
TARTU UNIVERSITY 2025Yotam Dvir

MONADIC AND ALGEBRAIC 
DENOTATIONAL SEMANTICS 

FOR CONCURRENT SHARED STATE

Based on joint work with Ohad Kammar, Ori Lahav, and Gordon Plotkin:



Brookes’s Denotational Semantics 
for Shared State Concurrency

Algebraic Effects 
Refinement

Relaxed Memory 
Extension



SEQUENTIAL SETTING



SMALL-STEP SEMANTICS
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DENOTATIONAL SEMANTICS
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World of Code
void philosopher(int ph, mutex& ma, mutex& 
mb, mutex& mo) { 
  for (;;) {  // prevent thread from 
termination 
    int duration = myrand(200, 800); 
    { 
      // Block { } limits scope of lock 
      lock_guard<mutex> gmo(mo); 
      cout<<ph<<" thinks "<<duration<<"ms\n"; 
    } 
    
this_thread::sleep_for(chrono::milliseconds(d
uration));

World of Meaning

Program Fragments Denotational Domain

[| − |]prog

Sequential setting 
  — state transformers:



MONAD-BASED SEMANTICS
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ALGEBRAIC EFFECTS



ALGEBRAIC EFFECTS

= =

=

Global State Axiom



GLOBAL STATE & NON-DETERMINISM

Global State:

Adding Non-determinism: Countable non-determinism is similar



COOPERATIVE 
CONCURRENCY



SMALL-STEP SEMANTICS
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MONAD-BASED SEMANTICS⏩
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ALGEBRAIC EFFECTS: RESUMPTIONS
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ALGEBRAIC EFFECTS: RESUMPTIONS
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PREEMPTIVE 
CONCURRENCY



SMALL-STEP SEMANTICS
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MONAD-BASED SEMANTICS⏩
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Possible intuition: “preemptive interleaving implicitly yields between steps” 

Algebraically — use the yield operator even though there’s no yield construct 

Problem: does the read construct yield?

ALGEBRAIC EFFECTS: RESUMPTIONS?

Abstraction issue

Not even sound

Variations fail too (no-go theorem)
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the process is a kind of reverse engineering
— Hyland & Power, 2007

❓❓
❓❓
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TARGET: THE BROOKES MONAD

"
❓❓
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⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS

21

Brookes [1996]

A denotation is a set of protocols (traces) 
that a pool of threads may adhere to

No interference Possible interference
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⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩

TRACE-BASED SEMANTICS
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⟨μ1, μ′ 1⟩ ⟨μ2, μ′ 2⟩ … ⟨μn, μ′ n⟩⟨ρ1, ρ′ 1⟩ ⟨ρ2, ρ′ 2⟩ … ⟨ρn, ρ′ n⟩…

INTERLEAVE

Brookes [1996]

A denotation is a set of protocols (traces) 
that a pool of threads may adhere to

No interference Possible interference



RELY/GUARANTEE INTUITION

⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩r
ReturnsSequence of Transitions

23

Before or || ||

Rely On μ1

To Guarantee ρ1

Rely On μ2

To Guarantee ρ2

Then Then…

|| After|||| After or ||



TRACE DEDUCTIONS CLOSURE RULES

ξη ξ⟨μ, μ⟩ηstutter

Propagate Reliance 
as a Guarantee

ξ⟨μ, ρ⟩⟨ρ, θ⟩η mumble ξ⟨μ, θ⟩η
Rely on an 

omitted Guarantee

Close denotations under 
trace deductions

π r ∈ [|M |]
x-Deduction Closure

τ r ∈ [|M |]

Never introduce externally 
observable behavior

π τx
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THE BROOKES MONAD
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BROOKES MONAD EXAMPLE
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BROOKES MONAD EXAMPLE
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BROOKES INTERLEAVING
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BROOKES INTERLEAVING
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ALGEBRAIC BROOKES

❓❓
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ALGEBRAIC BROOKES
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OUR THEORY OF SHARED STATE
First example of two-sorted 

algebraic effects
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REASONING IN SHARED STATE
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REASONING IN SHARED STATE
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TWO-SORTED TRACE SEMANTICS

⟨μ1, ρ1⟩…⟨μn, ρn⟩ r
Value sort

32

(only) Before After or ||

Stutter forbidden Trace sort



TWO-SORTED BROOKES MONAD
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RECOVERING BROOKES
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RECOVERING RESUMPTIONS
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SUMMARY

