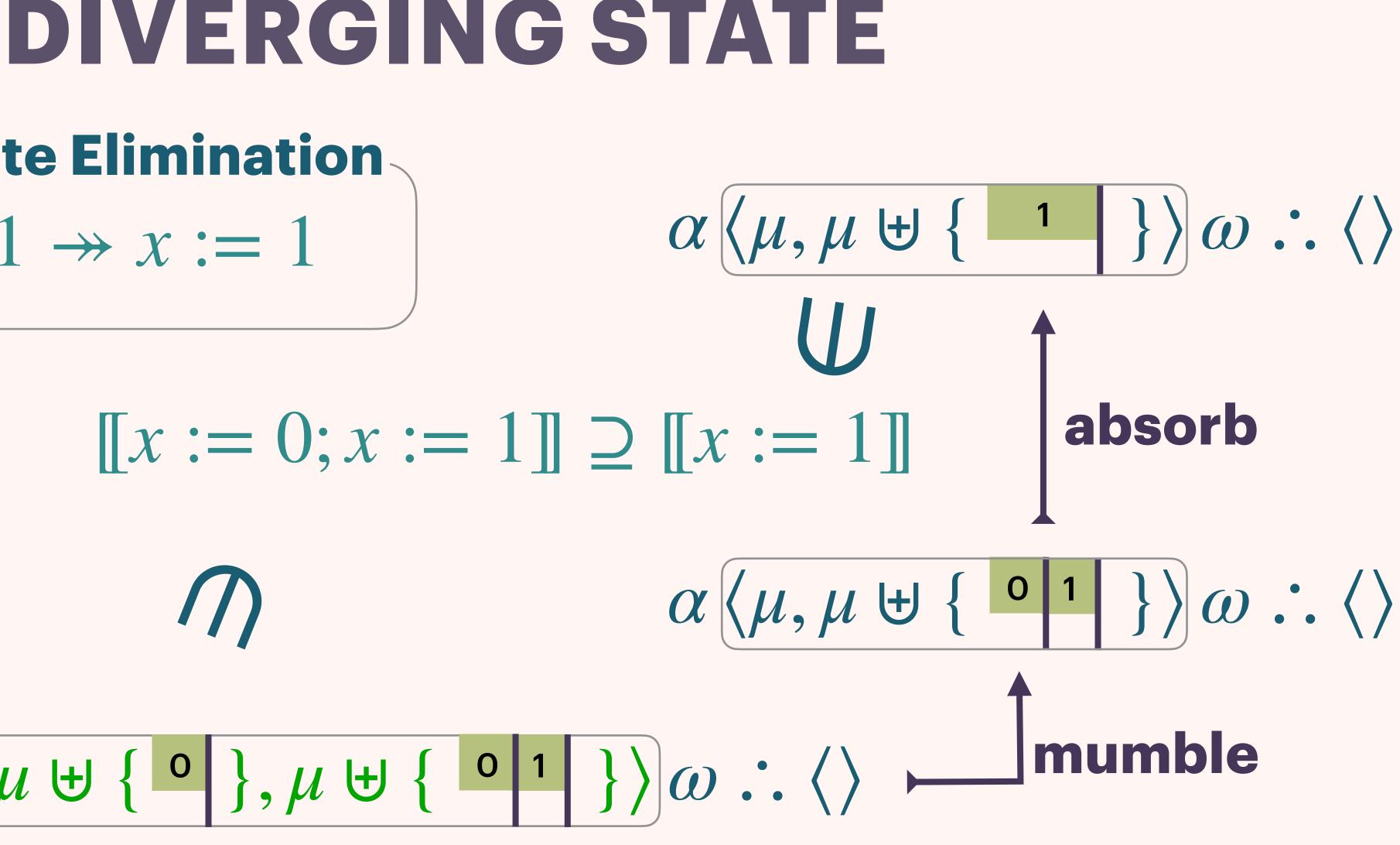
[[x := 0; x]]

