
TARTU UNIVERSITY 2025Yotam Dvir

MONADIC AND ALGEBRAIC
DENOTATIONAL SEMANTICS

FOR CONCURRENT SHARED STATE

Based on joint work with Ohad Kammar, Ori Lahav, and Gordon Plotkin:

Brookes’s Denotational Semantics
for Shared State Concurrency

Algebraic Effects
Refinement

Relaxed Memory
Extension

SEQUENTIAL SETTING

SMALL-STEP SEMANTICS

4

DENOTATIONAL SEMANTICS

5

World of Code
void philosopher(int ph, mutex& ma, mutex&
mb, mutex& mo) {
 for (;;) { // prevent thread from
termination
 int duration = myrand(200, 800);
 {
 // Block { } limits scope of lock
 lock_guard<mutex> gmo(mo);
 cout<<ph<<" thinks "<<duration<<"ms\n";
 }

this_thread::sleep_for(chrono::milliseconds(d
uration));

World of Meaning

Program Fragments Denotational Domain

[| − |]prog

Sequential setting
 — state transformers:

MONAD-BASED SEMANTICS

6

Algebraic Effects
Refinement

Relaxed Memory
Extension

Brookes’s Denotational Semantics
for Shared State Concurrency

ALGEBRAIC EFFECTS

ALGEBRAIC EFFECTS

= =

=

Global State Axiom

GLOBAL STATE & NON-DETERMINISM

Global State:

Adding Non-determinism: Countable non-determinism is similar

COOPERATIVE
CONCURRENCY

SMALL-STEP SEMANTICS

11

MONAD-BASED SEMANTICS⏩
12

ALGEBRAIC EFFECTS: RESUMPTIONS

13

ALGEBRAIC EFFECTS: RESUMPTIONS

13

PREEMPTIVE
CONCURRENCY

SMALL-STEP SEMANTICS

15

MONAD-BASED SEMANTICS⏩
16

Possible intuition: “preemptive interleaving implicitly yields between steps”

Algebraically — use the yield operator even though there’s no yield construct

Problem: does the read construct yield?

ALGEBRAIC EFFECTS: RESUMPTIONS?

Abstraction issue

Not even sound

Variations fail too (no-go theorem)

17

Possible intuition: “preemptive interleaving implicitly yields between steps”

Algebraically — use the yield operator even though there’s no yield construct

Problem: does the read construct yield?

ALGEBRAIC EFFECTS: RESUMPTIONS?

Abstraction issue

Not even sound

Variations fail too (no-go theorem)

17

the process is a kind of reverse engineering
— Hyland & Power, 2007

❓❓
❓❓

18

TARGET: THE BROOKES MONAD

"
❓❓

19

Algebraic Effects
Refinement

Relaxed Memory
Extension

Brookes’s Denotational Semantics
for Shared State Concurrency

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

21

Brookes [1996]

A denotation is a set of protocols (traces)
that a pool of threads may adhere to

No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

21

Brookes [1996]

A denotation is a set of protocols (traces)
that a pool of threads may adhere to

No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

21

Brookes [1996]

A denotation is a set of protocols (traces)
that a pool of threads may adhere to

No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

21

⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

Brookes [1996]

A denotation is a set of protocols (traces)
that a pool of threads may adhere to

No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

21

⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩

SEQUENCE

Brookes [1996]

A denotation is a set of protocols (traces)
that a pool of threads may adhere to

No interference Possible interference

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

22

⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩…

INTERLEAVE

Brookes [1996]

A denotation is a set of protocols (traces)
that a pool of threads may adhere to

No interference Possible interference

RELY/GUARANTEE INTUITION

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩r
ReturnsSequence of Transitions

23

Before or || ||

Rely On μ1

To Guarantee ρ1

Rely On μ2

To Guarantee ρ2

Then Then…

|| After|||| After or ||

TRACE DEDUCTIONS CLOSURE RULES

ξη ξ⟨μ, μ⟩ηstutter

Propagate Reliance
as a Guarantee

ξ⟨μ, ρ⟩⟨ρ, θ⟩η mumble ξ⟨μ, θ⟩η
Rely on an

omitted Guarantee

Close denotations under
trace deductions

π r ∈ [|M |]
x-Deduction Closure

τ r ∈ [|M |]

