
A Brookes-Style Denotational Semantics
for Release/Acquire Concurrency

YOTAM DVIR, Tel Aviv University, Israel
OHAD KAMMAR, University of Edinburgh, Scotland
ORI LAHAV, Tel Aviv University, Israel

We present a compositional denotational semantics for a functional language with first-class parallel composi-
tion and shared-memory operations whose operational semantics follows the Release/Acquire weak memory
model (RA). The semantics is formulated in Moggi’s monadic approach, and is based on Brookes-style traces.
To do so we adapt Brookes’s traces to Kang et al.’s view-based machine for RA, and supplement Brookes’s
mumble and stutter closure operations with additional operations, specific to RA. The latter provides a more
nuanced understanding of traces that uncouples them from operational interrupted executions. We show
that our denotational semantics is adequate and use it to validate various program transformations of in-
terest. This is the first work to put weak memory models on the same footing as many other programming
effects in Moggi’s standard monadic approach.

CCS Concepts: •Theory of computation→Denotational semantics; Parallel computingmodels; Func-
tional constructs; Program analysis.

Additional Key Words and Phrases: Weak memory models, Release/Acquire, Shared state, Shared memory,
Concurrency, Denotational semantics, Monads, Program refinement, Program equivalence, Compiler opti-
mizations

ACM Reference Format:
YotamDvir, Ohad Kammar, and Ori Lahav. 2024. A Brookes-Style Denotational Semantics for Release/Acquire
Concurrency. 1, 1 (October 2024), 81 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Denotational semantics defines the meaning of programs compositionally, where the meaning of a
program term is a function of the meanings assigned to its immediate syntactic constituents. This
key feature makes denotational semantics instrumental in understanding the meaning a piece of
code independently of the context under which the code will run.This style of semantics contrasts
with standard operational semantics, which only executes closed/whole programs. A basic require-
ment of such a denotation function J−K is for it to be adequate w.r.t. a given operational semantics:
plugging program terms 𝑀 and 𝑁 with equal denotations—i.e. J𝑀K = J𝑁 K—into some program
context Ξ [−] that closes over their variables, results in observationally indistinguishable closed
programs in the given operational semantics. Moreover, assuming that denotations have a defined
order (≤), a “directed” version of adequacy ensures that J𝑀K ≤ J𝑁 K implies that all behaviors
exhibited by Ξ [𝑀] under the operational semantics are also exhibited by Ξ [𝑁].

Authors’ Contact Information: Yotam Dvir, yotamdvir@mail.tau.ac.il, Tel Aviv University, Tel Aviv, Israel; Ohad Kammar,
ohad.kammar@ed.ac.uk, University of Edinburgh, Edinburgh, Scotland; Ori Lahav, orilahav@tau.ac.il, Tel Aviv University,
Tel Aviv, Israel.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/10-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-6507-3791
HTTPS://ORCID.ORG/0000-0002-2071-0929
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-6507-3791
https://orcid.org/0000-0002-2071-0929
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yotam Dvir, Ohad Kammar, and Ori Lahav

For shared-memory concurrent programming, Brookes’s seminal work [13] defined a denota-
tional semantics, where the denotation J𝑀K is a set of totally ordered traces of 𝑀 closed under
certain operations, called stutter and mumble. Traces consist of sequences of memory snapshots
that𝑀 guarantees to provide while relying on its environment to make other memory snapshots.
Brookes [12] used the insights behind this semantics to develop a model for separation logic, and
Turon and Wand [50] used them to design a separation logic for refinement. Additionally, Xu
et al. [52] used traces as a foundation for the Rely/Guarantee approach for verification of concur-
rent programs, and Liang et al., Liang et al. [36, 37] used a trace-based program logic for refinement.

A memory model decides what outcomes an execution of a program can have. Brookes [13]
established the adequacy of the trace-based denotational semantics w.r.t. the operational semantics
of the strongest model, known as sequential consistency (SC), where every memory access happens
instantaneously and immediately affects all concurrent threads. However, SC is too strong tomodel
real-world shared memory, whether it be of modern hardware, such as x86-TSO [42, 47] and ARM,
or of programming languages such as C/C++ and Java [4, 39]. These runtimes followweak memory
models that allow performant implementations, but admit more behaviors than SC.

Do weak memory models admit adequate Brookes-style denotational semantics? This question
has been answered affirmatively once, by Jagadeesan et al. [25], who closely followed Brookes
to define denotational semantics for x86-TSO. Other weak memory models, in particular, models
of programming languages, and non-multi-copy-atomic models, where writes can be observed by
different threads in different orders, were so far out of reach of Brookes’s totally ordered traces,
only captured by much more sophisticated models based on partial orders [15, 19, 24, 26, 29, 43].

In this paper we target the Release/Acquire memory model (RA, for short). This model, obtained
by restricting the C/C++11memorymodel to Release/Acquire atomics, is a well-studied fundamen-
tal memory model weaker than x86-TSO, which, roughly speaking, ensures “causal consistency”
together with “per-location-SC” and “RMW (read-modify-write) atomicity” [30, 31]. These assur-
ances make RA sufficiently strong for implementing common synchronization idioms. RA allows
more performant implementations than SC, since, in particular, it allows the reordering of a write
followed by a read from a different location, which is commonly performed by hardware, and it is
non-multi-copy-atomic, thus allowing less centralized architectures like POWER [48].

Our first contribution is a Brookes-style denotational semantics for RA. As Brookes’s traces
are totally ordered, this result may seem counterintuitive. The standard semantics for RA is a
declarative (a.k.a. axiomatic) memory model, in the form of acyclicity consistency constraints over
partially ordered candidate execution graphs. Since these graphs are not totally ordered, one might
expect that Brookes’s traces are insufficient. Nevertheless, our first key observation is that an
operational presentation of RA as an interleaving semantics of a weak memory system lends itself
to Brookes-style semantics. For that matter, we develop a notion of traces compatible with Kang
et al.’s “view-based” machine [28], an operational semantics that is equivalent to RA’s declarative
formulation. Our main technical result is the (directed) adequacy of the proposed Brookes-style
semantics w.r.t. that operational semantics of RA.

A main challenge when developing a denotational semantics lies in making it sufficiently ab-
stract. While full abstraction is often out of reach, as a yardstick, we want our semantics to be
able to justify various compiler transformations/optimizations that are known to be sound under
RA [51]. Indeed, an immediate practical application of a denotational semantics is the ability to
provide local formal justifications of program transformations, such as those performed by opti-
mizing compilers. In this setting, to show that an optimization𝑁 � 𝑀 is valid amounts to showing
that replacing 𝑁 by 𝑀 anywhere in a larger program does not introduce new behaviors, which
follows from J𝑀K ≤ J𝑁 K given a directionally adequate denotation function J−K.
, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 3

To support various compiler transformations, we close our denotations under certain opera-
tions, including analogs to Brookes’s stutter and mumble, but also several RA-specific operations,
that allow us to relate programs which would naively correspond to rather different sets of traces.
Given these closure operations, our semantics validates standard program transformations, includ-
ing structural transformations, algebraic laws of parallel programming, and all known thread-local
RA-valid compiler optimizations. Thus, the denotational semantics is instrumental in formally es-
tablishing validity of transformations under RA, which is a non-trivial task [19, 51].

Our second contribution is to connect the core semantics of parallel programming languages
exhibiting weak behaviors to the more standard semantic account for programming languages
with effects. Brookes presented his semantics for a simple imperativeWHILE language, but Benton
et al., Dvir et al. [6, 20] later recast it atop Moggi’s monad-based approach [40] which uses a
functional, higher-order core language. In this approach the core language is modularly extended
with effect constructs to denote program effects. In particular, we define parallel composition as a
first-class operator.This is in contrast to most of the research of weak memory models that employ
imperative languages and assume a single top-level parallel composition.

A denotational semantics given in this monadic style comes ready-made with a rich semantic
toolkit for program denotation [7], transformations [5, 8–10, 23], reasoning [2, 38], etc. We chal-
lenge and reuse this diverse toolkit throughout the development. We follow a standard approach
and develop specialized logical relations [45, 49] to establish the compositionality property of our
proposed semantics; its soundness, which allows one to use the denotational semantics to show
that certain outcomes are impossible under RA; and adequacy. This development puts weak mem-
ory models, which often require bespoke and highly specialized presentations, on a similar footing
to many other programming effects.

Outline. In §2 we overview the Release/Acquire operational semantics and the trace-based de-
notational semantics that we use and extend in this paper. In §3 we summarize our contributions.

The rest of the paper goes into further detail. In §4 we present the programming language syntax
and typing system, which in §5 we equip with an extended presentation of the RA operational
semantics, along with observations that will support our definition of traces. In §6 we define our
trace-based denotational semantics for RA, and in §7 we work up to and establish our main results.
Finally, we conclude and discuss related work in §8.

Comparing to the conference version. The conference version of this paper [21] is covered here by
§§1-3 and 8, roughly speaking. The rest of this paper extends the conference version. Here, defini-
tions and theorems are formally specified and proved. This account also provides a more detailed
discussion and more examples. By expanding in breadth and depth, we state (and prove) some
results in a stronger form here, such as the denotational semantics supporting transformations
involving arbitrary RMWs; and a tighter characterization of the commutativity of rewrite rules.

2 Preliminaries
We overview previous work and our slight variations on it to facilitate the abridged discussion of
our contribution (§3). Particularly, we partially present the language and its operational semantics
under the Sequential Consistency (SC) memory model (§2.1), Brookes’s denotational semantics for
SC (§2.2), and Kang et al.’s operational presentation of the RA memory model (§2.3). See §4 for the
full language, and §5 for a detailed account of the RA operational semantics.

2.1 Language and Operational Semantics
The programming language we use is an extension of a functional language with shared-state
constructs. Program terms𝑀 and 𝑁 can be composed sequentially explicitly as𝑀 ;𝑁 or implicitly

, Vol. 1, No. 1, Article . Publication date: October 2024.

4 Yotam Dvir, Ohad Kammar, and Ori Lahav

by left-to-right evaluation in the pairing construct 〈𝑀, 𝑁 〉. They can be composed in parallel as
𝑀 ∥ 𝑁 . We assume preemptive scheduling, thus imposing no restrictions on the interleaving
execution steps between parallel threads. To introduce the memory-access constructs, we present
the well-known message passing litmus test, adapted to the functional setting:

(x := 1 ; y := 1) ∥ 〈y?, x?〉 (MP)
Here, x and y refer to distinct shared memory locations. Assignment ℓ := 𝑣 stores the value 𝑣 at
location ℓ in memory, and dereference ℓ? loads a value from ℓ . The language also includes atomic
read-modify-write (RMW) constructs. For example, assuming integer storable values, FAA (ℓ, 𝑣)
(Fetch-And-Add) atomically adds 𝑣 to the value stored in ℓ . In contrast, interleaving is permitted
between the dereferencing, adding, and storing in ℓ := (ℓ? + 𝑣). The underlying memory model
dictates the behavior of the memory-access constructs more specifically.

In the functional setting, execution results in a returned value: ℓ := 𝑣 returns the unit value 〈〉,
i.e. the empty tuple; ℓ?, and the RMW constructs such as FAA (ℓ, 𝑣), return the loaded value;𝑀 ;𝑁
returns what 𝑁 returns; and 〈𝑀, 𝑁 〉, as well as 𝑀 ∥ 𝑁 , return the pair consisting of the return
value of 𝑀 and the return value of 𝑁 . We assume left-to-right execution of pairs, so in the (MP)
example 〈y?, x?〉 steps to 〈𝑣, x?〉 for a value 𝑣 that can be loaded from y, and 〈𝑣, x?〉 steps to 〈𝑣,𝑤〉
for a value 𝑤 that can be loaded from x. In between, the left side of the parallel composition (∥)
can take steps.

We can use intermediate results in subsequent computations via let binding: let𝑎 =𝑀 in𝑁 binds
the result of𝑀 to 𝑎 in 𝑁 . Thus, we execute𝑀 first, and substitute the resulting value𝑉 for 𝑎 in 𝑁
before executing 𝑁 [𝑎 ↦→𝑉]. Similarly, we deconstruct pairs by matching: match𝑀 with 〈𝑎,𝑏〉. 𝑁
binds the components of the pair that𝑀 returns to 𝑎 and 𝑏 respectively in 𝑁 . The first and second
projections fst and snd, as well as the operation swap that swaps the pair constituents, are defined
using match standardly.

Traditionally, weak memory models are contrasted by finding litmus test programs, such as
(MP), with which one model supports a specific observable behavior that the other does not. Since
different models feature quite different notions of internal state, and observing the memory di-
rectly is not considered feasible anyway, internal interactions are ignored. We do not consider
infinite executions in this paper, so we conflate observable behaviors with outcomes: values that
the program may evaluate to from given initial memory values. Litmus tests are traditionally de-
signed with all initial memory values set to 0 in mind.

Remark (Imperative vs. Functional). Presentations of litmus tests for weak-memory models are
usually presented imperatively using local registers a, b. This is subsumed in the functional setting by
systematically replacing registers with let-bindings.

For example, we can apply this process to the imperative message passing litmus test:
Style Imperative Functional

Program x := 1
y := 1

a := y
b := x

x := 1 ;
y := 1

let a = y? in
let b = x? in 〈a, b〉

Outcome An execution that ends with An evaluations that returns
of interest a = 1 ∧ b = 0 〈〈〉 , 〈1, 0〉〉

Up to standard, memory-model agnostic equivalences, this is our functional presentation (MP).

In the strongest memory model of Sequential Consistency (SC), every value stored is imme-
diately made available to every thread, and every dereference must load the latest stored value.
Thus the underlying memory model uses maps from locations to values for the memory state that
evolves during program execution. Given an initial state, the behavior of a program in SC depends

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 5

only on the choice of interleaving of steps. In (MP) the order of the two stores and the two loads
ensures that 〈〈〉 , 〈0, 0〉〉, 〈〈〉 , 〈0, 1〉〉, and 〈〈〉 , 〈1, 1〉〉 are observable, but 〈〈〉 , 〈1, 0〉〉 is not.

Observable behavior as defined for whole programs is too crude to study program terms that
can interact with the program context within which they run. Indeed, compare 𝑀1 defined as
x :=1 ;y := 1 ;y? versus𝑀2 defined as x :=1 ;y := x? ;y?. Under SC, the difference between them as
whole programs is unobservable: starting from any initial state both return 1. Now consider them
within the program context − ∥ x := 2. That is, compare𝑀1 ∥ x := 2 versus𝑀2 ∥ x := 2. In the first,
𝑀1 still always returns 1; but in the second,𝑀2 can also return 2 by interleaving the store of 2 in x
immediately after the store of 1 in x. Thus, if J𝑀K, i.e. 𝑀’s denotation, were to simply map initial
states to possible results according to executions of 𝑀 , we could not define J𝑀 ∥ 𝑁 K in terms ofJ𝑀K and J𝑁 K alone, because we would have J𝑀1K = J𝑀2K but also J𝑀1 ∥ x := 2K ≠ J𝑀2 ∥ x := 2K.
We conclude that J𝑀K must contain more information on 𝑀 than an “input-output” relation; it
must account for interference by the environment.

2.2 Brookes’s Trace-based Semantics for Sequential Consistency
A prominent approach to define fully-compositional, denotational semantics for concurrent pro-
grams is due to Brookes [13], who defined a denotational semantics for SC by taking J𝑀K to be a
set of traces of 𝑀 closed under certain rewrite rules as we detail below. Brookes established a (di-
rectional) adequacy theorem: if J𝑀K ⊇ J𝑁 K then the transformation𝑀 � 𝑁 is valid under SC.The
latter means that, when assuming SC-based operational semantics,𝑀 can be replaced by 𝑁 within
a program without introducing new observable behaviors for it. Thus, adequacy formally grounds
the intuition that the denotational semantics soundly captures behavior of program terms.

As a particular practical benefit, formal and informal simulation arguments which are used
to justify transformations in operational semantics can be replaced by cleaner and simpler proofs
based on the denotational semantics. For example, a simple argument shows that Jx := 𝑣 ; x :=𝑤K ⊇Jx :=𝑤K holds in Brookes’s semantics. Thanks to adequacy, this justifies Write-Write Elimination
(WW-Elim) x := 𝑣 ; x :=𝑤 � x :=𝑤 in SC.

Traces in SC. In Brookes’s semantics, a program term is denoted by the set of traces, each trace
consisting of a sequence of transitions. Each transition is of the form 〈𝜇, 𝜌〉, where 𝜇 and 𝜌 are
memories, i.e. maps from locations to values. A transition describes a program term’s execution
relying on a memory state snapshot 𝜇 in order to guarantee the memory state snapshot 𝜌 .

For example, Jx :=𝑤K includes all traces of the form 〈𝜌, 𝜌 [x :=𝑤]〉 , where 𝜌 [x :=𝑤] is equal
to 𝜌 except for mapping x to 𝑤 . The definition is compositional: the traces in Jx := 𝑣 ; x :=𝑤K are
obtained from sequential compositions of traces from Jx := 𝑣K with traces from Jx :=𝑤K, obtaining
all traces of the form 〈𝜇, 𝜇 [x := 𝑣]〉 〈𝜌, 𝜌 [x :=𝑤]〉 . Such a trace relies on 𝜇 in order to guarantee
𝜇 [x := 𝑣], and then relies on 𝜌 in order to guarantee 𝜌 [x :=𝑤]. Allowing 𝜌 ≠ 𝜇 [x := 𝑣] reflects
the possibility of environment interference between the two store instructions. Indeed, when de-
noting parallel composition J𝑀 ∥ 𝑁 K we include all traces obtained by interleaving transitions
from a trace from J𝑀K with transitions from a trace from J𝑁 K. By sequencing and interleaving,
one subterm’s guarantee can fulfill the requirement which another subterm relies on. They may
also relegate reliances and guarantees to their mutual context.