 $\widehat{}$

$\alpha \langle \mu, \mu \uplus \{ \circ \} \rangle \langle \mu \uplus \{ \circ \}, \mu \uplus \}$

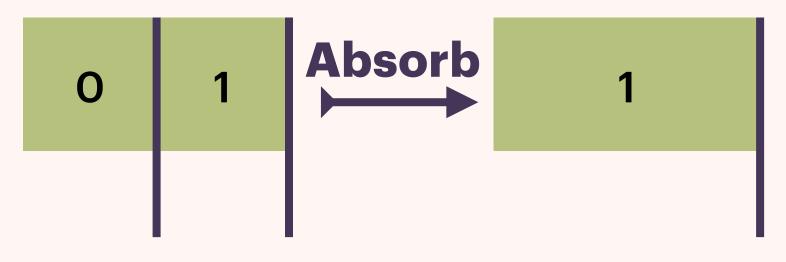
$$\alpha \langle \mu, \mu \uplus \{ \begin{array}{c} 1 \\ \end{array} \} \rangle \omega : U \\ := 1] \supseteq [[x := 1]]$$

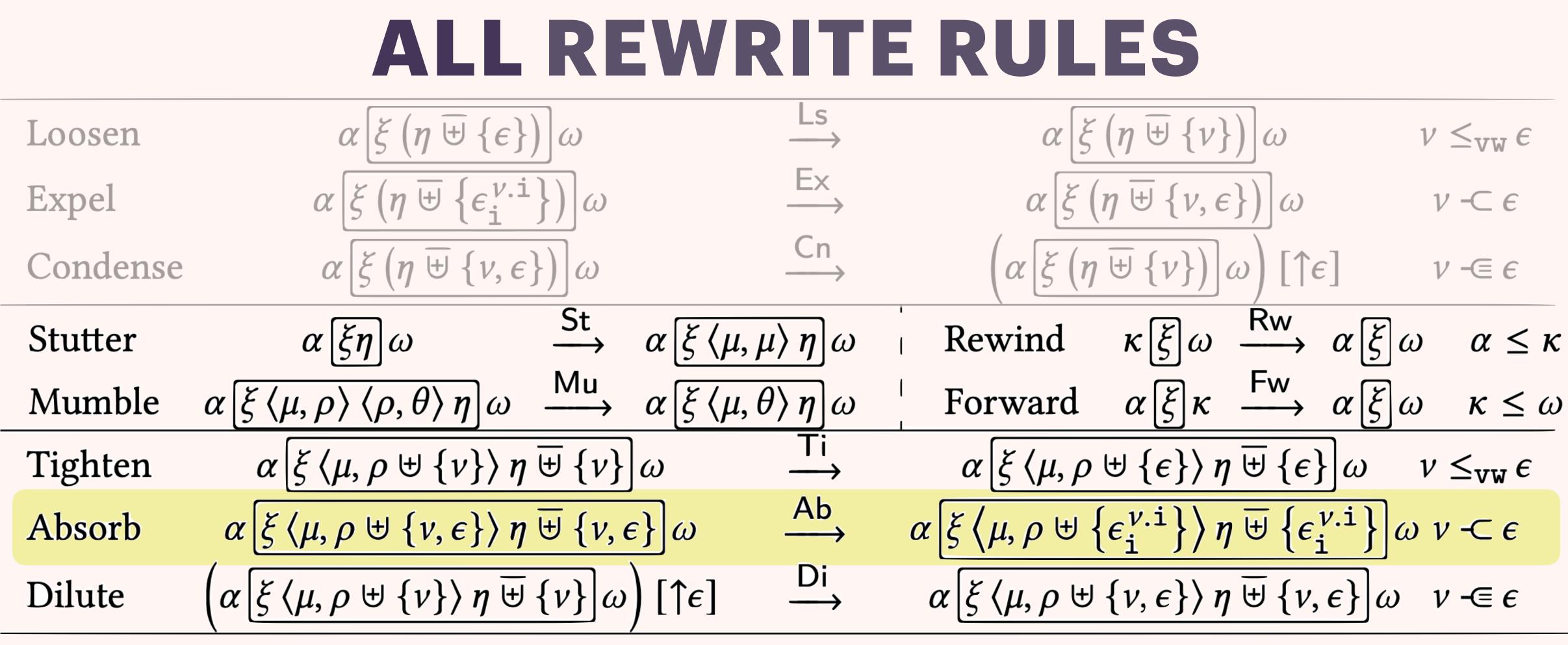
$\alpha \langle \mu, \mu \uplus \{ \circ \} \rangle \langle \mu \uplus \{ \circ \}, \mu \uplus \{ \circ 1 \} \rangle \omega \therefore \langle \rangle \vdash$