Never introduce externally
observable behavior

π τx

24

THE BROOKES MONAD

25

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES MONAD EXAMPLE

26

BROOKES INTERLEAVING

27

BROOKES INTERLEAVING

27

Algebraic Effects
Refinement

Relaxed Memory
Extension

Brookes’s Denotational Semantics
for Shared State Concurrency

ALGEBRAIC BROOKES

❓❓

29

ALGEBRAIC BROOKES

29

OUR THEORY OF SHARED STATE
First example of two-sorted

algebraic effects

30

REASONING IN SHARED STATE

31

REASONING IN SHARED STATE

31

TWO-SORTED TRACE SEMANTICS

⟨μ1, ρ1⟩…⟨μn, ρn⟩ r
Value sort

32

(only) Before After or ||

Stutter forbidden Trace sort

TWO-SORTED BROOKES MONAD

33

RECOVERING BROOKES

34

RECOVERING RESUMPTIONS

35

SUMMARY

36

Algebraic Effects
Refinement

Relaxed Memory
Extension

Brookes’s Denotational Semantics
for Shared State Concurrency

RELAXING TRACE-BASED SEMANTICS

Paper Memory Model Operational Semantics

Brookes [1996] Sequential Consistency (SC)
idealized model straightforward interleaving

Jagadeesan, Petri, Riely [2012] Total-Store Order (TSO)
hardware model write buffer per thread

THIS WORK [2024] Release/Acquire (RA)
software model decentralized communication

39

WHY RELEASE/ACQUIRE?
RA is an important fragment of
C11, enables decentralized
architectures (POWER)

First adaptation of Brookes’s
traces to a relaxed-memory
software model

Intricate causal semantics,
not overwhelmingly detailed

Threads can disagree about the order of writes
(non-multi-copy-atomic)

Supports flag-based synchronization
(e.g. for signaling a data structure is ready)

Supports important transformations
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity
(e.g. atomic compare-and-swap)

40

(𝚙𝚘 ∪ 𝚛𝚏)+ |loc ∪ 𝚖𝚘 ∪ 𝚛𝚋acyclic

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

41

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

41

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;

41

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

41

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

41

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

41

INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation respects causality

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

41

x1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

42

Kang et al. [2017]

Memory: Timeline per location

Populated with immutable messages holding values

Each view points to msgs on each timeline

Threads have views — cannot read from “the past”

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

Propagation respects causality

Propagation is not instant

x1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

42

Kang et al. [2017]

Memory: Timeline per location

Populated with immutable messages holding values

Each view points to msgs on each timeline

Threads have views — cannot read from “the past”

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant

x1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

42

Kang et al. [2017]

Memory: Timeline per location

Populated with immutable messages holding values

Each view points to msgs on each timeline

Threads have views — cannot read from “the past”

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant

x1

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

43

Kang et al. [2017]

Memory: Timeline per location

Populated with immutable messages holding values

Each view points to msgs on each timeline

Threads have views — cannot read from “the past”

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

View

Propagation respects causality

Propagation is not instant

SUPPORTING FIRST-CLASS PARALLELISM
In the operational semantics

44

[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

[|M |] = [| (⟨⟩ ∥ M).snd |]
Laws of Parallel Programming, e.g. Left Neutrality

Write-Read Deorder (Crucial RA refinement)

Traditional op-sem: static view-array

Extended op-sem: dynamic view-tree

L

T;

M;
U;

D
R

B

Algebraic Effects
Refinement

Relaxed Memory
Extension

Brookes’s Denotational Semantics
for Shared State Concurrency

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

Initial View Final View

Returns

46

x
y

z

x
y

x
y

z

x
…

Sequence of Transitions

xx
y

z

x
y

TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

47

Before After

Rely on the
sequential environment to

reveal messages

Guarantee to the
sequential environment to

reveal messages

Avoid including whole state in transitions

MEMORY ACCESS

α ⟨μ, μ⟩ α ⊔ β ∴ v ∈ [|x? |]

α ⟨μ, ρ⟩ α[𝗑↦t] ∴ ⟨⟩ ∈ [|x := v |]

Read the extended paper

٩(^‿^)۶

48

x t

v βα(x) ≤ t ∈ μ

x t

v α[𝗑↦t]ρ = μ ⊎{ }

Read

Write

RMW

α(x) < t

COMPOSITION
α ξ1 κ ∴ r1 ∈ [|M1 |] κ ξ2 ω ∴ r2 ∈ [|M2 |][x ↦ r1]

α ξ1ξ2 ω ∴ r2 ∈ [| let x = M1 in M2 |]

49

Sequential

α ξi ω ∴ ri ∈ [|Mi |]∀i ∈ {1,2} . ξ ∈ ξ1 ∥ξ2

α ξ ω ∴ ⟨r1, r2⟩ ∈ [|M1 ∥ M2 |]