In the functional setting, executions not only modify the state but also return values. In this
setting, traces are pairs, which we write as 𝜉 ∴ 𝑟 , where 𝜉 is the sequence of transitions and 𝑟
represents the final value that the program term guarantees to return [6]. For example, the seman-
tics of dereference Jx?K includes all traces of the form 〈𝜇, 𝜇〉 ∴ 𝜇 (x). Indeed, the execution of x?
does not change the memory and returns the value loaded from x. In the semantics of assignmentJx := 𝑣K, instead of 〈𝜇, 𝜇 [x := 𝑣]〉 we have 〈𝜇, 𝜇 [x := 𝑣]〉 ∴ 〈〉.

, Vol. 1, No. 1, Article . Publication date: October 2024.

6 Yotam Dvir, Ohad Kammar, and Ori Lahav

Rewrite rules in SC. Were denotations in Brookes’s semantics defined to only include the traces
explicitly mentioned above, it would not be abstract enough to justify (WW-Elim), which elimi-
nates redundant writes. Indeed, we only saw traces with two transitions in Jx := 𝑣 ; x :=𝑤K, but
in Jx :=𝑤K we saw traces with one. The semantics would still be adequate, but it would lack ab-
straction.This is where Brookes’s second main idea comes into play, making the denotations more
abstract by closing them under two operations that rewrite traces:
Stutter adds a transition of the form 〈𝜇, 𝜇〉 anywhere in the trace. Intuitively, a program term can

always guarantee what it relies on.
Mumble combines of subsequent transitions of the form 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 into a single transition 〈𝜇, 𝜃〉

anywhere in the trace. Intuitively, a program term can always omit a guarantee to the envi-
ronment, and rely on its own omitted guarantee instead of relying on the environment.

Denotations in Brookes’s semantics are defined to be sets of traces closed under rewrite rules:
applying a rewrite to a trace in the set results in a trace that is also in the set. For example, Jx :=𝑤K
is the least closed set with all traces of the form 〈𝜌, 𝜌 [x :=𝑤]〉 ∴ 〈〉, and Jx := 𝑣 ; x :=𝑤K is the
least closed set with all sequential compositions of traces from Jx := 𝑣K with traces from Jx :=𝑤K.

Closure under these rules makes traces in J𝑀K correspond precisely to interrupted executions
of 𝑀 , which are executions of 𝑀 in which the memory can arbitrarily change between steps of
execution. Each transition 〈𝜇, 𝜌〉 in a trace in J𝑀K corresponds to multiple execution steps of 𝑀
that transition 𝜇 into 𝜌 , and each gap between transitions accounts for possible environment in-
terruption. The rewrite rules maintain this correspondence: stutter corresponds to taking 0 steps,
and mumble corresponds to taking 𝑛 +𝑚 steps instead of taking 𝑛 steps and then𝑚 steps when
the environment did not change the memory in between. Brookes’s adequacy proof is based on
this precise correspondence. In particular, the single-pair traces in J𝑀K correspond to the (unin-
terrupted) executions, the “input-output” relation, of𝑀 .

2.3 Overview of Release/Acquire Operational Semantics
Memory accesses in RA are more subtle in than in SC. To address this we adopt Kang et al.’s “view-
based” machine [28], an operational presentation of RA proven to be equivalent to the original
declarative formulation of RA [e.g. 31]. In this model, rather than the memory holding only the
latest value written to every variable, the memory accumulates a set of memory update messages
for each location. Each thread maintains its own view that captures which messages the thread can
observe, and is used to constrain the messages that the thread may read and write.Themessages in
the memory carry views as well, which are inherited from the thread that wrote the message, and
passed to any thread that reads the message. Thus views indirectly maintain a causal relationship
between messages in memory throughout the evolution of the system.

More concretely, causality is enforced by timestamping messages, thus placing them on their
location’s timeline. A view 𝜅 associates a timestamp 𝜅ℓ to each location ℓ , obscuring the portion
of ℓ’s timeline before 𝜅ℓ . The view points to a message at ℓ with timestamp 𝜅ℓ . Messages point to
messages via the view they carry, and must point to themselves.

To capture the atomicity of RMWs, each message occupies a half-open segment (𝑞, 𝑡] on their
location’s timeline, where 𝑡 is the message’s timestamp. A message with segment (𝑞, 𝑡] dovetails
with a message at the same location with timestamp 𝑞, if there is one. When an RMW writes it
must “modify” the message from which it read by dovetailing with it.

We explain our notation for messages by example. Assuming of two location, x and y, we denote
by x:1@(.5, 1.7] ⟪y@3.5⟫ the message at location x that carries the value 1, occupies the segment
(.5, 1.7] on x’s timeline, and carries the view 𝜅 such that 𝜅x = 1.7 and 𝜅y = 3.5 (every message
points to itself). An example memory is depicted at the top of Figure 1.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 7

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1

𝜖1
3

𝜖3

𝛼

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
3

𝜖3

〉〈
x: 1

𝜈1
2

𝜈2
1

𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

𝜔

〉
∴ 5

Fig. 1. Illustrations of a memory (top) and a trace (bottom), in the setting of two memory locations, x
and y. Top: A memory holding six messages. The timelines are purposefully misaligned and not to scale to
emphasize that timestamps for different locations are incomparable and that only the order between them
is relevant. The graph structure that the views impose is illustrated by arrows pointing between messages.
Messages that are not dovetailed are set apart, e.g. 𝜈3 dovetails with 𝜈2, which does not dovetail with 𝜈1.
Bottom:A trace with two transitions:𝛼 〈𝜇1, 𝜌1〉 〈𝜇2, 𝜌2〉 𝜔∴5. Thememory illustrated on top is 𝜌2. Messages
and edges that are not part of a previous memory are highlighted. The local messages are 𝜈2 and 𝜈3, and the
rest are environment messages.

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 load−−−→

𝜖1

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 ′

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 load−−−→

𝜈0

0
𝜖0

1
𝜖1

0
𝜈0

1
𝜈1

y:

x:
𝜎 ′

Fig. 2. Depictions of a step during an execution of a litmus test, with the view of the right thread changing
from 𝜎 to 𝜎′. The value each message carries is in its bottom-right corner. Views are illustrated implicitly in
the graph structure that they impose. Obscured messages are faded. Left: As the right thread in (MP) loads
1 from y, it inherits the view of 𝜖1, obscuring 𝜈0. Right: The right thread in (SB) loading 0 from x. Storing 𝜖1
did not obscure 𝜈0.

When a thread writes to a location ℓ , it must increase the timestamp its view associates with
ℓ and use its new view as the message’s view. The message’s segment must not overlap with any
other segment on ℓ’s timeline. In particular, only one message can ever dovetail with a given
message. A thread can only read from revealed messages, and when it reads, its view increases as
needed to dominate the view of the loaded message, where a view 𝜔 dominates a view 𝛼 , written
𝛼 ≤ 𝜔 , if 𝛼ℓ ≤ 𝜔ℓ for every ℓ . Increasing the view in this way may obscure messages at the location
of the read as well as other locations.

Revisiting the (MP) litmus test, starting with a memory with a single message holding 0 at each
location, and with all views pointing to the timestamps of these message, suppose the right thread
loaded 1 from y, as depicted on the left side of Figure 2. Such a message can only be available if
the left thread stored it. Before storing 1 to y, the left thread stored 1 to x, obscuring the initial x
message. The right thread inherits this limitation through the causal relationship, so it will not be
able to load 0 from x. Therefore, RA forbids the outcome 〈〈〉 , 〈1, 0〉〉.

, Vol. 1, No. 1, Article . Publication date: October 2024.

8 Yotam Dvir, Ohad Kammar, and Ori Lahav

In contrast, consider the litmus test known as store buffering:
(x := 1 ; y?) ∥ (y := 1 ; x?) (SB)

By considering the possible interleavings, one can check that no execution in SC returns 〈0, 0〉.
However, in RA some do. Indeed, even if the left thread stores to x before the right thread loads
from x, the right thread’s view allows it to load 0, as depicted on the right side of Figure 2.

We can recover the SC behavior by interspersing fences between sequenced memory accesses,
which we model with FAA (z, 0) to a fresh location z. Thus, compare (SB) to the store buffering
with fences litmus test:

(x := 1 ; FAA (z, 0) ; y?) ∥ (y := 1 ; FAA (z, 0) ; x?) (SB+F)
Both of the FAA (z, 0) instructions store messages that must dovetail with the message that they
load from, and in that also inherit its view. They cannot both dovetail with the same message
because their segments cannot intersect. Thus, one of them—say, the one on the right—will have
to dovetail with the other. In this scenario, the view of the message that the left thread stores at z
points to the message it previously stored at x. When the right thread loads the message from z it
inherits this view, obscuring the initial message to x. Therefore, when it later loads from x, it must
load what the left thread stored. Thus, like in SC, no execution in RA returns 〈0, 0〉.

3 Contribution Summary
We begin by showcasing our notion of a trace, which we adapt to RA both in the structure of the
trace itself, as well as in the rewrite rules we impose (§3.1). We then briefly explain the way in
which our semantics is standard, and a few beneficial consequences of this fact (§3.2). Finally, we
connect our denotational semantics to the operational semantics of RA in (§3.3), showing both
adequacy and sufficient abstraction.

3.1 Traces for Release/Acquire
As in Brookes’s SC-traces, our RA-traces include a sequence of transitions 𝜉 , each transition a pair
of RA memories; and a return value 𝑟 . Intuitively, these play a similar role here, formally grounded
in analogs to the stutter andmumble rewrite rules. Seeing that the operational semantics only adds
messages and never modifies them, we require that every memory snapshot in the sequence 𝜉 be
contained in the subsequent one, whether it be within or across transitions. A message added
within a transition is a local message; otherwise it is an environment message. We call the first
memory in 𝜉 ’s first transition its opening memory, and the second memory in 𝜉 ’s last transition
its closing memory. In addition, RA-traces include an initial view 𝛼 , declaring which messages are
relied upon to be revealed in 𝜉 ’s opening memory; and a final view 𝜔 , declaring which messages
are guaranteed to be revealed in 𝜉 ’s closing memory. We write the trace as 𝛼 𝜉 𝜔 ∴ 𝑟 . See bottom
of Figure 1 for an illustrated example.

RA specific rewrite-rules. We add several more bespoke RA-specific rewrite rules to close deno-
tations under, making the denotational semantics more abstract. For example, (WW-Elim) is also
valid under RA. The reasoning we have used to justify it under SC, by showing Jx := 𝑣 ; x :=𝑤K ⊇Jx :=𝑤K in Brookes’s semantics, will only get us so far here. Replicating the process, the trace
we end up with in Jx := 𝑣 ; x :=𝑤K after rewriting with mumble has two local messages, whereas
traces from Jx :=𝑤K only have a single local message. Roughly speaking, the equality concerning
SC memories 𝜇 [x := 𝑣] [x :=𝑤] = 𝜇 [x :=𝑤] does not transfer to RA where memory, by accu-
mulating messages, is more concrete. We resolve this by adding the absorb rewrite rule, which
replaces two dovetailed local messages with one that carries the second message’s value. Thus, in
the proof for RA we follow the mumble rewrite with an absorb rewrite.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 9

Internalized operational invariants. We further increase abstraction in our denotations by point-
ing out and internalizing properties of the operational semantics. Without restrictions, traces
may represent behaviors that include operationally unreachable states. Forbidding such redundant
traces eliminates a source of differentiation between denotations, thus increasing their abstraction.

Specifically, consider the transformation x? ; y? � y?, a consequence of the RA-valid Irrelevant
Read Elimination (R-Elim) x? ; 〈〉 � 〈〉 and structural equivalences. Consider the state 𝑆 that
consists of the memory at the top of Figure 1 and the view that points to 𝜈3 and 𝜖2. The only step
x? ; y? can take from the state 𝑆 is to load 𝜈3, inheriting the view that 𝜈3 carries, which changes
the thread’s view to point to 𝜖3. Only 𝜖3 is available in the following step, which means the term
returns 3. In contrast, starting from 𝑆 , the term y? can load from 𝜖2 to return 7. This analysis does
not invalidate the transformation because the state 𝑆 is unreachable by an execution starting from
an initial state, and should therefore be ignored when determining observable behaviors.

Just as we restrict our attention to reachable states when analyzing the operational semantics,
we refine our denotational semantics by restricting our denotational domain to traces that possess
analogous properties. This move allows us to justify (R-Elim): we have Jx? ; 〈〉K ⊇ J〈〉K.
3.2 Compositionality and the Monadic Presentation
One of the contributions of this work is to bridge research of weak-memory models with Moggi’s
monad-based approach [40] to denotational semantics. This approach also comes with practical
benefits, such as a built-in semantic framework for the effect-free fragment of the language, to
which effect constructs can be modularly added. Reasoning about the effect-free fragment stays
valid through modular expansions with effects. For instance, if 𝐾 is effect-free, then:Jif 𝐾 then𝑀 ; 𝑁 else𝑀 ; 𝑁 ′ K = J𝑀 ; if 𝐾 then𝑁 else𝑁 ′ K
So-called structural equivalences may otherwise require challenging ad-hoc proofs [e.g. 24, 26].

Higher order. An important aspect of a programming language is its facilitation of abstraction.
Higher-order programming is a flexible instance of this, in which programmable functions can
take functions as input and return functions as output. Moggi’s approach supports this feature
out-of-the-box in such a way that does not complicate the rest of the semantics, as the first-order
fragment of the semantics need not change to include it.

Every value returned by an execution has a semantic presentation which we use as the return
value in traces. The semantic and syntactic values are identified in the first-order fragment, but
different syntactic functions may have the same semantics, so the identification does not extend
to entire higher-order language.

A term is a program if it is closed (every variable occurrence is bound) and of ground type (all
functions are applied to arguments). This definition is in line with the expectation that a program
should return a concrete result that the end-user can consume. Thus, we only consider observable
behaviors of programs. Transformations only need to be valid when applied within programs.
Programs degenerate to closed terms in the first-order fragment.

To deal with the need to prove properties “pointwise” that abstractions bring about we use
logical relations [45, 49]. Moggi’s toolkit provides a standard way to define these, thereby lifting
properties to their higher-order counterparts.

Compositionality. In its most basic form, this key feature of denotational semantics means that
a program term’s denotation is defined using the denotations of its immediate subterms. In our
case denotations are sets, where each elements represents a possible behavior of the term, we are
interested in establishing a directional generalization of compositionality:
Compositionality (Thm. 7.7). For a program contextΞ [−], if J𝑀K ⊆ J𝑁 K then JΞ [𝑀]K ⊆ JΞ [𝑁]K.

, Vol. 1, No. 1, Article . Publication date: October 2024.

10 Yotam Dvir, Ohad Kammar, and Ori Lahav

This is a consequence of the monadic design of the denotational semantics using monotonic
operators, and is not substantially different from previous work [e.g. 20].

3.3 Relating the Denotational Semantics to the Operational Semantics
Kang et al. presentation assumes top-level parallelism, a common practice in studies of weak-mem-
ory models. This comes at the cost of the uniformity and compositionality. In particular, the deno-
tation J𝑀 ∥ 𝑁 K cannot be defined.We resolve this by extending Kang et al.’s operational semantics
to support first-class parallelism by organizing thread views in an evolving view-tree, a binary tree
with view-labeled leaves, rather than in a fixed flat mapping. Thus, states that accompany execut-
ing terms consist of a memory and a view-tree. In discourse, we do not distinguish between a view-
leaf and its label.

Remark. Supporting first-class parallel composition allows us to decompose Write-Read Reordering
(WR-Reord) (x := 𝑣) ; y? � fst 〈y?, (x := 𝑣)〉 , a crucial reordering of memory accesses valid under
RA but not SC, into a combination of Write-Read Deorder (WR-Deord) 〈(x := 𝑣) , y?〉 � (x := 𝑣) ∥ y?
together with structural transformations and laws of parallel programming:

(x := 𝑣) ; y?
↓Structural
� snd 〈(x := 𝑣) , y?〉

↓(WR-Deord)

� snd ((x := 𝑣) ∥ y?)
↓Par. Prog. Law: Symmetry

� snd (swap (y? ∥ (x := 𝑣)))
↓Structural
� fst (y? ∥ (x := 𝑣))

↓Par. Prog. Law: Sequencing
� fst 〈y?, (x := 𝑣)〉

This provides a separation of concerns: the components of this decomposition are supported by our
semantics using independent arguments. It also sheds a light on the interesting part, as they are all
valid under SC except for (WR-Deord).

Observability correspondence. We call some of our rewrite rules abstract, such as absorb, and
others concrete, such as stutter and mumble. We denote the concrete denotation of a term𝑀 by J𝑀K,
which is the denotationwere it defined using only the concrete rewrite rules. Traces in the concrete
denotations directly correspond to interrupted executions, but not so in the (regular) denotations.
For example, in our analysis of (WW-Elim), by using absorb, we ended up with a trace in which
only one message is added even though the program term adds two messages. Thus, the abstract
rewrite rules break the direct correspondence.

Still, some indirect correspondence should remain to justify adequacy. In particular, we would
like traces to correspond to observable behavior of programs. In one direction, an even stronger
property holds, known as soundness:

Soundness (Thm. 7.8). For every execution of a program𝑀 in the operational semantics of RA, there
exists 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀K that matches the execution: 〈𝛼, 𝜇〉 is the initial state, 〈𝜔, 𝜌〉 is the final
state, and 𝑟 matches the value returned.

To prove soundness, we take a trace where transitions correspond to the memory-accessing
execution steps, and then use mumble to obtain a single transition.

Ignoring the final state, the correspondence holds in the other direction too:

Evaluation Lemma (Lem. 7.10). For every program 𝑀 and 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀K there is an ob-
servable behavior of𝑀 with initial state 〈𝛼, 𝜇〉 and return value matching 𝑟 .

The lack of correspondence with the final state is an artifact of the concreteness-abstraction
divergence between the operational and denotational semantics. Due to this divergence, it is sig-
nificantlymore challenging to establish this direction of the correspondence than in previous work.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 11

The primarily challenge in proving that abstract rewrite rules can be applied retroactively, defer-
ring them to the top-level. That is, denoting closure under the abstract rewrite rules by −†, we
claim:

Retroactive Closure (Lem. 7.4). If𝑀 is a program, then J𝑀K = J𝑀K†.
Thus, to obtain all of the traces in the (regular) denotation of a term, it is enough to close only

under the concrete rewrite rules as the denotation of a program is built-up from its subterms,
applying the abstract rewrite rules only at the top level.