36





Algebraic Effects 
Refinement

Relaxed Memory 
Extension

Brookes’s Denotational Semantics 
for Shared State Concurrency



RELAXING TRACE-BASED SEMANTICS

Paper Memory Model Operational Semantics

Brookes [1996] Sequential Consistency (SC) 
idealized model straightforward interleaving

Jagadeesan, Petri, Riely [2012] Total-Store Order (TSO) 
hardware model write buffer per thread

THIS WORK [2024] Release/Acquire (RA) 
software model decentralized communication
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WHY RELEASE/ACQUIRE?
RA is an important fragment of 
C11, enables decentralized 
architectures (POWER)

First adaptation of Brookes’s 
traces to a relaxed-memory 
software model

Intricate causal semantics, 
not overwhelmingly detailed

Threads can disagree about the order of writes 
(non-multi-copy-atomic)

Supports flag-based synchronization 
(e.g. for signaling a data structure is ready)

Supports important transformations 
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity 
(e.g. atomic compare-and-swap)

40

(𝚙𝚘 ∪ 𝚛𝚏)+ |loc ∪ 𝚖𝚘 ∪ 𝚛𝚋acyclic



INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;
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INTUITION VIA LITMUS TESTS

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation respects causality

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;

41



x1

RELEASE/ACQUIRE VIEW-BASED 
OPERATIONAL SEMANTICS

42

Kang et al. [2017]

Memory:   Timeline per location 

Populated with immutable messages holding values 

Each view points to msgs on each timeline 

Threads have views — cannot read from “the past” 

Msgs have views for enforcing causal propagation

x0

x

y

z

y0

z0

x2

y1

Propagation respects causality

Propagation is not instant
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Kang et al. [2017]
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Each view points to msgs on each timeline 
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SUPPORTING FIRST-CLASS PARALLELISM
In the operational semantics

44

[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

[|M |] = [| (⟨⟩ ∥ M).snd |]
Laws of Parallel Programming,  e.g. Left Neutrality

Write-Read Deorder (Crucial RA refinement)

Traditional op-sem: static view-array

Extended op-sem: dynamic view-tree

L

T;

M;
U;

D
R

B
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TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

Initial View Final View

Returns

46

x
y

z

x
y

x
y

z

x
…

Sequence of Transitions

xx
y

z

x
y



TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions

47

Before After

Rely on the 
sequential environment to 

reveal messages

Guarantee to the 
sequential environment to 

reveal messages

Avoid including whole state in transitions



MEMORY ACCESS

α ⟨μ, μ⟩ α ⊔ β ∴ v ∈ [|x? |]

α ⟨μ, ρ⟩ α[𝗑↦t] ∴ ⟨⟩ ∈ [|x := v |]

Read the extended paper 

٩(^‿^)۶
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x t

v βα(x) ≤ t ∈ μ

x t

v α[𝗑↦t]ρ = μ ⊎{ }

Read

Write

RMW

α(x) < t



COMPOSITION
α ξ1 κ ∴ r1 ∈ [|M1 |] κ ξ2 ω ∴ r2 ∈ [|M2 |][x ↦ r1]

α ξ1ξ2 ω ∴ r2 ∈ [| let x = M1 in M2 |]

49

Sequential

α ξi ω ∴ ri ∈ [|Mi |]∀i ∈ {1,2} . ξ ∈ ξ1 ∥ξ2

α ξ ω ∴ ⟨r1, r2⟩ ∈ [|M1 ∥ M2 |]

Parallel

⟩⟩=

|||



DEDUCTION CLOSURE RULES

α ξη ω α ξ⟨μ, μ⟩η ωstutter

Propagate Reliance 
as a Guarantee

α ξ⟨μ, ρ⟩⟨ρ, θ⟩η ωmumbleα ξ⟨μ, θ⟩η ω
Rely on an 

omitted Guarantee

Close denotations under 
rewrite rules

π ∴ r ∈ [|M |]
x-Deduction Closure

τ ∴ r ∈ [|M |]

Never introduce externally 
observable behavior

π τx

50

Brookes



DEDUCTION CLOSURE RULES

π ∴ r ∈ [|M |]
x-Deduction Closure

π τ
τ ∴ r ∈ [|M |]

x

rewind

forward

Close denotations under 
rewrite rules α ξ ωα′ ≤ α α′ ξ ω

α ξ ωω ≤ ω′ α ξ ω′ 

Never introduce externally 
observable behavior

Relying on more 
being revealed

Guaranteeing less 
being revealed
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ABSTRACTION