Parallel

⟩⟩=

|||

DEDUCTION CLOSURE RULES

α ξη ω α ξ⟨μ, μ⟩η ωstutter

Propagate Reliance
as a Guarantee

α ξ⟨μ, ρ⟩⟨ρ, θ⟩η ωmumbleα ξ⟨μ, θ⟩η ω
Rely on an

omitted Guarantee

Close denotations under
rewrite rules

π ∴ r ∈ [|M |]
x-Deduction Closure

τ ∴ r ∈ [|M |]

Never introduce externally
observable behavior

π τx

50

Brookes

DEDUCTION CLOSURE RULES

π ∴ r ∈ [|M |]
x-Deduction Closure

π τ
τ ∴ r ∈ [|M |]

x

rewind

forward

Close denotations under
rewrite rules α ξ ωα′ ≤ α α′ ξ ω

α ξ ωω ≤ ω′ α ξ ω′

Never introduce externally
observable behavior

Relying on more
being revealed

Guaranteeing less
being revealed

51

ABSTRACTION

ABSTRACT
DENOTATIONAL

SEMANTICS
Brookes’s denotations are fully-abstract

Proof relies on unrealistically holding
exclusive access to the entire memory

Instead, evidence based:

Which transformations can we validate?
(look for counter-ex to full-abstraction)

[|M |] ⊇ [|K |]

M ↠ K

⟹

⟹
Adequacy

Full Abst.

void philosopher(int ph, mutex& ma, mutex&
mb, mutex& mo) {
 for (;;) { // prevent thread from
termination
 int duration = myrand(200, 800);
 {
 // Block { } limits scope of lock
 lock_guard<mutex> gmo(mo);
 cout<<ph<<" thinks "<<duration<<"ms\n";
 }

this_thread::sleep_for(chrono::milliseconds(d
uration));

53

STRUCTURAL AND PARALLEL LAWS

54

Monad laws — structural equivalences for free, e.g. Hoisting

[| if Kpure then M; P1 else M; P2 |] = [|M; if Kpure then P1 else P2 |]

[| (M1; M2) ∥ (K1; K2) |] ⊇ [| (M1 ∥ K1); (M2 ∥ K2) |]

Interleaving — properties of parallel composition, e.g. generalized sequencing

SOPHISTICATION REQUIRED
Some transformations are valid due to more complicated reasons, e.g.:

55

y?; M ↠ M
Redundant Read Elimination

holds due to
delicate semantic invariants

holds even though
state diverges

Overwritten Write Elimination
x := 0; x := 1 ↠ x := 1

DELICATE
SEMANTIC

INVARIANTS

y?; M ↠ M
Redundant Read Elimination

56

x1x0

x

y

z

y0

z0

x2

y1

we identify operational invariants
and impose them as denotational requirements

κ ⟨μ, μ⟩ κ ∴ ⟨⟩ ∈ [|⟨⟩ |] ⟹ ∃v . κ ⟨μ, μ⟩ κ ∴ v ∈ [|y? |]

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

57

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

57

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

∈

57

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100

∈
∈

57

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

∈
∈

57

DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

absorb

∈
∈

57

NO CORRESPONDENCE
WITH INTERRUPTED

EXECUTIONS
α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

⟨μ2, − ⟩, M1 →* ⟨ρ2, − ⟩, M2⋯ ⋯ 10 1Absorb

58

ALL REWRITE RULES

ϵν ϵν.𝚒
𝚒

Absorb

59

1. We first define a denotational semantics but without the abstract rules

2. We show it is adequate — easier: traces correspond to interrupted executions
 (with an admissible view-advancing rule)

3. We show it is enough to apply the abstract closure on top

• This is the main technical challenge — complicated commutativity property

4. We show that the abstract deduction rules preserve observable results
 (rather than interrupted executions)

[|M |]

(−)𝔞 [|M |] = [|M |]𝖆

NEW ADEQUACY PROOF IDEA
Traces are not operational — adequacy proof is significantly more challenging:

60

61

Similarly for other

Laws of Par. Prog.

Similarly for other

RMWs

Standard, adequate and fully-compositional denotational semantic for RA

Sufficiently abstract: validates all RA transformations that we know of
(memory access, laws of parallel programming, structural transformations)

More nuanced, complicated traces

interpreted as Rely/Guarantee sequences

denotations closed under 10 trace deduction rules

Extended RA view-based machine with compositional (i.e. first-class) parallelism
(weak-memory models are usually studied with top-level parallelism)

62

SUMMARY

Brookes’s Denotational Semantics
for Shared State Concurrency

Algebraic Effects
Refinement

Relaxed Memory
Extension

Thank you!