The intuition that guides the proof is that the abstract rewrite rules can be percolated outwards:

Rewrite Commutativity (Lem. 7.1). Let 𝜏 and 𝜚 be traces such that 𝜏 can be rewritten to 𝜚 using
both concrete and abstract rewrite rules (denoted 𝜏 𝔠𝔞−→ 𝜚). Then there exists a trace 𝜋 , such that 𝜏 can
be rewritten to 𝜋 using only concrete rewrite rules (denoted 𝜏 𝔠−→ 𝜋), and 𝜋 can be rewritten to 𝜚 using
only abstract rewrite rules (denoted 𝜋 𝔞−→ 𝜚).

The central result is (directional) adequacy, stating that denotational approximation corresponds
to refinement of observable behaviors:

Adequacy (Thm. 7.9). If J𝑀K ⊆ J𝑁 K, then for all program contexts Ξ [−], every observable behavior
of Ξ [𝑀] is an observable behavior of Ξ [𝑁].

In particular, J𝑀K ⊆ J𝑁 K implies that 𝑁 � 𝑀 is valid under RA, because the effect of applying
it is unobservable. Adequacy follows immediately from the above results. Indeed, using soundness,
an observable behavior ofΞ [𝑀] corresponds to a single-transition 𝜏 ∈ JΞ [𝑀]K; by the assumption
and compositionality 𝜏 ∈ JΞ [𝑁]K; and using the evaluation lemma, 𝜏 corresponds to an observable
behavior of Ξ [𝑁].

Abstraction. Brookes’s semantics is fully abstract, meaning that the converse to adequacy also
holds: if 𝑁 � 𝑀 is valid under SC, then J𝑁 K ⊇ J𝑀K. However, Brookes’s proof relies on an
artificial program construct, await, that permits waiting for a specified memory snapshot and
then step (atomically) to a second specified memory snapshot. Thus, in realistic languages, when
this construct is unavailable, Brookes’s full abstraction proof does not apply.

Nevertheless, even without full abstraction, one can still provide evidence that an adequate
semantics is abstract by ensuring that it supports known transformations.

To the best of our knowledge, all transformations 𝑁 � 𝑀 proven to be valid under RA in
the existing literature are supported by our denotational semantics, i.e. J𝑁 K ⊇ J𝑀K. Structural
transformations are supported by virtue of using Moggi’s standard semantics. Our semantics also
validates “algebraic laws of parallel programming”, such as sequencing 𝑀 ∥ 𝑁 � 〈𝑀, 𝑁 〉 and its
generalization that Hoare and van Staden [22] recognized, (𝑀1 ;𝑀2) ∥ (𝑁1 ; 𝑁2) � (𝑀1 ∥ 𝑁1) ;
(𝑀2 ∥ 𝑁2), which in the functional setting can take the more expressive form in which the values
returned are passed on to the following computation. See Figure 3 for a partial list.

4 Language and Typing
We consider a standard extension of Moggi’s [40] computational lambda calculus with products
and variants (labeled sums) further extending it with shared-memory constructs. We parameterize
our language, which we call 𝝀RA, by its globally available locations, the values we store in and
retrieve from these locations, and the primitives we use to atomically mutate these values through
a unified read-modify-write construct.

, Vol. 1, No. 1, Article . Publication date: October 2024.

12 Yotam Dvir, Ohad Kammar, and Ori Lahav

Laws of Parallel Programming
Symmetry �𝑀 ∥ 𝑁 swap (𝑁 ∥ 𝑀)
Generalized Sequencing

�(let𝑎 =𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in𝑁2) match𝑀1 ∥ 𝑁1 with 〈𝑎,𝑏〉. 𝑀2 ∥ 𝑁2

Eliminations
Irrelevant Read �ℓ? ; 〈〉 〈〉
Write-Write �ℓ := 𝑣 ; ℓ :=𝑤 ℓ :=𝑤

Ab

Write-Read �ℓ := 𝑣 ; ℓ? ℓ := 𝑣 ; 𝑣

Write-FAA �ℓ := 𝑣 ; FAA (ℓ,𝑤) ℓ := (𝑣 +𝑤) ; 𝑣Ab

Read-Write �let𝑎 = ℓ? in ℓ := (𝑎 + 𝑣) ; 𝑎 FAA (ℓ, 𝑣)
Read-Read �〈ℓ?, ℓ?〉 let𝑎 = ℓ? in 〈𝑎, 𝑎〉
Read-FAA �〈ℓ?, FAA (ℓ, 𝑣)〉 let𝑎 = FAA (ℓ, 𝑣) in 〈𝑎, 𝑎〉
FAA-Read �〈FAA (ℓ, 𝑣) , ℓ?〉 let𝑎 = FAA (ℓ, 𝑣) in 〈𝑎, 𝑎 + 𝑣〉
FAA-FAA �〈FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)〉 let𝑎 = FAA (ℓ, 𝑣 +𝑤) in 〈𝑎, 𝑎 + 𝑣〉Ab

Others
Irrelevant Read Introduction �〈〉 ℓ? ; 〈〉
Read to FAA �ℓ? FAA (ℓ, 0)Di

Write-Read Deorder �〈(ℓ := 𝑣) , ℓ ′?〉 (ℓ := 𝑣) ∥ ℓ ′?Ti (ℓ ≠ ℓ ′)
Write-Read Reorder �(ℓ := 𝑣) ; ℓ ′? fst 〈ℓ ′?, (ℓ := 𝑣)〉Ti (ℓ ≠ ℓ ′)

Fig. 3. A selective list of supported non-structural transformations. Along with Symmetry, the denotational
semantics supports all symmetric-monoidal laws with the binary operator (∥) and the unit 〈〉. Similar trans-
formations, replacing FAA with other RMWs, are supported too. The abstract rewrite rules used to validate
a transformation is mentioned, if there is one.

Locations and Storable Values. We fix two finite sets of (shared memory) locations Loc, ranged
over by ℓ, ℓ ′; and (storable) values Val, ranged over by 𝑣,𝑤,𝑢. For example, we may take Loc and
Val to be all 64-bit sequences. In concrete examples, we will use concrete names such as x, y, z
for distinct locations, and numbers for values. For simplicity, we don’t include primitives (such as
addition) explicitly, since they require standard minor changes.

Read-modify-write (RMW). These constructs atomically read a value from memory and possibly
modify it to some other computed value. Typical languages include the following constructs, which
are efficiently compiled to hardware:Compare-and-Swap:modify when stored value match a pa-
rameter; Fetch-and-Add: increase by a parameter; and Exchange: always modify to a parameter.
For convenience, we include a single RMW construct that expresses all such operations, as well
as standard loads. This generalization, especially bringing together loads with RMW operations, is
non-standard, but makes our development more uniform.

Formally, a modifier is a partial function Φ : Val ⇀ Val, which represents an RMW operation
that reads a value 𝑣 from memory; and if Φ is defined on 𝑣 , atomically writes Φ(𝑣) instead. For
supporting parameters, an 𝑛-ary modifier is a partial function 𝜑− : Val𝑛 × Val ⇀ Val. Our lan-
guage requires a family RMW, indexed by the natural numbers, consisting of sets RMW𝑛 of 𝑛-ary
modifiers which we call primitive modifiers. For example, the primitive modifiers for common op-
erations, which have efficient implementations on hardware, are as follows:

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 13

𝑀, 𝑁 ::= term
𝑎 variable/identifier

function
| 𝜆𝑎 : 𝐴.𝑀 abstraction
| 𝑀𝑁 application

constructor
| 〈𝑀1, ... , 𝑀𝑛〉 tuple
| 𝐴.𝜄 𝑀 variant

pattern matching
| match𝑀 with on tuples
〈𝑎1, ... , 𝑎𝑛〉. 𝑁

| match𝑀 with on variants
{𝜄1 𝑎1.𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛}

shared-state
| rmw𝜑 (𝑀 ;𝑁) read-modify-write
| 𝑀 := 𝑁 write
| 𝑀 ∥ 𝑁 parallel composition

𝐴, 𝐵 ::= type
𝐴→ 𝐵 function
| (𝐴1 ∗ · · · ∗𝐴𝑛) tuple/product
| {𝜄1 of 𝐴1 variant/sum

| · · · | 𝜄𝑛 of 𝐴𝑛}

unit 1 B ()
value tuple Val𝑛 B (Val ∗ · · · ∗ Val)
enumeration

{𝜄1 | · · · | 𝜄𝑛 } B {𝜄1 of 1 | · · · | 𝜄𝑛 of 1}

label 𝐴.𝜄 B 𝐴.𝜄 〈〉
let-binding

let𝑎 =𝑀 in𝑁 B match 〈𝑀〉 with 〈𝑎〉. 𝑁
sequencing 𝑀 ; 𝑁 B let _ =𝑀 in𝑁

Fig. 4. Syntax of the 𝝀RA-calculus: terms and types. Shared-state constructs extending the core calculus are
highlighted , and further syntactic sugar is defined in the bottom-right box.

Load load(𝑣) B ⊥ Compare-and-Swap cas〈𝑤,𝑢 〉 (𝑣) B if 𝑣 =𝑤 then𝑢 else⊥
Exchange xchg〈𝑤〉 (𝑣) B 𝑤 Fetch-and-Add faa〈𝑤〉 (𝑣) B 𝑣 +𝑤

Here,⊥means ‘undefined’, we omit load’s 0-parameters (〈〉), cas requires a semantic equality com-
parison operator on values (=), and faa requires a semantic addition operator on values (+).

Syntax. Given parameters Loc, Val, and RMW, Figure 4 presents 𝝀RA’s syntax, and additional
syntax admitted via syntactic sugar. The types are standard, comprising tuple, sum and function
types. We draw constructor names for variants from a countably infinite set Lab, ranged over
by 𝜄 . Assuming Lab contains Loc and Val, we identify them with sum types Val and Loc whose
constructors are the locations and values, each labeling the empty tuple type.

The core term constructs in 𝝀RA are standard too. We draw program variables from a countably
infinite set PVar, ranged over by 𝑎, 𝑏, 𝑐 . For simplicity, we assume labels and variables are distinct:
PVar∩Lab = ∅. Tuple and variant constructors are standard, and we require the total sum type to
disambiguate each variant constructor, which we omit when this type can be inferred. The pattern
matching constructs for tuples and variants are standard, with binding variables occurrences in
each pattern. In the tuple case, we require the variables in the pattern to be distinct. Function
abstraction and application are standard, and we annotate the bound variable with its type, again
omitting the annotation when we can infer it.

We index the RMW construct with a primitive modifier 𝜑 ∈ RMW, and its first argument is a
location from which to read and possibly modify, followed by a tuple supplying the parameters.
The term rmw𝜑 (𝑀 ;𝑁) executes by evaluating 𝑀 to a location ℓ , then evaluating 𝑁 to a tuple
of values ®𝑤 =

〈
𝑤1, ... ,𝑤𝜑.ar

〉
. Then, atomically, reading a value 𝑣 from ℓ and writing 𝜑 ®𝑤𝑣 if it’s

defined. Regardless of whether the write occurred, the read value is returned.
We desugar the typical memory dereferencing primitives using our example modifier primitives:

, Vol. 1, No. 1, Article . Publication date: October 2024.

14 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛤 ` 𝑀 : 𝐴

(𝑎 : 𝐴) ∈ 𝛤
𝛤 ` 𝑎 : 𝐴

𝛤, 𝑎 : 𝐴 ` 𝑀 : 𝐵

𝛤 ` 𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

𝛤 ` 𝑀 : 𝐴 𝛤 ` 𝑁 : 𝐴→ 𝐵

𝛤 ` 𝑁𝑀 : 𝐵

∀𝑖 . 𝛤 ` 𝑀𝑖 : 𝐴𝑖

𝛤 ` 〈𝑀1, ... , 𝑀𝑛〉 : (𝐴1 ∗ · · · ∗𝐴𝑛)
𝛤 ` 𝑀 : 𝐴𝑖 𝐴 = {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}

𝛤 ` 𝐴.𝜄𝑖 𝑀 : 𝐴

𝛤 ` 𝑀 : (𝐴1 ∗ · · · ∗𝐴𝑛)
𝛤, 𝑎1 : 𝐴1, ... , 𝑎𝑛 : 𝐴𝑛 ` 𝑁 : 𝐴

𝛤 ` match𝑀 with 〈𝑎1, ... , 𝑎𝑛〉. 𝑁 : 𝐴

𝛤 ` 𝑀 : {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}
∀𝑖 . 𝛤 , 𝑎𝑖 : 𝐴𝑖 ` 𝑁𝑖 : 𝐴

𝛤 ` match𝑀 with {𝜄1 𝑎1.𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛} : 𝐴

𝜑 ∈ RMW𝑛 𝛤 ` 𝑀 : Loc 𝛤 ` 𝑁 : Val𝑛

𝛤 ` rmw𝜑 (𝑀 ;𝑁) : Val
𝛤 ` 𝑀 : Loc 𝛤 ` 𝑁 : Val

𝛤 ` 𝑀 := 𝑁 : 1

𝛤 ` 𝑀 : 𝐴 𝛤 ` 𝑁 : 𝐵

𝛤 ` 𝑀 ∥ 𝑁 : (𝐴 ∗ 𝐵)

Fig. 5. Typing rules for the 𝝀RA-calculus. Typing rules for the shared-state constructs are highlighted .

𝑀? B rmwload (𝑀 ; 〈〉) CAS (𝑀, 𝑁, 𝐾) B rmwcas (𝑀 ; 〈𝑁,𝐾〉)

XCHG (𝑀, 𝑁) B rmwxchg (𝑀 ; 〈𝑁 〉) FAA (𝑀, 𝑁) B rmwfaa (𝑀 ; 〈𝑁 〉)
Assignment𝑀 :=𝑁 is standard, executing by first evaluating𝑀 to a location ℓ ; evaluating 𝑁 to

a value 𝑣 ; storing the value 𝑣 at the location ℓ in memory; and finally returning 〈〉. Unlike RMWs,
assignment need not modify an existing message in memory. Indeed, 𝑀 := 𝑁 is not equivalent to
an XCHG that discards its read value, i.e. XCHG (𝑀, 𝑁) ; 〈〉.

The operational semantics, defined in §5, follows a call-by-value evaluation strategy, adhering
to a left-to-right convention except for parallel composition 𝑀 ∥ 𝑁 . There, the executions of its
threads𝑀 and 𝑁 interleave, evaluating to the pair of the results of each thread.

Remark. We do not include recursion/loops in this language, which we leave to future work. While
important, recursion will muddy the waters substantially, requiring us to bring into context domain
theoretic concepts like least upper-bounds of 𝜔-chains and powerdomain constructions. Even without
recursion, 𝝀RA is expressive enough for us to discuss interesting examples and transformations.

Type system. We present the type system in Figure 5. Each typing judgment 𝛤 ` 𝑀 : 𝐴 relates
a type 𝐴, a term 𝑀 , and a typing context 𝛤 which associates to each of 𝑀’s unbound variable 𝑎 a
type 𝐵𝑎 , written (𝑎 : 𝐵𝑎) ∈ 𝛤 . We write · for the empty context, and say that𝑀 is closed if · ` 𝑀 : 𝐴
for some type 𝐴. The shadowing extension of 𝛤 by 𝑐 : 𝐶 , denoted 𝛤, 𝑐 : 𝐶 , is equal to 𝛤 except for
associating 𝐶 to 𝑐 . The typing rules for the shared-memory constructs are standard, and reflect
their informal explanation above. In particular, for RMW the arity of the tuple must match the
arity of the modifier. Each term has at most one type in a given typing context, and in that case
the typing derivation is unique. We denote by 𝛤 ` 𝐴 the set of terms {𝑀 | 𝛤 ` 𝑀 : 𝐴}.

A program is a closed term of ground type—iterated sum and product types:
𝐺 ::= (𝐺1 ∗ · · · ∗𝐺𝑛) | {𝜄1 of 𝐺1 | · · · | 𝜄𝑛 of 𝐺𝑛} (Ground types)

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 15

5 Operational Semantics for Release/Acquire Concurrency
We start this section with a precise account of the “view-based” machine (§5.1) presented in §2.3.
We observe that this semantics admits a non-deterministic view-forwarding step (§5.2) which our
metatheory uses. Our denotational semantics also accounts for both known and novel semantic
invariants on the memories that can evolve when executing a well-typed program (§5.3).

5.1 View-based Semantics
Our formalization of the operational semantics follows Kang et al. [28] and Kaiser et al. [27]. The
account below grounds the explanations we gave in §2.3 more formally.

Timestamps. We maintain a per-location timestamp order, which constrains the memory access
of threads. We use rational numbers Q as timestamps, ordered standardly, ranged over by 𝑡, 𝑞, 𝑝 .

Views. A view is a location-indexed tuple of timestamps, i.e. an element (𝜅ℓ)ℓ∈Loc in View B
QLoc. We let 𝛼, 𝜅, 𝜎, 𝜔 range over views. In examples with Loc = {x, y}, we denote by ⟪x@𝑡 ; y@𝑞⟫
the view that has 𝑡 in the x component and 𝑞 in the y component. We order views location-wise,
i.e. 𝛼 ≤ 𝜔 when ∀ ℓ ∈ Loc. 𝛼ℓ ≤ 𝜔ℓ , and in this case say that 𝜔 dominates 𝛼 . We also employ t and
u for pointwise maximum and minimum of views, and denote by 𝜅 [ℓ ↦→𝑡] the view that is equal
to 𝜅 everywhere except ℓ , where it equals 𝑡 .

Messages. A message 𝜈 is a tuple in Msg B Loc × Val × Q × View, written 𝜈 = ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫,
where 𝑞 < 𝜅ℓ . Here, ℓ is the location of the message, 𝑣 is the value of the message, 𝑞 is the initial
timestamp of the message, and 𝜅 is the view of the message. We say this message dovetails another
message if its timestamp is 𝑞.