NO CORRESPONDENCE WITH INTERRUPTED EXECUTIONS

 $\alpha \langle \mu_1, \rho_1 \rangle \langle \mu_2, \rho_2 \rangle \dots \langle \mu_{n-1}, \rho_{n-1} \rangle \langle \mu_n, \rho_n \rangle \omega \therefore r$ $\cdots \langle \mu_2, - \rangle, M_1 \rightarrow * \langle \rho_2, - \rangle, M_2 \cdots$





 ${\cal U}$ ϵ

Absorb
$$\epsilon_{i}^{\nu.i}$$

NEW ADEQUACY PROOF IDEA

Traces are not operational — adequacy proof is significantly more challenging:

- 1. We first define a denotational semantics [M] but without the abstract rules
- **2.** We show it is adequate easier: traces correspond to interrupted executions
- 4. We show that the abstract deduction rules preserve observable results

(with an admissible view-advancing rule)

3. We show it is enough to apply the abstract closure $(-)^{\mathfrak{a}}$ on top $[M] = [M]^{\mathfrak{a}}$

This is the main technical challenge — complicated commutativity property

(rather than interrupted executions)

Laws of Parall	el Programming
Symmetry	M
Generalized Se	equencing
$(\mathbf{let} x = M$	$I_1 \operatorname{in} M_2) \parallel (\operatorname{let} y = N_1 \operatorname{in} y)$
Eliminations	
Irrelevant Rea	d <i>l</i> ?
Write-Write	$\ell := v; \ell :=$
Write-Read	$\ell := v$
Write-FAA	$\ell := v;$ FAA (ℓ
Read-Write	$let x = \ell? in \ell := (x + v)$
Read-Read	$\langle \ell? \rangle$
Read-FAA	$\langle \ell ?, { m FAA}\left(\ell ight)$
FAA-Read	$\left< {{ m FAA}\left({\ell ,v} ight)} ight.$
FAA-FAA	$\langle \operatorname{FAA}\left(\ell,v ight),\operatorname{FAA}\left(\ell, ight)$
Others	
Irrelevant Rea	d Introduction
Read to FAA	
Write-Read De	eorder $\langle (\ell := v) \rangle$
Write-Read Re	eorder $\langle (\ell := v) \rangle$

$$\| N \rightarrow \operatorname{match} N \| M \operatorname{with} \langle y, x \rangle. \langle x, y \rangle$$

$$Similarly for off Laws of Par. P$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, y \rangle. M_{2} \| N_{2}$$

$$Similarly for off R M Ws$$

$$N_{2} \rightarrow \operatorname{match} M_{1} \| N_{1} \operatorname{with} \langle x, x \rangle. N_{2} \| N_{2} \rightarrow \operatorname{match} M_{2} + \operatorname{match} N_{2} + \operatorname{match} N_{2}$$

SUMMARY

Spokes's Denotational Semanticas - Thared State Concurrency MANUE USUL

Algebraic Effects Refinement

Relaxed Memory Extension