ABSTRACT 
DENOTATIONAL 

SEMANTICS
Brookes’s denotations are fully-abstract 

Proof relies on unrealistically holding 
exclusive access to the entire memory 

Instead, evidence based: 

Which transformations can we validate? 
(look for counter-ex to full-abstraction)

[|M |] ⊇ [|K |]

M ↠ K

⟹

⟹
Adequacy

Full Abst.

void philosopher(int ph, mutex& ma, mutex& 
mb, mutex& mo) { 
  for (;;) {  // prevent thread from 
termination 
    int duration = myrand(200, 800); 
    { 
      // Block { } limits scope of lock 
      lock_guard<mutex> gmo(mo); 
      cout<<ph<<" thinks "<<duration<<"ms\n"; 
    } 
    
this_thread::sleep_for(chrono::milliseconds(d
uration));
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STRUCTURAL AND PARALLEL LAWS

54

Monad laws — structural equivalences for free, e.g. Hoisting

[| if Kpure then M; P1 else M; P2 |] = [|M; if Kpure then P1 else P2 |]

[| (M1; M2) ∥ (K1; K2) |] ⊇ [| (M1 ∥ K1); (M2 ∥ K2) |]

Interleaving — properties of parallel composition, e.g. generalized sequencing



SOPHISTICATION REQUIRED
Some transformations are valid due to more complicated reasons, e.g.:

55

y?; M ↠ M
Redundant Read Elimination

holds due to 
delicate semantic invariants

holds even though 
state diverges

Overwritten Write Elimination
x := 0; x := 1 ↠ x := 1



DELICATE 
SEMANTIC 

INVARIANTS

y?; M ↠ M
Redundant Read Elimination

56

x1x0

x

y

z

y0

z0

x2

y1

we identify operational invariants 
and impose them as denotational requirements   

κ ⟨μ, μ⟩ κ ∴ ⟨⟩ ∈ [|⟨⟩ |] ⟹ ∃v . κ ⟨μ, μ⟩ κ ∴ v ∈ [|y? |]



DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1
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DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]
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DIVERGING STATE
Overwritten Write Elimination
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1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

∈

57



DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100

∈
∈
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DIVERGING STATE
Overwritten Write Elimination
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DIVERGING STATE
Overwritten Write Elimination

x := 0; x := 1 ↠ x := 1

[[x := 0; x := 1]] ⊇ [[x := 1]]

1α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩

α ⟨μ, μ ⊎ { }⟩ ω ∴ ⟨⟩10

α ⟨μ, μ ⊎ { }⟩⟨μ ⊎ { }, μ ⊎ { }⟩ ω ∴ ⟨⟩0 100 mumble

absorb

∈
∈
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NO CORRESPONDENCE 
WITH INTERRUPTED 

EXECUTIONS
α ⟨μ1, ρ1⟩⟨μ2, ρ2⟩…⟨μn−1, ρn−1⟩⟨μn, ρn⟩ ω ∴ r

⟨μ2, − ⟩, M1 →* ⟨ρ2, − ⟩, M2⋯ ⋯ 10 1Absorb
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ALL REWRITE RULES

ϵν ϵν.𝚒
𝚒

Absorb
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1. We first define a denotational semantics  but without the abstract rules 

2. We show it is adequate — easier: traces correspond to interrupted executions 
                                                                                                  (with an admissible view-advancing rule) 

3. We show it is enough to apply the abstract closure  on top         

• This is the main technical challenge — complicated commutativity property  

4. We show that the abstract deduction rules preserve observable results 
                                                                                                  (rather than interrupted executions) 

[|M |]

( − )𝔞 [|M |] = [|M |]𝖆

NEW ADEQUACY PROOF IDEA
Traces are not operational — adequacy proof is significantly more challenging:

60
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Similarly for other 

Laws of Par. Prog.

Similarly for other 

RMWs



Standard, adequate and fully-compositional denotational semantic for RA 

Sufficiently abstract: validates all RA transformations that we know of                                                        
(memory access, laws of parallel programming, structural transformations) 

More nuanced, complicated traces  

interpreted as Rely/Guarantee sequences  

denotations closed under 10 trace deduction rules 

Extended RA view-based machine with compositional (i.e. first-class) parallelism                                                        
(weak-memory models are usually studied with top-level parallelism)
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SUMMARY
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