We use projection-notation for components of 𝜈 : 𝜈.lc B ℓ , 𝜈.vl B 𝑣 , 𝜈.i B 𝑞, and 𝜈.vw B 𝜅.
The (final) timestamp of the message is 𝜈.t B 𝜅ℓ . In concrete examples, we reduce duplication
by eliding the timestamp from the view, e.g. y:0@(0.5, 4.2] ⟪x@1⟫. The message’s two timestamps
delimit the segment of the message: the interval 𝜈.seg B (𝜈.i, 𝜈 .t].

We range over messages using 𝜈, 𝜖, 𝛽 . We extend notation from messages to sets of messages by
direct image: for example, given a set 𝜇 of messages, define 𝜇.seg B {𝜈.seg | 𝜈 ∈ 𝜇}.

Memories. A memory is a finite non-empty set of messages. We let 𝜇, 𝜌, 𝜃 range over memories,
and denote the set of messages in 𝜇 at location ℓ by 𝜇ℓ B {𝜈 ∈ 𝜇 | 𝜈.lc = ℓ}.

Example 5.1. The memory illustrated at the top of Figure 9 could have resulted from a program
execution starting with the memory {𝜈1, 𝜖1}: a program may add messages out of the timeline
order (𝜖3 before 𝜖2); dovetail messages (𝜈2 .t = 𝜈3.i); or leave gaps between messages (𝜈1 .t < 𝜈2.i).
Message views need not increase along the timeline (𝜖2 .t ≤ 𝜖3.t yet 𝜖2.vw 6≤ 𝜖3.vw).

View trees. Kang et al.’s [28] original presentation of the view-based semantics studies top-level
parallelism, and thus featured a flat thread-view mappings. Here we allow nesting of parallel com-
position anywhere in the program, so we use a tree of views instead, whose structure changes
along with the execution of the program as threads are activated and synchronize.

Formally, a view-tree is a binary tree with view-labeled leaves. We denote the set of view-trees
by VTree, ranged over by 𝑇, 𝑅, 𝐻 . We denote: by ¤𝜅 the leaf with label 𝜅; by 𝑇̂𝑅 the tree whose
immediate left and right subtrees are 𝑇 and 𝑅; and by 𝑇 .lf the set of labels of leaves of 𝑇 . We lift
the order ≤ from views to view-trees leaf-wise: ¤𝜅 ≤ ¤𝜎 when 𝜅 ≤ 𝜎 , and 𝑇̂𝑅 ≤ 𝑇 ′̂𝑅′ when
𝑇 ≤ 𝑇 ′ and 𝑅 ≤ 𝑅′.

Operational semantics. Figure 6 presents the notable part of the operational semantics for 𝝀RA.
A configuration 〈𝑇, 𝜇〉 , 𝑀 consists of a view-tree 𝑇 capturing the view of all active threads; the

, Vol. 1, No. 1, Article . Publication date: October 2024.

16 Yotam Dvir, Ohad Kammar, and Ori Lahav

〈𝑇, 𝜇〉 , 𝑀 𝑒
 RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

PaRInit

〈 ¤𝜅, 𝜇〉 , 𝑀 ∥ 𝑁 ◦
 RA

〈
¤𝜅̂ ¤𝜅, 𝜇〉 , 𝑀 ∥ 𝑁

PaRFin
𝜔 = 𝜅 t 𝜎〈

¤𝜅̂ ¤𝜎, 𝜇〉 ,𝑉 ∥𝑊 ◦
 RA 〈 ¤𝜔, 𝜇〉 , 〈𝑉 ,𝑊 〉

PaRLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

 RA
〈
𝑇 ′, 𝜇′

〉
, 𝑀 ′〈

𝑇̂𝑅, 𝜇
〉
, 𝑀 ∥ 𝑁 𝑒

 RA
〈
𝑇 ′̂𝑅, 𝜇′

〉
, 𝑀 ′ ∥ 𝑁

PaRRight
〈𝑅, 𝜇〉 , 𝑁 𝑒

 RA
〈
𝑅′, 𝜇′

〉
, 𝑁 ′〈

𝑇̂𝑅, 𝜇
〉
, 𝑀 ∥ 𝑁 𝑒

 RA
〈
𝑇̂𝑅′, 𝜇′

〉
, 𝑀 ∥ 𝑁 ′

StoRe
𝛼ℓ < 𝑡 (𝑞, 𝑡] ∩

⋃
𝜇ℓ .seg = ∅ 𝜔 = 𝛼 [ℓ ↦→𝑡]

〈 ¤𝛼, 𝜇〉 , ℓ := 𝑣 • RA 〈 ¤𝜔, 𝜇] {ℓ :𝑣@(𝑞,𝜔ℓ]⟪𝜔⟫}〉 , 〈〉

ReadOnly
ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜇 𝛼ℓ ≤ 𝜅ℓ 𝜑 ®𝑤𝑣 = ⊥ 𝜔 = 𝛼 t 𝜅

〈 ¤𝛼, 𝜇〉 , rmw𝜑 (ℓ ; ®𝑤)
•
 RA 〈 ¤𝜔, 𝜇〉 , 𝑣

RMW
ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜇 𝛼ℓ ≤ 𝜅ℓ 𝜑 ®𝑤𝑣 ≠ ⊥ (𝜅ℓ , 𝑡] ∩

⋃
𝜇ℓ .seg = ∅ 𝜔 = (𝛼 t 𝜅) [ℓ ↦→𝑡]

〈 ¤𝛼, 𝜇〉 , rmw𝜑 (ℓ ; ®𝑤)
•
 RA

〈
¤𝜔, 𝜇]

{
ℓ :𝜑 ®𝑤𝑣@(𝜅ℓ , 𝜔ℓ]⟪𝜔⟫

}〉
, 𝑣

Fig. 6. The notable operational semantics rules of 𝝀RA.

App

〈 ¤𝜅, 𝜇〉 , (𝜆𝑎 : 𝐴.𝑀)𝑉 ◦
 RA 〈 ¤𝜅, 𝜇〉 , 𝑀 [𝑎 ↦→𝑉]

AppLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

 RA
〈
𝑇 ′, 𝜇′

〉
, 𝑀 ′

〈𝑇, 𝜇〉 , 𝑀𝑁 𝑒
 RA

〈
𝑇 ′, 𝜇′

〉
, 𝑀 ′𝑁

AppRight
〈𝑇, 𝜇〉 , 𝑁 𝑒

 RA
〈
𝑇 ′, 𝜇′

〉
, 𝑁 ′

〈𝑇, 𝜇〉 ,𝑉𝑁 𝑒
 RA

〈
𝑇 ′, 𝜇′

〉
,𝑉𝑁 ′

Fig. 7. The function-application rules in operational semantics of 𝝀RA.

current memory 𝜇; and a closed term 𝑀 . The state of the configuration is the pair 〈𝑇, 𝜇〉. The
relation 𝑒

 RA represents (atomic) steps between configurations. The label 𝑒 , distinguishing the
memory-accessing steps (•) from the rest (◦), is used as a proof tool (Appendix C) and can be
otherwise ignored. We denote RA B

•
 RA ∪

◦
 RA.

Sequential CBV constructs. We demonstrate the standard CBV transitions for function applica-
tion in Figure 7: the AppLeft and AppRight congruence steps, and the App 𝛽-reduction step.
Omitted are the congruence steps for the assignment and RMW constructs, as well as the steps
for tuples and variants. More generally, 𝛽-reductions use the ◦-label and view-leaves, and do not
change the state; the congruence steps simply carry the label and states over.

The operational semantics hinges on the standard designation of certain terms as values:

𝑉 ,𝑊 ::= 〈𝑉1, ... ,𝑉𝑛〉 | 𝐴.𝜄 𝑉 | 𝜆𝑎 : 𝐴.𝑀 (Values)

Substitution. A (program) substitution Θ is a partial function from program variables to closed
values, which extends to the identity on all other variables, and then to terms by recursively ap-
plying to subprograms, removing bound variables from the substitution’s domain, e.g.:

Θ (match𝑀 with 〈𝑎1, ... , 𝑎𝑚〉. 𝑁) B matchΘ𝑀 with 〈𝑎1, ... , 𝑎𝑚〉. Θ|∉{𝑎1,...𝑎𝑚 }𝑁

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 17

where Θ|∉X is obtained by removing X from Θ’s domain. We write𝑀 [𝑉1/𝑎1 ...𝑉𝑛/𝑎𝑛] for the appli-
cation of the substitution that maps 𝑎𝑖 ↦→ 𝑉𝑖 on𝑀 .

Parallel composition. The PaRInit rule initializes a parallel composition by duplicating its view-
leaf to a new node. The rules PaRLeft and PaRRight non-deterministically interleave the evalua-
tion of the left and right threads. After both threads evaluate, PaRFin joins the thread views back
into a single leaf, and returns the pair of results.

Example. We show an example execution from a birds-eye view:

〈𝜇0, ¤𝛼〉 , 𝑀 ; (𝑁1 ∥ 𝑁2) ∗
RA 〈𝜇1, ¤𝛼 ′〉 , 𝑁1 ∥ 𝑁2 RA

〈
𝜇1, ¤𝛼 ′̂ ¤𝛼 ′〉 , 𝑁1 ∥ 𝑁2

 ∗
RA

〈
𝜌, ¤𝜔1̂ ¤𝜔2

〉
,𝑉1 ∥ 𝑉2 RA 〈𝜌, ¤𝜔1 t 𝜔2〉 , 〈𝑉1,𝑉2〉

First,𝑀 runs until it returns a value discarded by the sequencing construct. Next, the parallel composi-
tion𝑁1 ∥ 𝑁2 activates.The threads then interleave executions, each with its associated side of the view-
tree, interacting via the shared memory. Finally, once each thread returns a value, they synchronize.

Assignment. The StoRe rule for location ℓ picks a free segment (𝑞, 𝑡] where 𝑡 is strictly greater
than the thread’s view for ℓ . The step updates this thread’s view to 𝜔 by increasing the timestamp
for ℓ to 𝑡 ; adds a message to memory with this updated view 𝜔 ; and returns the unit value.

Read-modify-write. TheReadOnly and RMWrules for the rmw construct both start by picking a
message to the given location to read from that has the same or a larger timestamp than the thread’s
view, then incorporate the message’s view in the thread’s view, and finally return the value they
read. If the given primitive modifier is undefined for the given parameters and message’s value,
nothing else happens (ReadOnly rule). If the modifier is defined (RMW rule), much like the StoRe
rule, a timestamp strictly greater than the thread’s view for the location is chosen to update the
thread’s view, and a message is added with this updated view. In contrast to the StoRe rule, here
the added message’s segment must dovetail with the message from which the RMW read, still
avoiding any existing segment in this location. This dovetailing is only possible if we read from
a message with no dovetailing succeeding message. In particular, a message can only be picked
once to justify the RMW rule during an execution.

Initial states. An initial memory 𝜇 is a memory in which every location has exactly one message
whose view contains the timestamps of the other messages. An initial state is a state consisting of
an initial memory and a view-leaf that maps each location to the timestamp of the unique message
in memory of that location. An initial configuration is a configuration consisting of an initial state
and a closed term.

Evaluation. We’re interested in the behaviors closed terms exhibit when run to completion. Let
the Kleene star (∗) denote the reflexive-transitive closure of a relation. A configuration 〈𝑇, 𝜇〉 , 𝑀
evaluates to a value 𝑉 , written 〈𝑇, 𝜇〉 , 𝑀 ⇓RA 𝑉 , when 〈𝑇, 𝜇〉 , 𝑀 ∗

RA 〈𝑅, 𝜌〉 ,𝑉 for some state
〈𝑅, 𝜌〉. We write 〈𝑇, 𝜇〉 , 𝑀 6⇓RA 𝑉 when there is no such 〈𝑅, 𝜌〉. In the next examples, we write
𝑀 ⇓RA 𝑉 when 𝑀 may evaluate to 𝑉 from every initial state, and 𝑀 6⇓RA 𝑉 when it cannot
evaluate to 𝑉 from any initial state.

Example 5.2. We can give a more precise account of the litmus tests (SB) and (MP) from §2:

x := 0 ; y := 0 ; ((x := 1 ; y?) ∥ (y := 1 ; x?)) ⇓RA 〈 0 , 0 〉

x := 0 ; y := 0 ; ((x := 1 ; y := 1) ∥ (y? ; x?)) 6⇓RA 〈 〈〉 , 〈1, 0〉 〉

, Vol. 1, No. 1, Article . Publication date: October 2024.

18 Yotam Dvir, Ohad Kammar, and Ori Lahav

5.2 Non-deterministic View Forwarding
Ext
〈𝑇, 𝜇〉 , 𝑀 RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

Adv
ℓ :𝑣@(𝑞, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜇

𝛼ℓ ≤ 𝜅ℓ 𝜔 = 𝛼 t 𝜅
〈 ¤𝛼, 𝜇〉 , 𝑀 RA≤ 〈 ¤𝜔, 𝜇〉 , 𝑀

Fig. 8. RA≤ operational semantics.

It is technically convenient to extend RA with an additional
step that non-deterministically advances the view of a thread,
as presented in Figure 8. The Adv step advances the thread’s
view like the ReadOnly rule without changing the term com-
ponent of the configuration. The effect of this step is to pro-
hibit the thread from reading certain messages from memory,
and propagating this prohibition to other threads that read
values this thread writes. We think of this step as read-inde-
pendent propagation of updates to threads. Lahav et al. [32]
propose a similar extension when defining liveness condi-
tions for RA.

A-priori, the resulting system may exhibit more behaviors since StoRe and RMW steps will
append messages with further advanced views. However, advancing views within messages only
further constrains possible behaviors. We formalize this intuition using a simulation argument.
One direction is straightforward: every execution in RA is an execution in RA≤ admitted via the
Ext rule, and so RA≤ exhibits every behavior RA does. For the converse, we define a binary relation
between configuration states ¥ such that 〈𝑇, 𝜇〉 ¥ 〈𝑅, 𝜌〉 when the following hold.

• The simulatee’s view-tree dominates the simulator’s view-tree: 𝑅 ≤ 𝑇 .
• There are bijections 𝜙ℓ : 𝜇ℓ → 𝜌ℓ for every location ℓ such that if 𝜙ℓ (𝜈) = 𝜖 , then the view of

the simulatee’s message dominates the simulator’s message: 𝜖.vw ≤ 𝜈.vw, and the messages’
value and segment agree: 𝜈.vl = 𝜖.vl, 𝜈 .i = 𝜖.i, 𝜈 .t = 𝜖.t.

The relation ¥ is a weak simulation:

PRoposition 5.3. If 〈𝑇, 𝜇〉 ¥ 〈𝑅, 𝜌〉 and 〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑇 ′, 𝜇′〉 , 𝑀 ′, then there exists a configu-
ration state 〈𝑅′, 𝜌 ′〉 such that 〈𝑅, 𝜌〉 , 𝑀 ∗

RA 〈𝑅′, 𝜌 ′〉 , 𝑀 ′ and 〈𝑇 ′, 𝜇′〉 ¥ 〈𝑅′, 𝜌 ′〉.

PRoof. By induction on the step. An Adv step preserves ¥, so we take no steps in the required
corresponding RA execution. For RA steps admitted by Ext, we take a corresponding single RA
step using the same RA rule. This, we need to show, also retains the simulation.

In the StoRe case, we store the unique corresponding message that is permissible according
to the rule. Other than the timestamp, the view is determined by the current view tree. In the
ReadOnly case, we load the corresponding message according to the bijection given by ¥. The
RMW case is a combination of both of the above. The other cases retain the simulation as they
propagate the state by induction or without change. �

Like RA, so does RA≤ yield an evaluation semantics ⇓RA≤ . By Proposition 5.3, they coincide:

CoRollaRy 5.4. For a configuration 〈𝑇, 𝜇〉 , 𝑀 and value 𝑉 : 〈𝑇, 𝜇〉 , 𝑀 ⇓RA 𝑉 iff 〈𝑇, 𝜇〉 , 𝑀 ⇓RA≤ 𝑉 .

Thus, we denote both by ⇓.

Remark. In RA≤ we can restrict loading to occur only when the view already points to the message
to load. That is, ReadOnly and RMW can be restricted to the case where 𝛼 = 𝜅. Instead of loading a
message using the unrestricted rule, we use Adv to “prepare” the view for loading, and then load using
the restricted rule.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 19

5.3 Semantic Invariants
Our denotational model uses semantic invariants that initial states possess and RA≤ steps preserve.
During our presentation of the invariants we give intuitive explanations for why the hold. These
are formally grounded in Theorem 5.14 and Proposition 5.17 below.

Basic memory invariants. A memory 𝜇 is scattered if segments of messages in the same location
are pairwise disjoint: ∀ ℓ ∈ Loc∀𝜈, 𝜖 ∈ 𝜇ℓ . 𝜈 .seg ∩ 𝜖.seg ≠ ∅ =⇒ 𝜈 = 𝜖 . Initial memories are
scattered and execution steps preserve the fact that the memory is scattered since added messages
can only occupy unused segments.

Example 5.5. The memory below (left) is scattered, the segments of which we visualize along
the timeline order without overlap (right) thanks to the scattering condition:

y:1@(−1, 0] ⟪x@5⟫, y:3@(0, 7] ⟪x@8⟫

x:0@(−1, 0] ⟪y@0⟫, x:2@(4, 5] ⟪y@7⟫

 x: 0@(−1,⟪0 ; y@0⟫]𝜈1 2@(4,⟪5 ; y@7⟫]𝜈2

y: 1@(−1,⟪0 ; x@5⟫]𝜖1 3@(0,⟪7 ; x@8⟫]𝜖2

We think of timestamps as names, i.e., abstract pointers. Formally, a view 𝜅 points to a message
𝜖 , denoted by 𝜅 � 𝜖 , when 𝜅 holds 𝜖’s timestamp at 𝜖’s location: 𝜅𝜖.lc = 𝜖.t. A view 𝜅 points
to memory 𝜇, denoted by 𝜅 � 𝜇, when it points to a 𝜇-message in all locations: ∀ ℓ ∈ Loc∃ 𝜖 ∈
𝜇ℓ . 𝜅 � 𝜖 . A message 𝜈 points to another message 𝜖 or memory 𝜇 when its view 𝜈.vw points to that
message or memory, denoted by 𝜈 � 𝜖 and 𝜈 � 𝜇. A memory 𝜇 is connected when it is scattered,
and every message within it points to it: ∀𝜈 ∈ 𝜇. 𝜈 � 𝜇.

Example 5.6. The memory from Example 5.5 is not connected: 𝜖2 doesn’t point to any message
in x. In contrast, the memory below (left) is connected; we visualize its timestamp orders (middle)
and points-to relations (right) thanks to the connectedness condition:

y:2@(−1, 5] ⟪x@0⟫, y:4@(0, 7] ⟪x@0⟫

x:1@(−1, 0] ⟪y@0⟫, x:3@(4, 5] ⟪y@7⟫

 x: 1
𝜈1 3

𝜈2

y: 2
𝜖1 4

𝜖2 𝜈1 𝜖2

𝜖1 𝜈2

y

x

x

y

Initial memories are connected, and execution steps preserve memory connectedness, assuming
that all thread views point to the currentmemory: when a thread adds amessage tomemory, it uses
its own view with an advanced timestamp for the message’s location, maintaining connectedness.

Causal memory invariants. The points-to relation tracks some causal dependencies. Intuitively,
events should not be caused by future events, so causal paths, i.e. paths in 𝜇.gph B

〈
𝜇, (�)\id𝜇

〉
,

should not lead to the future along any timeline. We refine the points-to relation to enforce this.
Formally, we say that a view 𝜅 points downwards to a message 𝜖 , written 𝜅 ↩→ 𝜖 when it points

to it, 𝜅 � 𝜖 , and it dominates 𝜖’s view, 𝜅 ≥ 𝜖.vw. A view points downwards into a scattered
memory 𝜇, denoted by 𝜅 ↩→ 𝜇, when it points downward to a message in 𝜇 in every location, i.e.:
∀ ℓ ∈ Loc∃ 𝜖 ∈ 𝜇ℓ . 𝜅 ↩→ 𝜖 . We say that a message points downward into a memory, writing 𝜈 ↩→ 𝜇,
when its view does: 𝜈.vw ↩→ 𝜇. We say that a memory 𝜇 is causally connected, when it is connected,
and every message within it points downwards into it: ∀𝜈 ∈ 𝜇. 𝜈 ↩→ 𝜇.

To further conserve space in the following examples, we omit locations from messages, instead
tagging the row in the set. For example, by 5@(6, 7] ⟪7⟫ in the y row we mean y:5@(6, 7] ⟪x@7⟫.

, Vol. 1, No. 1, Article . Publication date: October 2024.

20 Yotam Dvir, Ohad Kammar, and Ori Lahav

Example 5.7. The memory from Example 5.6 is not causally connected because 𝜖1 � 𝜈2 while
nonetheless 𝜖1.vwy = 0 � 7 = 𝜈2 .vwy. The following memory is causally connected:

y : 1@(−1, 0] ⟪0⟫, 3@(0, 5] ⟪0⟫, 5@(6, 7] ⟪7⟫

x : 0@(−1, 0] ⟪0⟫, 2@(4, 5] ⟪0⟫, 4@(5, 7] ⟪7⟫

 x: 0
𝜈1 2

𝜈2 4
𝜈3

y: 1
𝜖1 3

𝜖2 5
𝜖3 𝜈1 𝜖2 𝜈3

𝜖1 𝜈2 𝜖3

y

x

yx
y

x

Initial memories are causally connected, and execution steps preserve this together with view-
trees labeled solely by downward-pointing views. In showing this, particularly when observing
steps that load a message, the following fact helps; pointing downwards is a stronger condition
than may first appear:

Lemma 5.8. Assume 𝜇 is causally connected. Then 𝜅 ↩→ 𝜇 iff 𝜅 =
⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw.

PRoof. For the “if” (⇐) direction, let ℓ ′ ∈ Loc. Then
𝜅ℓ ′ = (

⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw)ℓ ′ =max {𝜖.vwℓ ′ | 𝜅 � 𝜖 ∈ 𝜇}
In particular, 𝜅 � 𝜇. Moreover, 𝜅 ↩→ 𝜇 because whenever 𝜅 � 𝜖 ∈ 𝜇, we have 𝜅 ≥ 𝜖.vw.

Conversely (⇒), let ℓ ′ ∈ Loc. Then {𝜖 ∈ 𝜇ℓ ′ | 𝜅 � 𝜖}.vw = {𝜖.vw}, and 𝜅ℓ ′ = 𝜖.t = 𝜖.vwℓ ′ . Thus,
𝜅ℓ ′ = (

⊔ {𝜖 ∈ 𝜇ℓ ′ | 𝜅 � 𝜖}.vw)ℓ ′ ≤ (
⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw)ℓ ′ . So 𝜅 ≤

⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw. Since
𝜅 ↩→ 𝜇, if 𝜅 � 𝜖 ∈ 𝜇 then 𝜅 ≥ 𝜖.vw. Thus 𝜅 ≥ ⊔ {𝜖 ∈ 𝜇 | 𝜅 � 𝜖}.vw. �

Paths in a causally connected memory’s graph descend down its timelines:

PRoposition 5.9. Let 𝜇 be a causally connected memory, with a path 𝜈 �∗ 𝜖 in 𝜇.gph.
(1) Views decrease along the path: 𝜈.vw ≥ 𝜖.vw.
(2) If there is also a path 𝜖 �∗ 𝜈 , i.e., 𝜈 and 𝜖 are part of a cycle, then 𝜈.vw = 𝜖.vw.
(3) If they share the location, 𝜈.lc = 𝜖.lc, their timestamps decrease along the path: 𝜈.t ≥ 𝜖.t.

PRoof. Item 1 follows from the fact that the memory is causally connected in the case of a
single-edge path. This extends to a path of any length by induction. The other items are direct
consequences of the first. �

If a causally connected memory 𝜇 has a message in location ℓ , then it has a timestamp-minimal
one which we denote bymin 𝜇ℓ , i.e. (min 𝜇ℓ).t =min 𝜇ℓ .t. We say that causally connected memory
𝜇 is well-formed when it has at least one message at each location, and cycles within 𝜇.gph consist
solely of minimal messages, i.e. if 𝜈 ∈ 𝜇 is part of a cycle in 𝜇.gph, then 𝜈 =min 𝜇𝜈.lc.

Example 5.10. The memory from Example 5.7 is not well-formed: its minimal messages are 𝜈1
and 𝜖1, but 𝜈3 and 𝜖3 are on a cycle. The following memory is well-formed:

y : 1@(−1, 0] ⟪0⟫, 3@(0, 5] ⟪7⟫, 5@(6, 7] ⟪0⟫

x : 0@(−1, 0] ⟪0⟫, 2@(4, 5] ⟪7⟫, 4@(5, 7] ⟪0⟫

 x: 0
𝜈1 2

𝜈2 4
𝜈3

y: 1
𝜖1 3

𝜖2 5
𝜖3 𝜈1 𝜖3 𝜈2

𝜖1 𝜈3 𝜖2

y

x y

x
y x

Initial memories are well-formed, and being well-formed is an invariant of execution steps. In-
deed, messages are added one-by-one and point to existing messages, so they cannot from a new
cycle; and messages are added with a larger timestamp, so minimal messages remains minimal.

PRoposition 5.11. Let 𝜇 be a well-formed memory, and ℓ ∈ Loc.
(1) Minimal messages point at minimal messages: if min 𝜇ℓ ↩→ 𝜈 , then 𝜈 is a minimal message.
(2) Memory extension preserves minimal messages: if 𝜇 ⊆ 𝜌 is well-formed, then min 𝜇ℓ =min 𝜌ℓ .

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 21

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@ .5 ⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@ 1.7 ⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

Fig. 9. Two variations on the memory illustrated in Figure 1. Top: This memory is well-formed. It demon-
strates that the views of messages along a timeline do not have to be ordered: 𝜖2 appears earlier than 𝜖3
on y’s timeline but points to a later message on x’s timeline. Bottom: This memory is not well-formed be-
cause it contains an ascending path, in contradiction to Proposition 5.9. Intuitively, no thread could have
written 𝜖2 because the view that 𝜖2 carries indicates that the thread would have already “known” about 𝜈3
and therefore, following the causality chain, about 𝜖3 as well. Thus, the thread would have been forbidden
from picking 𝜖2’s timestamp.

PRoof of (1). Since 𝜇 is connected, there exists 𝜖 ∈ 𝜇ℓ such that 𝜈 � 𝜖 . By Proposition 5.9,
(min 𝜇ℓ).t ≥ 𝜖.t. By minimality (min 𝜇ℓ).t = 𝜖.t, and since 𝜇 is scattered, 𝜖 =min 𝜇ℓ . Thus 𝜈 is on
a cycle (with 𝜖). Since 𝜇 is built-up, 𝜈 is minimal. �

PRoof of (2). Since 𝜇 is well-formed, min 𝜇ℓ appears in a cycle in 𝜇.gph, and thus in a cycle of
the supergraph 𝜌.gph. Since 𝜌 is well-formed, min 𝜇ℓ is minimal in 𝜌 . �

We denote the set of well-formed memories by Mem. Figure 9 gives a positive example (top)
and a negative example (bottom).

View-tree invariants. Like memories, view-trees also satisfy certain invariants during execution.
In particular, the invariant that all thread views point downwards into the currentmemory depends
on the invariants of memory, and vice-versa. Formally, we say that a view-tree points to/downward
into memory 𝜇, and write 𝑇 � 𝜇 and 𝑇 ↩→ 𝜇 when 𝜅 � 𝜇 and 𝜅 ↩→ 𝜇 for every 𝜅 ∈ 𝑇 .lf. We
then say that a state 〈𝑇, 𝜇〉 is well-formed when 𝜇 is well-formed and 𝑇 ↩→ 𝜇.

While the labels of the view-tree are related to the memory, its structure is intimately related to
the syntactic structure of the configuration’s term.We define this property as an inductive relation
𝑇 � 𝑀 specifying when𝑇 iswell-formed for a term𝑀 . Every view-leaf is well-formed for any term.
A view-node is well-formed for a parallel composition only when its immediate subtrees are well-
formed for each thread. The rest of the rules reach through the term’s evaluation context until
they find a parallel composition sub-term. These follow the congruence rules from the operational
semantics, which we demonstrate with the 𝜆-L and 𝜆-R rules:

Leaf

¤𝜅 � 𝑀

Node
𝑇 � 𝑀 𝑅 � 𝑁

𝑇̂𝑅 � 𝑀 ∥ 𝑁

𝜆-L
𝑇̂𝑅 � 𝑀

𝑇̂𝑅 � 𝑀𝑁

𝜆-R
𝑇̂𝑅 � 𝑁

𝑇̂𝑅 � 𝑉𝑁

, Vol. 1, No. 1, Article . Publication date: October 2024.

22 Yotam Dvir, Ohad Kammar, and Ori Lahav

Example 5.12. For 𝑀 = (𝜆𝑎. 𝑁1 ∥ 𝑁2) (𝑀1 ∥ 𝑀2), we have ¤𝜅 � 𝑀 and ¤𝜅1̂ ¤𝜅2 � 𝑀 . Intuitively,
the evaluation context in𝑀 is (𝜆𝑎. 𝑁1 ∥ 𝑁2) [−], and the active component—where reduction takes
place—is (𝑀1 ∥ 𝑀2). The execution of 𝑁1 ∥ 𝑁2 is suspended under the 𝜆-abstraction, so we asso-
ciate no views with its threads. The view-node is well-formed for the active component by Node.

For 𝑁 = (𝜆𝑎. 𝑁1 ∥ 𝑁2)𝑉 , the view node is not well-formed: ¤𝜅1̂ ¤𝜅2 1 𝑁 . The evaluation context
is empty, and the active (single) thread is (𝜆𝑎. 𝑁1 ∥ 𝑁2)𝑉 : the next execution step has to be 𝜆-App.
Only a view-leaf is well-formed for such a program.

By inspecting the inductive definition of (�) we find that no two rules can arrive at the same
conclusion. This means that the rules are all invertible: for any instantiation of any rule, if the
conclusion holds, then so do all the premises. This means that when 𝑇 � 𝑀 we can easily and
uniquely associate each subtree of 𝑇 to a subterm of 𝑀 . Moreover, the leaves of 𝑇 are associated
to threads within𝑀 such that there is no overlap.

Example 5.13. Returning to Example 5.12, by inverting ¤𝜅1̂ ¤𝜅2 � 𝑀 we findwhich leaf associates
to which subterm: ¤𝜅𝑖 � 𝑀𝑖 . Similarly, by inverting ¤𝜅 � 𝑀 we find that ¤𝜅 � 𝑀1 ∥ 𝑀2. Intuitively,
the subthreads in the latter have not yet been activated (using PaRInit).

Execution invariants. Collecting the invariants, a configuration 〈𝑇, 𝜇〉 , 𝑀 is well-formed of type
𝐴 when: its state 〈𝑇, 𝜇〉 is well-formed; its term is closed of type 𝐴, i.e. · ` 𝑀 : 𝐴; and its view-tree
is well-formed for its term, i.e. 𝑇 � 𝑀 . We show that RA≤ steps preserve well-formedness:

TheoRem 5.14 (PReseRvation). If 〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑅, 𝜌〉 , 𝑁 and 〈𝑇, 𝜇〉 , 𝑀 is a well-formed con-
figuration of type 𝐴, then 〈𝑅, 𝜌〉 , 𝑁 is a well-formed configuration of type 𝐴.

PRoof. By induction on the step. Type-preservation is standard, so we focus on showing the
other aspects of well-formedness of the configuration: that the tree is well-formed (for the term)
and that the tree points downwards (into the memory).

We start with the tree being well-formed for the term.The view-tree after the step is well-formed
if it is a leaf by the Leaf rule. This covers Adv, PaRFin, and all the 𝛽-reductions.

Otherwise, we use the well-formedness rule that corresponds to the step. The well-formedness
rules are invertible and derivations of well-formedness are unique, so we can apply the inverse rule
before the step. For the AppLeft case we use the 𝜆-L rule and the induction hypothesis. Similarly
with PaRLeft and the Node rule. The only case where we do not have an inductive hypothesis to
rely on is the PaRInit case, where we use the Node rule and the Leaf rule for the premises.

It remains to show that the tree points downwards into the memory. The memory doesn’t
change in the PaRFin case, into which the view-leaf after the step points downward since it is
the pointwise maximum of views that do. We use this fact that pointwise maximum preserves
pointing downwards again for those steps that load a message (LoadOnly and RMW) and for the
Adv rule. The steps that add a message (StoRe and RMW) change the timestamp by increasing it,
therefore preserving pointing downwards with respect to the other locations. With respect to the
location itself, the property holds because the view-leaf points to the added message which has
the same view, and views dominate themselves.

For PaRInit and the 𝛽-reductions, the claim is trivial because the set of views does not change.
The remaining steps are congruence rules, where except for PaRLeft and PaRRight, the claim
either follows immediately from the inductive hypothesis because the states are the same in the
premise. For PaRLeft and PaRRight, we need to also show that the other side of the view-tree
points downwards into the new memory. This holds because pointing downwards is stable under
addingmessages tomemory, which is the onlyway thememory can change by taking any step. �

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 23

Henceforth we restrict execution steps to be between well-formed configurations, noting that initial
configurations are always well-formed. Under this assumption, execution steps maintain some re-
lationships between states. To start, we observe that the timestamp of a new message lies between
some thread’s initial and final views:

Lemma 5.15. Assume 〈𝑇, 𝜇〉 , 𝑀 RA≤ 〈𝑅, 𝜌〉 , 𝑁 changed the memory, i.e. 𝜌 ≠ 𝜇. Then: the trees
have the same shape; 𝑇 ≤ 𝑅; and there is a message 𝜈 such that 𝜌 = 𝜇] {𝜈}. Moreover, there are
view-leaves ¤𝛼 in 𝑇 and ¤𝜔 in 𝑅 in corresponding positions, such that 𝛼 ≤ 𝜈.vw ≤ 𝜔 and 𝛼𝜈.lc < 𝜈.t.

PRoof. The Adv rule does not change the memory. For the Ext rule we proceed by induction on
the RA step. The congruence cases are all immediate from the induction hypothesis. Of the others,
only StoRe and RMW add a message, in which cases the premises ensure the claim holds. �

The view-tree structure changes during PaRInit and PaRFin, so they cannot always be com-
pared leaf-to-leaf as in Lemma 5.15. However, the sets of views that label each tree still maintain
the Egli-Milner order induced by the view order:

Lemma 5.16 (Egli-MilneR foR View-leaves). Assume 〈𝑇, 𝜇〉 , 𝑀 ∗
RA≤
〈𝑅, 𝜌〉 , 𝑁 .

• For every 𝛼 ∈ 𝑇 .lf, there exists a leaf 𝜔 ∈ 𝑅.lf, such that 𝛼 ≤ 𝜔 .
• For every 𝜔 ∈ 𝑅.lf, there exists a leaf 𝛼 ∈ 𝑇 .lf, such that 𝛼 ≤ 𝜔 .

PRoof. This property extends from a single step inductively. In the Adv rule case the premise is
the required 𝛼 ≤ 𝜔 for both items. For the Ext rule, we proceed by induction on the RA step. The
congruence cases and those that do not change the view-tree are all immediate from the induction
hypothesis. In the memory-accessing steps, the claim follows from their premises. The cases that
change the tree structure, PaRInit and PaRFin, are trivial to check. �

We combine Lemmas 5.15 and 5.16 to obtain the following execution invariant:

PRoposition 5.17 (ViewsDelimit Execution). Assume 〈𝑇, 𝜇〉 , 𝑀 ∗
RA≤
〈𝑅, 𝜌〉 , 𝑁 . Assume that

𝛼 is dominated by every view in𝑇 .lf, and that 𝜔 dominates every view in 𝑅.lf. Then 𝛼 ≤ 𝜔 ; and for
every added message 𝜈 ∈ 𝜌 \ 𝜇, both 𝛼 ≤ 𝜈.vw ≤ 𝜔 and 𝛼𝜈.lc < 𝜈.t.

PRoof. That 𝛼 ≤ 𝜔 follows from Lemma 5.16. The rest follows by induction on the number of
steps. Indeed, combining our assumption with Lemma 5.15, when a message is added there exist
𝛼 ′ ∈ 𝑇 .lf and 𝜔 ′ ∈ 𝑅.lf such that, 𝛼 ≤ 𝛼 ′ ≤ 𝜈.vw ≤ 𝜔 ′ ≤ 𝜔 ′ and 𝛼𝜈.lc ≤ 𝛼 ′𝜈.lc < 𝜈.t. �

Interrupted executions. To analyze program behavior under concurrent contexts, we have to take
into account all possible ways in which the environment can interfere during the execution. An
interrupted execution 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤· · ·
∗
RA≤ 〈𝑅, 𝜌〉 ,𝑉 is a sequence of executions of the form

〈𝑇, 𝜇〉 , 𝑀 = 〈𝑇1, 𝜇1〉 , 𝑀1 ∗
RA≤ 〈𝑇2, 𝜌1〉 , 𝑀2

〈𝑇2, 𝜇2〉 , 𝑀2 ∗
RA≤ 〈𝑇3, 𝜌2〉 , 𝑀3

...

〈𝑇𝑛, 𝜇𝑛〉 , 𝑀𝑛 ∗
RA≤ 〈𝑇𝑛+1, 𝜌𝑛〉 , 𝑀𝑛+1 = 〈𝑅, 𝜌〉 ,𝑉

where 𝜌 𝑗 ⊆ 𝜇 𝑗+1 for every 1 ≤ 𝑗 ≤ 𝑛−1. Between the executions in the sequence, the configuration
only changes by adding environment messages, the messages in 𝜇 𝑗+1 \ 𝜌 𝑗 , to the memory—the only
interference the environment can cause. We also have 𝜇𝑖 ⊆ 𝜌𝑖 , and we call the messages in 𝜌 𝑗 \ 𝜇 𝑗
local messages. Proposition 5.17 extends to interrupted executions in a straightforward manner,
replacing ∗

RA≤ with ∗
RA≤· · ·

∗
RA≤ and replacing added messages with local messages.

, Vol. 1, No. 1, Article . Publication date: October 2024.

24 Yotam Dvir, Ohad Kammar, and Ori Lahav

6 Denotational Semantics
Based onMoggi’s monadic approach (§6.1) to denotational semantics as a basis, we design a frame-
work for denotational semantics using Brookes-style traces (§6.2) adapted to describe behavior
under RA. We then build upon this framework progressively.

First we define the generating denotational semantics (§6.3). The monad structure underlying
this semantics does not satisfy the monad laws, and so does not fully conform to the monadic
approach. Still, it is useful in forming a base for the next stage, as a metatheoretic tool, as well as
a means to simpler calculations.

Thus, we define the concrete denotational semantics (§6.4). Here we do have a monad, but the
denotational semantics follows the operational semantics too closely to be as abstract as we would
like, evident in program transformations that it does not support. This semantics is useful as an
intermediate step, and plays a central role in our proof of the adequacy theorem.

Finally, we define the abstract denotational semantics (§6.5). This is the semantics we were aim-
ing for: adequate and abstract enough to justify transformations of interest.

6.1 Monad-based Semantics
We recapMoggi’s [40] approach to interpret a CBV calculus like𝝀RA using amonad. Amonad struc-
ture T =

〈
T , returnT, (⟫=T)

〉
consists of three components: a set-level function T ; a set-indexed

function returnT; and a two-argument set-indexed function (⟫=T).The set-level function assigns to
each set𝑋 , whose elements represent fully-evaluated semantic values, the set T𝑋 , whose elements
represent unevaluated effectful programs returning values in𝑋 . The functions returnTX : 𝑋 → T𝑋 ,
the unit, represent the program fragment that returns its input without any observable side-effects.
The two-argument functions (⟫=T𝑋,𝑌) : (T𝑋) × (𝑋 → T𝑌) → T𝑌 , the monadic bind, represent
the sequencing 𝑃 ⟫=T𝑋,𝑌 𝑓 of an 𝑋 -returning program 𝑃 with an 𝑌 -returning program 𝑓 that de-
pends on the result of the former program 𝑃 . We often omit the monad and the set-indexing from
notations, leaving them implicit.

Moggi’s innovation is to take the traditional type and value semantics, following a long tradition
of denotational semantics, and retain its uniform structure even for effectful computation, by using
a monad structure. Each construct has a corresponding semantic construct, and the interpretation
proceeds structurally over the structure of types, context and terms.

Type semantics. Every type 𝐴 denotes a set, where: product types denote the cartesian prod-
uct; variants denote tagged unions; function types use the monad structure to denote the set of
parameterized computations; and typing environments denote the cartesian product:

J𝛤 KT B∏
(𝑎:𝐴) ∈𝛤

J𝐴KT J𝐴→ 𝐵KT B J𝐴KT → T J𝐵KT J(𝐴1 ∗ · · · ∗𝐴𝑛)KT B J𝐴1KT × · · · × J𝐴𝑛KT
J{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}KT B ({𝜄1 } × J𝐴1KT) ∪ · · · ∪ ({𝜄𝑛 } × J𝐴𝑛KT)

In particular, denotations of ground types J𝐺KT do not depend on the monad structure. For exam-
ple, JValKT is in a natural bijection with the (storable) values Val, and we will identify them.

Value semantics. Every value 𝛤 ` 𝑉 : 𝐴 denotes a function J𝑉 Kv
T : J𝛤 KT → J𝐴KT , taking as

argument a semantic environment 𝛾 ∈ J𝛤 KT supplying a semantic value to each variable in 𝛤 :

J𝑏Kv
T (𝛾𝑎) (𝑎:𝐴) ∈𝛤 B 𝛾𝑏 J𝐴.𝜄 𝑉 Kv

T𝛾 B
〈
𝜄 , J𝑉 Kv

T𝛾
〉 J〈𝑉1, ... ,𝑉𝑛〉Kv

T𝛾 B
〈J𝑉1Kv

T𝛾, ... , J𝑉𝑛Kv
T𝛾

〉
J𝜆𝑏 : 𝐵.𝑀Kv

T (𝛾𝑎) (𝑎:𝐴) ∈𝛤 B 𝜆𝛾𝑏 . J𝑀Kv
T (𝛾𝑎) (𝑎:𝐴) ∈𝛤,𝑏:𝐵

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 25

Closed values · ` 𝑉 : 𝐴 denote functions from the singleton J·KT := {()} to J𝐴KT , so we writeJ𝑉 Kv
T for J𝑉 Kv

T (). The semantics of closed ground values do not use the monad structure.

Term semantics. Every term 𝛤 ` 𝑀 : 𝐴 denotes a function J𝑀Kc
T : J𝛤 KT → T J𝐴KT . The monadic

bind expresses left-to-right evaluation order, and the unit expressing pure computation, e.g.:J𝑀𝑁 Kc
T𝛾 B J𝑀Kc

T𝛾 ⟫= 𝜆𝑔. J𝑁 Kc
T𝛾 ⟫= 𝜆𝑟 . 𝑔(𝑟)J〈𝑀1, ... , 𝑀𝑛〉Kc

T𝛾 B J𝑀1Kc
T𝛾 ⟫= 𝜆𝑟1. · · · J𝑀𝑛Kc

T𝛾 ⟫= 𝜆𝑟𝑛 . return 〈𝑟1, ... , 𝑟𝑛〉

Monad laws. While a monad structure suffices to define these interpretations, it does not suffice
to guarantee they behave as expected. For example, a nested tuple of values 𝑉 B 〈〈1, 2〉 , 3〉 has
the value semantics J𝑉 Kv

T = 〈〈1, 2〉 , 3〉 and the term semantics:J𝑉 Kc
T = (return 1 ⟫= 𝜆𝑟 . (return 2 ⟫= 𝜆𝑠. return 〈𝑟, 𝑠〉)) ⟫= 𝜆𝑟 ′ . (return 3 ⟫= 𝜆𝑠′ . return 〈𝑟 ′, 𝑠′〉)

We would expect the two semantics to relate via J𝑉 Kc
T = return J𝑉 Kv

T , but a mere monad structure
will not guarantee it. A monad is a monad structure satisfying:

(return 𝑟 ⟫= 𝑓)

left-neutrality
↓
= 𝑓 (𝑟) 𝑃 ⟫= return

right-neutrality
↓
= 𝑃 (𝑃 ⟫= 𝑓) ⟫= 𝑔

associativity
↓
= 𝑃 ⟫= 𝜆𝑟 . (𝑓 (𝑟) ⟫= 𝑔)

As Moggi shows, a monad does guarantee the value and term semantics agree in this way.
The metatheory also uses the monad laws extensively, such as in the following lemma, which

relates substitutions to standard denotations via typing context extension. Denote by 𝛥 ≤ 𝛤 the
statement that (𝑎 : 𝐴) ∈ 𝛤 whenever (𝑎 : 𝐴) ∈ 𝛥; and define 𝛤 \𝛥 by (𝑎 : 𝐴) ∈ 𝛤 \𝛥 iff (𝑎 : 𝐴) ∈ 𝛤
and (𝑎 : 𝐴) ∉ 𝛥. Let Sub𝛥 B

∏
(𝑎:𝐴) ∈𝛥 {𝑉 | · ` 𝑉 : 𝐴} be the set of variable substitutions for 𝛥.

For Θ ∈ Sub𝛥 , denote by Θ𝑀 the standard simultaneous substitution by Θ in𝑀 .

Lemma 6.1 (Substitution Lemma). Given a monad T , assume 𝛤 ` 𝑀 : 𝐴 and let Θ ∈ Sub𝛥 for
some 𝛥 ≤ 𝛤 . For all 𝛾 ∈ J𝛤 KT , if ∀(𝑏 : 𝐵) ∈ 𝛥.𝛾𝑏 = JΘ𝑏Kv

T , then J𝑀Kc
T𝛾 = JΘ𝑀Kc

T (𝛾𝑏) (𝑏:𝐵) ∈𝛤\𝛥 .

Using the monad laws we can also justify all of the structural transformations. As an example,
consider Jmatch𝑉 with {true.𝑀 | false.𝑀}Kc

T = J𝑀Kc
T . Though 𝑀 may use program effects, the

structure of the transformation only involves the core calculus constructs, so it can be proven by
reasoning abstractly at the level of the monad structure and laws.

Adding the effects. One of the main selling points of Moggi’s approach is its modular support for
extensions with effects. To define the denotations of shared-memory constructs, we extend T with
additional structure, one for each construct: Jstoreℓ,𝑣KT ∈ T1 for assignment,

q
rmwℓ,𝜑 ®𝑣

y
T ∈ TVal

for RMW, and − || |T𝑋,𝑌 − : T𝑋 × T𝑌 → T (𝑋 × 𝑌) for concurrent execution. We often omit the
monad and the set-indexing from notations, leaving them implicit. We then define:J𝑀 := 𝑁 Kc

T𝛾 B J𝑀Kc
T𝛾 ⟫= 𝜆ℓ. J𝑁 Kc

T𝛾 ⟫= 𝜆𝑣. Jstoreℓ,𝑣KTq
rmw𝜑 (𝑀 ;𝑁)

yc
T𝛾 B J𝑀Kc

T𝛾 ⟫= 𝜆ℓ. J𝑁 Kc
T𝛾 ⟫= 𝜆®𝑣 .

q
rmwℓ,𝜑 ®𝑣

y
TJ𝑀 ∥ 𝑁 Kc

T𝛾 B J𝑀Kc
T𝛾 | | | J𝑁 Kc

T𝛾

6.2 Trace-based Semantics
We specialize the monad-based semantics to our case using traces, the semantic counterpart to
interrupted executions. Their core component is a sequence of memory-transitions, summarizing
which messages the behavior they describe relies on and guarantees. A (memory)-transition is pair
〈𝜇, 𝜌〉 of memories, such that 𝜇 ⊆ 𝜌 .

, Vol. 1, No. 1, Article . Publication date: October 2024.

26 Yotam Dvir, Ohad Kammar, and Ori Lahav

We capture the evolving assumptions and guarantees about memory messages by a chronicle:
a possibly empty finite sequence of transitions 𝜉 = 〈𝜇1, 𝜌1〉 ... 〈𝜇𝑛, 𝜌𝑛〉 where 𝜌 𝑗 ⊆ 𝜇 𝑗+1 for every
𝑗 . When 𝜉 is non-empty, we denote its opening and closing memories by 𝜉 .o B 𝜇1 and 𝜉 .c B
𝜌𝑛 . Its local messages are the ones added within transitions: 𝜉 .own B

⋃
𝑖∈{1,...,𝑛} (𝜌𝑖 \ 𝜇𝑖), and its

environment messages are the others. Let Chro be the set of chronicles, ranged over by 𝜉, 𝜂.
In the operational semantics, some messages are obscured from any particular thread due to

its view. The trace captures only an initial view that declares which messages may be relied on to
be available at the beginning, and a final view that declares which messages are guaranteed to be
available at the end. Together, these are the delimiting views.

Finally, a trace includes a semantic representation of the returned value [e.g. 6] Given a set
representing semantic return values 𝑋 , an 𝑋 -pre-trace is an element of View × Chro × View × 𝑋 ,
written 𝛼 𝜉 𝜔 ∴ 𝑟 , whose chronicle component is non-empty. We range over pre-traces with 𝜏, 𝜋, 𝜚 ,
and use 𝜏 .ivw (initial view), 𝜏 .ch (chronicle), 𝜏 .fvw (final view), 𝜏 .ret (returned value) to retrieve
the components of a pre-trace 𝜏 = 𝛼 𝜉 𝜔 ∴ 𝑟 in order.

Such an𝑋 -pre-trace 𝜏 is an𝑋 -trace when each transition in 𝜉 consists of well-formed memories;
the initial view precedes the final views, each pointing downwards into the opening and closing
memories respectively: 𝜉 .o ←↪ 𝛼 ≤ 𝜔 ↩→ 𝜉 .c; and the view and segment of every local message
are bound by the delimiting views, i.e.: ∀𝜈 ∈ 𝜉 .own. 𝛼 ≤ 𝜈.vw ≤ 𝜔 ∧ 𝛼𝜈.lc < 𝜈.t. These conditions
reflect well-formedness and the invariants fromTheorem 5.14 and Proposition 5.17. We denote the
set of 𝑋 -traces by Trace𝑋 . The bottom of Figure 1 depicts an example trace.

Rewrite rules. Semantics of terms 𝑃 ∈ T𝑋 in trace semantics are sets of traces, representing the
possible behaviors, including possible environment interference. As subsets, they carry a natural
inclusion order. We write J𝑀Kc

T ⊆ J𝑁 Kc
T to mean containment in every context, that is ∀𝛾 ∈J𝛤 KT . J𝑀Kc

T𝛾 ⊆ J𝑁 Kc
T𝛾 . Intuitively, this means that every behavior of𝑀 is a behavior of 𝑁 .

Particularly, we will be looking at sets of traces closed under certain rewrite rules reflecting the
way in which traces represent possible behaviors. A rewrite rule x is a binary relation between
pre-traces. Its elements, written 𝜏 x−→ 𝜋 , are called x-rewrites from a source 𝜏 to a target 𝜋 . Let ★
be a set of rewrite rules. We write 𝜏 ★−→ 𝜋 when 𝜏 x−→ 𝜋 for some x ∈ ★. A set 𝑈 ⊆ Trace𝑋 is
★-closed when 𝜏 ∈ 𝑈 and 𝜏 ★−→ 𝜋 ∈ Trace𝑋 implies 𝜋 ∈ 𝑈 . The ★-closure of a set 𝑈 ⊆ Trace𝑋 ,
denoted 𝑈★, is the least ★-closed superset of 𝑈 . Thus 𝑈 is ★-closed iff 𝑈 = 𝑈★. We denote the set
of countable ★-closed subsets of 𝐸 by P★

ctbl (𝐸) B
{
𝑈 ∈ Pctbl (𝐸)

�� 𝑈 =𝑈★
}
. We ★-close a function

𝜙 that returns sets of traces by composition with the closure: 𝜙★ B −★ ◦𝜙 . We say that a function
𝜙 is pointwise★-closed when 𝜙 = 𝜙★. We say that a function 𝜙 between subsets of traces is★-closed
when its restriction to ★-closed subsets is pointwise closed.

Table 1 summarizes all the rewrite rules we will use. This compact figure packs many side con-
ditions and new notation, which we explain as we present the rules. When presenting a rewrite
rule we omit the return value, because they all maintain it.

Monad structure. Given a choice of rewrite rules★, we define the★-monad structure T as follows.
The set-level function of T ’s monad structure sends every set 𝑋 to a countable ★-closed sets of
𝑋 -traces: T𝑋 B P★

ctbl (Trace𝑋). The unit yields all single-transition traces that maintain the view
and the memory. The bind appends traces with compatible intermediate views:

returnTX 𝑟 B
{
𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝑟 ∈ Trace𝑋

}★
𝑃 ⟫=T𝑋,𝑌 𝑓 B

{
𝛼 𝜉𝜂 𝜔 ∴ 𝑠 ∈ Trace𝑌 | 𝛼 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 , 𝜅 ≤ 𝜎 , 𝜎 𝜂 𝜔 ∴ 𝑠 ∈ 𝑓 𝑟

}★
Parallel composition. (| | |T) interleaves chronicles and pairs the returned values. The delimiting

views must bound the views of the resulting traces, so we take the greatest lower bound of the

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 27

Table 1. Summary of all rewrite rules.

𝔤 Loosen 𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ls−−→ 𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔 𝜈 ≤vw 𝜖

Expel 𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ex−−→ 𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔 𝜈 ←⊂ 𝜖

Condense 𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Cn−−→
(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖] 𝜈 ←⊂= 𝜖

𝔠 Stutter 𝛼 𝜉𝜂 𝜔
St−−→ 𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 𝜔

Mumble 𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 𝜔 Mu−−−→ 𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 𝜔
Rewind 𝜅 𝜉 𝜔

Rw−−−→ 𝛼 𝜉 𝜔 𝛼 ≤ 𝜅
Forward 𝛼 𝜉 𝜅

Fw−−→ 𝛼 𝜉 𝜔 𝜅 ≤ 𝜔
𝔞 Tighten 𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔 Ti−−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖} 𝜔 𝜈 ≤vw 𝜖

Absorb 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 Ab−−→ 𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

}
𝜔 𝜈 ←⊂ 𝜖

Dilute
(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖] Di−−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 𝜈 ←⊂= 𝜖

initial views, and the least upper bound of the final views. To define these bounds, denote the set
of views pointing downward into a well-formed memory 𝜇 by − ↩→ 𝜇 B {𝜅 ∈ View | 𝜅 ↩→ 𝜇}.
This set is finite since Loc and 𝜇 are finite, and each 𝜅 mentions only timestamps that appear in
𝜇; and it has a minimum: the view that points to all the initial messages 𝜆ℓ.min 𝜇ℓ .t. Consider a
non-empty 𝑈 ⊆ − ↩→ 𝜇. Since − ↩→ 𝜇 is finite and closed under t, the set 𝑈 has a least upper
bound sup𝜇 𝑈 B

⊔
𝑈 . It also has a greatest lower bound inf𝜇 𝑈 B

⊔ {𝜅 ∈ View |
d
𝑈 ≥ 𝜅 ↩→ 𝜇},

noting
d
𝑈 might not point downward into 𝜇.

Example 6.2. For 𝜇 the memory from Example 5.10, 𝛼1 B ⟪x@5 ; y@7⟫ and 𝛼2 B ⟪x@7 ; y@5⟫,
we have 𝛼1 ↩→ 𝜇 and 𝛼2 ↩→ 𝜇, but 𝛼1 u 𝛼2 = ⟪x@5 ; y@5⟫ 6↩→ 𝜇. Here, inf𝜇 {𝛼1, 𝛼2} = ⟪x@0 ; y@0⟫.

Denoting by 𝜉1 ‖ 𝜉2 the set of all the interleavings of 𝜉1 and 𝜉2 that form chronicles, we define:

𝑃1 | | |T𝑋1,𝑋2
𝑃2 B

{
inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} ∴ 〈𝑟1, 𝑟2〉 ∈ Trace (𝑋1 × 𝑋2)
| 𝜉 ∈ (𝜉1 ‖ 𝜉2) ∧ ∀ 𝑖 ∈ {1, 2} . 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖

}★
Memory access. Mirroring the operational semantics, we interpret:Jstoreℓ,𝑣KT B {

𝜅 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] ∴ 〈〉 ∈ Trace1
}★

Jrmwℓ,ΦKT B q
rmwRO

ℓ,Φ

y
T ∪

q
rmwRMW

ℓ,Φ

y
T where:q

rmwRO
ℓ,Φ

y
T B

{
𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl ∈ TraceVal

�� Φ (𝜈.vl) = ⊥ ∧ 𝜅 � 𝜈 ∈ 𝜇ℓ
}★

q
rmwRMW

ℓ,Φ

y
T B

{
𝜅 〈𝜇, 𝜇] {𝜖}〉 𝜅 [ℓ ↦→𝑡] ∴ 𝜈.vl ∈ TraceVal
| 𝜖 = ℓ :Φ (𝜈.vl) @(𝜈.t, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫ , 𝜅 � 𝜈 ∈ 𝜇ℓ

}★
Requiring the resulting pre-traces to form traces ensures the constraints on their timestamps

and segment hold. Assignment adds a newmessage.The RMW interpretation loads a message, and
adds a new message depending on the modifier’s result.

Remark. Loading is restricted to messages to which the initial view already points. This restriction
will make the denotations from §6.3 more convenient to use, but makes no difference in the presence
of the rewind rewrite rule from §6.4.

Monotonicity. To accommodate reasoning about refinement, we require that the trace monad
operators be monotonic with respect to set inclusion:

PRoposition 6.3. Let 𝑃𝑖 , 𝑄𝑖 ∈ G𝑋𝑖 and 𝑓 , 𝑔 : 𝑋1 → G𝑋2. If 𝑃𝑖 ⊆ 𝑄𝑖 and ∀𝑟 ∈ 𝑋1 . 𝑓 𝑟 ⊆ 𝑔𝑟 then:

𝑃1 ⟫= 𝑓 ⊆ 𝑄1 ⟫= 𝑔 𝑃1 | | | 𝑃2 ⊆ 𝑄1 | | | 𝑄2

, Vol. 1, No. 1, Article . Publication date: October 2024.

28 Yotam Dvir, Ohad Kammar, and Ori Lahav

x: 𝜖· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
. Ls−→

x: 𝜈· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
.

x: 𝜈· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
. Ti−→

x: 𝜖· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
.

Fig. 10. Schematic depictions of the loosen (left) and tighten (right) rewrite rules, focusing on some partic-
ular memory snapshot within the trace. For every 𝑖 , 𝛽𝑖 and 𝜖𝑖 may dovetail, coincide, or be separated. Left:
The environment message 𝜖 is “loosened” to 𝜈 . Right: The local message 𝜈 is “tightened” to 𝜖 .

PRoof. The (−)★ operator ismonotonic by virtue of being a closure operator.Thus, it is sufficient
to show the containment for the operators as defined before taking the ★-closure, which follows
straightforwardly from the set-definitions, where traces are obtained from traces in the operands.

�

6.3 Generating Denotations
In the degenerate case of the ∅-monad structure, which we call the null model and denote by N ,
neither identity axiom hold, as evidenced by return 𝑟 ⟫= return ≠ return 𝑟 , where only on the left
the traces have two transitions. As merely a monad structure, the induced denotational semantics
is insufficiently abstract. For example, this inequation implies J〈〉 ; 〈〉Kc ≠ J〈〉Kc – this model fails
to satisfy even the most basic semantic equivalences. Still, we will find that we can use less abstract
models as stepping stones to more abstract ones.

We identify a set of rewrite rules 𝔤 B {Ls,Ex,Cn} under which the operations of N are closed.
That is, return is pointwise closed under 𝔤; if 𝑓 is pointwise 𝔤-closed, then ⟫= 𝑓 is 𝔤-closed; and
similarly for the effect operations. We explain how the 𝔤-rewrite maintain this proposition as we
present them. For now, let the generating model be the 𝔤-monad structure, which we denote by G.
So we have:

PRoposition 6.4. For all 𝑃𝑖 ∈ G𝑋𝑖 and 𝑓 : 𝑋1 → G𝑋2:

𝑃1 ⟫=N 𝑓 = 𝑃1 ⟫=G 𝑓 𝑃1 | | |N𝑃2 = 𝑃1 | | |G𝑃2
Moreover, returnN = returnG, Jstoreℓ,𝑣KN = Jstoreℓ,𝑣KG , and Jrmwℓ,ΦKN = Jrmwℓ,ΦKG .

This means that we can calculate in G quite concretely; we need not worry about traces that are
obtained from the set-definitions after some arbitrarily long chain of rewrites. So the connections
we establish later between G and the more abstract monad structures (§7.1) become easier to use.

Remark. The difference between denotations in G and in N lies in the higher-order fragment. For
example, return values of traces in J𝜆𝑓 : 1→ 1. 𝑓 〈〉Kc

T are functions that take as argument elements
in J1K→ T J1K. In particular, the denotation depends on T .

In presenting the 𝔤-rewrite rules below, we provide operational intuition by drawing explicit
connections with interrupted executions. However, this intuition should be taken with a grain of
salt: the abstract model (§6.5) uses these rules as well, where traces do not correspond to inter-
rupted executions as they do here.

Loosen. When a program relies on a message from the environment, it relies on the message’s
view being small enough, to not obstruct the behavior that follows. In addition, it relies on the
message’s timestamp, which is part of the view, to be big enough for it not to be obscured when
needed. The rule is depicted on the left of Figure 10.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 29

Define the loosen (Ls) rewrite rule:

Assuming 𝜈 ≤vw 𝜖, 𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ls−→ 𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔 (Loosen)

Here, we use the partial order on messages 𝜈 ≤vw 𝜖 defined by requiring that they may only
differ in their timestamps for other memory locations for which 𝜈 ’s must precede 𝜖’s: 𝜈.lc = 𝜖.lc,
𝜈.vl = 𝜖.vl, 𝜈.seg = 𝜖.seg, and 𝜈.vw ≤ 𝜖.vw. If the source in (Loosen) is a trace, then the target is
a trace iff either 𝜂 is empty or 𝜈 ↩→

(
𝜂] {𝜈}

)
.o.

Intuitively, the source behavior can only use the view in 𝜖 by incorporating it into its view and
the view of its local messages using the max (t) operation on views. Since allowing threads to
silently increase their own view does not change the observed behavior, we would still be able
to guarantee the same local messages if the environment message has a smaller view. To make
this intuition more precise, we outline a simulation argument in the case the program exhibits the
source behavior through an interrupted execution that matches the trace exactly.We do not bother
with a formal proof, since the abstract model §6.5 violates this simplifying assumption anyway.

Given an interrupted execution, we can replace an environment message 𝜖 with a message
𝜈 ≤vw 𝜖 and obtain an interrupted execution of the same program. Whenever a thread with view 𝛼
loads 𝜖 via the ReadOnly step in the original interrupted execution, its view becomes𝜔 B 𝛼t𝜖.vw.
In the new interrupted execution, we instead use the Adv rule to compensate for the earlier view in
𝜈 , once for every other location ℓ , and forward the view to themessage at location ℓ with timestamp
𝜔ℓ . Then we are able to load 𝜖 via ReadOnly, since the message has the same timestamp and the
thread’s view at the location 𝜖.lc = 𝜈.lc hasn’t changed during the Adv steps.The RMW-modifier
still fails in the new execution because 𝜈 and 𝜖 hold the same value and the decision whether to
modify it depends only on the value and the parameters, not the view. Loading via the RMW
rule is similar, where the modifier still succeeds with the same modification. We choose the same
timestamp for the newmessage we dovetail to 𝜈 , and it inherits the current view:𝜔 . Steps via other
rules remain the same.

The N operations are {Ls}-closed since the inclusion of a trace never relies on the view of
an environment message other than its value, segment, and it being dominated by another view:
𝜖.vw ≤ 𝜅. Since 𝜈 ≤vw 𝜖 , the value and segment agree and 𝜈.vw ≤ 𝜖.vw ≤ 𝜅, and so the target trace
will appear in the result of the operation.

Expel. The rewrite expel (Ex) replaces an environment message with two dovetailing messages
that occupy the same segment and have the same view, the latter message also having the same
value, as depicted on the left of Figure 11. This ensures that the value is available at the same
timestamp with the same carried view, and that no more of the timeline is occupied. Formally:

Assuming 𝜈 ←⊂ 𝜖, 𝛼 𝜉
(
𝜂] {𝜖 [i ↦→𝜈.i]}

)
𝜔

Ex−−→ 𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔 (Expel)

Here, 𝜈 ←⊂ 𝜖 is the monotone dovetailing relation, i.e., the two messages dovetail: 𝜈.lc = 𝜖.lc,
𝜈.t = 𝜖.i; and moreover their views compare: 𝜈.vw ≤ 𝜖.vw. The final condition relaxes the rule as
depicted in Figure 11 where the 𝜈.vw = 𝜖.vw was required. This makes no difference to the model,
because the relaxed version is obtained by applying loosen after the strict version, to obtain the
required target.

As was the case for loosen, if the source in (Expel) is a trace, then the target is a trace iff either
𝜂 is empty or 𝜈 ↩→

(
𝜂] {𝜈, 𝜖}

)
.o.

To justify the rule for interrupted executions, suppose 𝜖′ is an environment message in an inter-
rupted execution. By replacing 𝜖′ with 𝜈 and 𝜖 , we obtain another interrupted execution, in which
the environment added these two messages. Throughout the interrupted execution, no view ever
points to 𝜈 , as if 𝜈 was not there.

, Vol. 1, No. 1, Article . Publication date: October 2024.

30 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝑤
𝜖 [i↦→𝜈.i]

Ex−−→
𝑣

𝜈
𝑤

𝜖
𝑣

𝜈
𝑤

𝜖

Ab−−→
𝑤

𝜖 [i↦→𝜈.i]

Fig. 11. Schematic depictions of the expel (left) and absorb (right) rewrite rules, that focus on the segment
of the dovetailed messages together with all pointers into and out of them, within a particular memory
snapshot. The circular cloud represents the subset of the memory that the messages in focus are pointing
to, showing their views are the same. The elliptical cloud represents views—possibly including the initial and
final view, as well as other messages—that point to each of the dovetailing messages. Thus, no view may
point to 𝜈 . A condition that is not depicted is that all the messages must appear in the same places in the
chronicle. Left: The environment message 𝜈 is “expelled” from the message 𝜖′, which becomes 𝜖 . Right: The
local message 𝜈 is “absorbed” into the message 𝜖 , which becomes 𝜖′.

𝑤
𝜈

𝑤
𝜖

Cn−−→

𝑤
𝜈 [↑𝜖]

𝑤
𝜈 [↑𝜖]

Di−−→

𝑤
𝜈

𝑤
𝜖

Fig. 12. Schematic depictions of the condense (left) and dilute (right) rewrite rules, in the style of Figure 11.
A condition that is not depicted is that 𝜈 and 𝜈 ′ must appear in the same places in the chronicle, and 𝜖 may
not appear before them. The views that point to 𝜈 ′ in the source can point either to 𝜈 or to 𝜖 in the target.
Left: The message 𝜈 turns into 𝜈 ′ by “condensing” the environment message 𝜖 . Right: The message 𝜈 ′ turns
into 𝜈 by “diluting” out the local message 𝜖 .

The operations ofN are {Ex}-closed since they never rely on the absence of messages, only for
the availability of segments, which is preserved by this rule.

Condense. In the condense (Cn) rewrite rule, the source behavior may include an environment
message 𝜖 dovetailing some prior message 𝜈 that carries the same value and view. The target
behavior removes 𝜖 , and modifies 𝜈 to a message 𝜈 ′ that occupies the same segment as the two
messages combined, as depicted on the left of Figure 12.

To formally capture how the views in the trace change in this rule, we define pulling a view 𝜅
along a message 𝜖 to be the view in which, if the timestamp at 𝜖.lc is the initial timestamp of 𝜖 ,
then we update the timestamp to be the final timestamp (depicted on the right):

𝜅 [↑𝜖] B
{
𝜅𝜖.lc = 𝜖.i : 𝜅 [𝜖.lc ↦→𝜖.t]
otherwise: 𝜅

𝜅𝜖.lc

↓
(𝜖.i, 𝜖 .t

𝜅 [↑𝜖]𝜖.lc

↓
]

We extend the pulling operation to messages, memories, chronicles, (pre-)traces, and view trees,
by pulling the view associated with these objects. In particular, pulling a dovetailing message
preceding 𝜖 along 𝜖 merges them into one contiguous message.

The rewrite rule, formally:
Assuming 𝜈 ←⊂= 𝜖, 𝛼 𝜉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Cn−−→
(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖] (Condense)

Here we use the monotone repetitive dovetailing relation 𝜈 ←⊂= 𝜖 where the two messages dovetail
monotonically: 𝜈 ←⊂ 𝜖 , and have the same value: 𝜈.vl = 𝜖.vl. As was the case for expel, relaxing
the condition that the views must be equal as depicted more strictly in Figure 12 is admissible, this
time by applying loosen before the strict version, to obtain the required source.

The decomposition of the chronicle in the rule determines where 𝜖 first appears, but 𝜈 can first
appear earlier. This situation is depicted in Figure 13.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 31

𝑤
𝜈

Cn−−→
𝑤

𝜈 [↑𝜖]
𝑤

𝜈 [↑𝜖]

Di−−→

𝑤
𝜈

Fig. 13. Schematic depictions of the condense (left) and dilute (right) rewrite rules as in Figure 12, focusing
this time on a memory without 𝜖 . Left: Since 𝜖 is to appear as an environment message in the chronicle, it
can appear since the opening memory, not appear even in the closing memory, or somewhere in between.
Right: Since 𝜖 is to appear as a local message, it cannot appear in the opening memory, and must appear in
the closing memory.

Unlike loosen and expel, when 𝜂 is empty the target may differ from the source even though 𝜖 ,
nor any othermessage, is removed.This is due to condense pulling views along 𝜖 , whether 𝜖 is there
or not. So when 𝜂 is empty the target differs from the source iff there is a message at 𝜖.i = 𝜈.t.
In this case, assuming the source is a trace, for the target to be a trace 𝜖.seg must be available,
otherwise there will be a memory that is not scattered. If 𝜖.seg is available, then the target will
be a trace, because pulling along a free segment retains the well-formed memory properties. For
example, pointing downwards is preserved due to the following lemma:

Lemma 6.5. ∀𝜖 ∈ Msg∀𝜅, 𝜎 ∈ View. 𝜅𝜖.lc, 𝜎𝜖.lc ∉ 𝜖.seg \ 𝜖.t =⇒ 𝜅 ≤ 𝜎 =⇒ 𝜅 [↑𝜖] ≤ 𝜎 [↑𝜖].

To summarize, if the source in (Condense) is a trace, then the target is a trace iff either 𝜂 is non-
empty, 𝜈.t ∉ 𝜉 .c.t, or 𝜖.seg ∩⋃ 𝜉 .c.seg = ∅.

If we have an interrupted execution with two messages 𝜈 and 𝜖 as in condense, we will also
have an interrupted execution without the environment message 𝜖 , and with 𝜈 ′ instead of 𝜈 . In the
new interrupted execution, 𝜈 ′ is used whenever either 𝜈 or message 𝜖 were used in the original.

The operations of N are {Cn}-closed. This is harder to demonstrate compared to the previous
rules. Considerations involving the value available to load, and the segment available to store,
are similar. If a message dovetailed with 𝜖 in the source, it dovetails with 𝜈 ′ in the target. Thus,
if a message was added due to an RMW in the source, the condition to dovetail with a message
that holds the loaded value is still met in the target. There are also new considerations involving
the rewrite affecting the entire trace rather than just one or two messages. For instance, to show
that (⟫=) preserves the rule, we replace an application of condense after binding the traces with
applications of condense (with the same messages) on each of the traces before binding. This is
subtle because the delimiting views change, and thus the condition imposed on binding the traces
changes from 𝜅 ≤ 𝜎 to 𝜅 [↑𝜖] ≤ 𝜎 [↑𝜖]. The condition still holds due to Lemma 6.5 since neither
𝜅 nor 𝜎 point into the interior of 𝜖.seg, because no message has a timestamp there. This insight
resolves similar subtleties for the other N -constructs.

6.4 Concrete Denotations
Brookes [13] pioneered two rewrite rules to make denotations abstract and support desired pro-
gram transformations: stuttering and mumbling. To define our next model, we adapt these to our
setting, as well as add two additional ones: 𝔠 B {St,Mu, Fw,Rw}. We combine notations of rewrite-
rule sets, e.g. 𝔤𝔠 B 𝔤 ∪ 𝔠. Thus, we denote byM the 𝔤𝔠-monad structure. We call this model the
concrete model because, like the generating model, it still maintains a close correspondence to the
operational semantics RA≤ . However,M is a monad, a crucial element in the proof of the adequacy
theorem (Appendix D).

PRoposition 6.6. M is a monad.

, Vol. 1, No. 1, Article . Publication date: October 2024.

32 Yotam Dvir, Ohad Kammar, and Ori Lahav

Stutter. A program can always make the same memory guarantees on which it relies. This is
captured stutter (St), which inserts a transition with equal components somewhere:

𝛼 𝜉𝜂 𝜔
St−→ 𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 𝜔 (Stutter)

Note that for the target in (Stutter) to form a trace, provided that its source is a trace, we need to
further require that 𝜇 is a well-formed memory, and that 𝛼 points to 𝜇 (which may not be the case
if 𝜉 is empty).

We can also understand stutter using interrupted executions. Given an interrupted execution,
a sequence of 0 steps 〈𝑇, 𝜇〉 , 𝑀 ∗ 〈𝑇, 𝜇〉 , 𝑀 can be inserted anywhere as long as 〈𝑇, 𝜇〉 is well-
formed and 𝜇 contains previous, and is contained in subsequent, memories. This insertion does
not change the initial or the final configurations of the interrupted execution.

As a concrete (contrived) example, stutter is used for validating the transformation 〈〉 ; 〈〉 �
〈〉 ; 〈〉 ; 〈〉. Indeed, though J〈〉 ; 〈〉Kc

G + J〈〉 ; 〈〉 ; 〈〉Kc
G , we do have J〈〉 ; 〈〉Kc

G
{St} ⊇ J〈〉 ; 〈〉 ; 〈〉Kc

G .

Mumble. A program can omit a guarantee and rely on that guarantee internally.This is captured
by mumble (Mu), which combines transitions with the same memory at their common edge:

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 𝜔 Mu−−→ 𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 𝜔 (Mumble)
If the source in (Mumble) is a trace then so is its target.

We can also understand mumble using interrupted executions. If we have an interrupted exe-
cution of the form ... 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤ 〈𝑅, 𝜌〉 , 𝑁 〈𝑅, 𝜌〉 , 𝑁 ∗
RA≤ 〈𝐻, 𝜃〉 , 𝐾 ... that is compati-

ble with the source trace, the we clearly have a shorter interrupted execution ... 〈𝑇, 𝜇〉 , 𝑀 ∗
RA≤

〈𝐻, 𝜃〉 , 𝐾 ... that is compatible with the target trace.
As a concrete example,mumble is used for validating the transformation ℓ?;𝑀 � 𝑀 , which also

demonstrates the importance of the internalized operational invariants, i.e. the use of traces rather
than pre-traces. Indeed, 𝛼 〈𝜇, 𝜌〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc

G is a trace, so 𝛼 � 𝜇. Therefore, there is some
𝛼 〈𝜇, 𝜇〉 𝛼 ∴ 𝑣 ∈ Jℓ?Kc

G . So 𝛼 〈𝜇, 𝜇〉 〈𝜇, 𝜌〉 𝜉 𝜔 ∴ 𝑟 ∈ Jℓ? ;𝑀Kc
G . Thus 𝛼 〈𝜇, 𝜌〉 𝜉 𝜔 ∴ 𝑟 ∈ Jℓ? ;𝑀Kc

G
{Mu} .

Forward. If a program fragment can operate and guarantee a certain set of messages remain
visible, it can operate in the same way and guarantee a subset of these messages remain visible.
The final view serves to guarantee revealed messages to subsequent computation, so we reflect
this fact by forward (Fw), which increases the final view:

Assuming 𝜅 ≤ 𝜔, 𝛼 𝜉 𝜅 Fw−−→ 𝛼 𝜉 𝜔 (Forward)
The rule is also depicted in Figure 14. Note that for the target in (Forward) to form a trace (rather
than a pre-trace), provided that its source is a trace, we need to further require that 𝜔 ↩→ 𝜉 .c.

We can also understand forward using interrupted executions. If we have an interrupted execu-
tion of the form ... 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤ 〈𝑅, 𝜌〉 , 𝑁 , we can append Adv steps to the final sequence of
steps to obtain ... 〈𝑇, 𝜇〉 , 𝑀 ∗

RA≤ 〈𝑅
′, 𝜌〉 , 𝑁 , where 𝑅 ≤ 𝑅′ ↩→ 𝜌 .

As a concrete example, stutter and forward are used in validating the transformation 〈〉 � ℓ?; 〈〉.
We can use stutter to compensate for the additional transition. However, this is insufficient on its
own, because not only is there an extra transition, the initial and final views from Jℓ? ; 〈〉Kc

G may
be different. To compensate for that we use forward.

Rewind. If a program fragment can operate by relying on a certain set of visible messages, it
can operate in the same way by relying on a superset of these messages being visible. The initial
view serves to guarantee revealed messages from previous computation, so we reflect this fact by
rewind (Rw), which decreases the initial view:

Assuming 𝛼 ≤ 𝜅, 𝜅 𝜉 𝜔 Rw−−→ 𝛼 𝜉 𝜔 (Rewind)

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 33

𝜖· · · · · · 𝜈 · · ·𝛼
Rw−−→ 𝜖 𝜈· · · · · · 𝜈 · · ·𝛼 ′ 𝜈· · · · · · 𝜖 · · · 𝜔

Fw−−→ 𝜈 𝜖· · · · · · 𝜖 · · · 𝜔 ′

Fig. 14. Schematic depictions of the rewind and forward rewrite rule, focusing on a single location, where
the initial/final view points to 𝜈 before and points to 𝜖 after. The messages 𝜈 and 𝜖 may coincide, dovetail, or
be separated. Left: The initial view 𝛼 is “rewound” to 𝛼 ′. Right: The final view 𝜔 is “forwarded” to 𝜔 ′.

The rule is also depicted in Figure 14. Note that for the target in (Rewind) to form a trace (rather
than a pre-trace), provided that its source is a trace, we need to further require that 𝛼 ↩→ 𝜉 .o.

We can also understand rewind using interrupted executions, as we did for forward. Instead of
appending Adv steps to the final sequence, we prepend Adv steps to the initial sequence.

As a concrete example, rewind and stutter are used in validating the transformation𝑀 � 〈〉 ;𝑀 .

6.5 Abstract Denotations
Finally, we define the abstract model, A as the 𝔤𝔠𝔞-monad structure, where 𝔞 B {Ti,Ab,Di} are
rewrite rules, presented below. This model fulfills the basic requirement of a monadic model:

PRoposition 6.7. A is a monad.

By including the additional rewrite rules of 𝔞 we give up the strictly operational interpretation
that we have assumed when presenting the previous rules. This allows us to obtain the abstraction
that the concrete model lacks. We took a parsimonious approach, only proposing rules that we
need to justify program transformations that the RA model is expected to validate. With each
rewrite rule, we present a program transformations whose validation uses that particular rule,
though other 𝔤𝔠-rewrites are often required as well.

Tighten. The role of the view that a message carries, other than providing the timestamp, is to
constrain the loading thread by increasing its view when it loads the message. Considering a local
message 𝜈 , its view serves to guarantee that loading it would not obscure any message within
a certain portion of the memory. Therefore, replacing 𝜈 by 𝜖 that only differs in its view, where
𝜈 ≤vw 𝜖 , as depicted on the right of Figure 10, means that only a sub-portion of the memory is
guaranteed not to become obscured by loading the message, and keeps everything else the same.
This is the effect of the tighten (Ti) rewrite rule. Formally:
Assuming 𝜈 ≤vw 𝜖, 𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔 Ti−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖} 𝜔 (Tighten)
See Figure 15 for a concrete example.

As a concrete benefit of tighten, consider the RA-valid (but SC-invalid) write-read-reordering
transformation ℓ :=𝑣 ; let𝑎 = ℓ ′? in𝑎 � let𝑎 = ℓ ′? in ℓ :=𝑣 ;𝑎, where ℓ ≠ ℓ ′. On the right, the added
message carries the view of the thread after it is increased by the view of the loaded message, but,
on the left, the added message carries the initial view of the thread. By applying tighten to traces
of the left, we compensate for this difference.

Absorb. Applying absorb (Ab) removes a local message 𝜈 and decreases the initial timestamp of
a dovetailing local message 𝜖 with the same view, such that the resulting 𝜖′ covers the segment of
𝜈 . This is depicted on the right of Figure 11. In this way, the rule weakens its memory guarantee
to the environment because it has less messages available to load from, without strengthening
the guarantee by way of making any more of the location’s timeline available. No view can point
to 𝜈 before applying this rule, otherwise the resulting pre-trace would not be a trace. The rule is
formally specified as follows, where we abbreviate by denoting 𝜖𝑡i B 𝜖 [i↦→𝑡]:
Assuming 𝜈 ←⊂ 𝜖, 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 Ab−−→ 𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

}
𝜔 (Absorb)

, Vol. 1, No. 1, Article . Publication date: October 2024.

34 Yotam Dvir, Ohad Kammar, and Ori Lahav

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@ 3.5 ⟫𝜈 ′2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1

𝜖1
3

𝜖3

𝛼

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
3

𝜖3

〉〈
x: 1

𝜈1
2

𝜈2
1

𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1

𝜖1
7

𝜖2
3

𝜖3

𝜔

〉
∴ 5

Fig. 15. A possible result from rewriting the trace from Figure 1 using tighten. Since 𝜈2 is local in the trace
from Figure 1, tighten can advance its view to point to 𝜖3 instead of 𝜖1. The same replacement is applied
throughout the trace’s sequence, not just the closing memory.

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈 ′3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1

𝜖1
3

𝜖3

𝛼

, x: 1
𝜈1

1
𝜈 ′3

y:
1

𝜖1
3

𝜖3

〉〈
x: 1

𝜈1
1

𝜈 ′3

y:
1

𝜖1
7

𝜖2
3

𝜖3

, x: 1
𝜈1

1
𝜈 ′3

y:
1

𝜖1
7

𝜖2
3

𝜖3

𝜔

〉
∴ 5

Fig. 16. A possible result from rewriting of the trace from Figure 15 using absorb. The dovetailed messages
𝜈2 and 𝜈3 are local in the trace from Figure 1, added within the same transition, so by rewriting by absorb
they can be replaced by 𝜈 ′3 obtained by stretching 𝜈3’s segment to cover 𝜈2’s segment.

See Figure 16 for a concrete example.
As in expel, we relax the condition of equal views, admissible due to tighten.
The transformation ℓ := 𝑤 ; ℓ := 𝑣 � ℓ := 𝑣 is a concrete example where this rule is useful, in

which we use absorb to compensate for the extra message. Specifically, if the local message on the
right is 𝛽 , we pick some 𝑡 from the interior of 𝛽.seg, a trace with a local message due to ℓ := 𝑤
that has the segment (𝛽.i, 𝑡] and a trace with a local message due to ℓ := 𝑢 that has the segment
(𝑡, 𝛽 .t]. After binding, we use mumble to combine the transitions, then absorb to replace these
two messages with 𝛽 .

Dilute. Formally, the dilute (Di) rule is specified as follows:

Assuming 𝜈 ←⊂= 𝜖,
(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖] Di−−→ 𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔 (Dilute)

See Figure 17 for a concrete example.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 35

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@ .5 ⟫𝜈1 x:2@(9.5, .5] ⟪y@ 1 ⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, .5] ⟪x@91⟫𝜖 ′1 y:1@(.5, 1] ⟪x@91⟫𝛽 y:7@(1, 2] ⟪x@91⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

.5
|

1
|

2
|
3
|

3.5
|

〈
x: 1

𝜈1

y:
1
𝜖 ′1

3
𝜖3

𝛼

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1
𝜖 ′1

1
𝛽

3
𝜖3

〉〈
x: 1

𝜈1
2

𝜈2
1

𝜈3

y:
1
𝜖 ′1

1
𝛽

7
𝜖2

3
𝜖3

, x: 1
𝜈1

2
𝜈2

1
𝜈3

y:
1
𝜖 ′1

1
𝛽

7
𝜖2

3
𝜖3

𝜔

〉
∴ 5

Fig. 17. A possible result from rewriting of the trace from Figure 1 using dilute. Themessage 𝜖1 from Figure 1
was replaced with 𝜖′1, with the same value 1. The local message 𝛽—which takes up the rest of the missing
space left behind by 𝜖1—always appears with 𝜖′1, dovetailingwith it and carrying the same value. Themessage
𝜖2, that used to dovetail with 𝜖1, now dovetails with 𝛽 .

We restrict to the case that 𝜈.vw = 𝜖.vw when explaining the rule. The rest can be seen as a
formal extension which is admissible in the presence of tighten, as with condense and loosen.

Unpacking this definition, we first note that, although we are focusing on the case where the
source and target are traces, the pre-trace expression 𝜏 ′ B 𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔 within the
source may not be a trace itself. In particular, there could be views in 𝜏 ′ that point to 𝜖 even though
there is nomessage there until the pulling (−) [↑𝜖] takes effect, after which theywill point to 𝜈 [↑𝜖].
There could also be views that point to 𝜈 in 𝜏 ′, which too point to 𝜈 [↑𝜖] in the source. Therefore,
views that point to 𝜈 [↑𝜖] in the source could point to either 𝜈 or 𝜖 in the target—the latter being a
pointer moving. That is, in terms of the memory graph’s structure, we think of 𝜈 [↑𝜖] and 𝜈 being
the same vertex labeled differently in the memories before and after the rewrite respectively, with
some pointers moved to the newly added 𝜖-labeled vertex.This is depicted on the right of Figure 12.

Another tricky thing about this rule is that 𝜈 could appear first before 𝜖 , and could be either a
local message or an environment message. This is depicted on the right of Figure 13.

Justifying this rewrite, if the program relies on 𝜈.vl being available at 𝜈 [↑𝜖] .t, it can instead rely
on it being available with 𝜈.t with a view that will impose the same restrictions on the program
once it loads the message and inherits the view; all this, so long as the remainder of the segment
remains unoccupied until it guarantees the same value and the same view there (with 𝜖). Similarly,
if the program guarantees the value with 𝜈 [↑𝜖], it can guarantee it with 𝜈 instead, so long as only
𝜖 can occupy the remaining segment.

As a concrete example of this rule in use, consider the transformation ℓ? � FAA (ℓ, 0). A trace
from the target has amessage 𝜖 added to dovetail with an existingmessage 𝜈 . So there is amatching
trace in the source without that added message. By closure under 𝔤, we can Cn-rewrite the trace,
pulling 𝜈 by 𝜖 (the Cn-rewrite is defined even when pulling by a message that is not there). Then,
we can apply dilute to add 𝜖 .

7 Metatheory
The difference between the different monads from §6 are due to the abstraction afforded to them
by the rewrite rules under which they are closed. Ultimately, it is the monad A that we are inter-
ested in, as it is the one over which we define satisfactory denotational semantics. To prove the

, Vol. 1, No. 1, Article . Publication date: October 2024.

36 Yotam Dvir, Ohad Kammar, and Ori Lahav

results that justify this, we first relate the different monads using properties of the rewrites rules
and their interactions (§7.1). Then, focusing on A, we prove (directional) compositionality (§7.2)
and soundness (§7.3). These results serve as stepping stones towards the main result: (directional)
adequacy (§7.4). Finally, we exhibit the sufficient abstraction of the denotational semantics with
various transformations it supports (§7.5).

7.1 Commutativity of Rewrites
A complicating aspect of these trace models is how intricately rewrites between traces interact.
For example, an application of forwardmay only be possible after adding a transition to the end of
the chronicle with stutter, in which the messages that the final view is intended to point to exist.
So given a rewrite 𝜏 St−→ 𝜋

Fw−−→ 𝜚 , it may not be possible to find any 𝜋 ′ such that 𝜏 Fw−−→ 𝜋 ′
St−→ 𝜚 .

At other times, commuting in this way is guaranteed to be possible. As a relatively simple exam-
ple, an application of loosen can always be made before one of stutter rather than after it. Even if
the message that loosen acts on happens to appear in the transition that stutter adds to the chron-
icle in the sequence 𝜏 St−→ 𝜋

Ls−→ 𝜚 , in the alternative sequence 𝜏 Ls−→ 𝜋 ′
St−→ 𝜚 the transition added

already includes the “loosened” message. It is important to check that the pre-trace 𝜋 ′ is in fact a
trace. Since 𝜏 is a trace, then—other than the trivial case in which 𝜋 ′ is 𝜏 itself—we only need to
check that the “loosened” message points downwards into the memories in which it appears. This
we infer from the fact that every memory in 𝜋 ′ appears in 𝜚 , which is itself a trace.

More generally, every sequence of rewrites can be rearranged such that 𝔤-rewrites appear first,
then 𝔠-rewrites, and finally 𝔞-rewrites. This property will play a pivotal rule in the metatheory,
and it is an immediate consequence of the following lemma. We write x � y when x−→ y−→⊆ y−→ x−→,
where x−→ and y−→ are restricted to traces.

Lemma 7.1 (RewRite Commutativity). If x ∈ 𝔞 and y ∈ 𝔤𝔠, or x ∈ 𝔠𝔞 and y ∈ 𝔤, then x � y.

PRoof. The proof proceeds by case analysis on x and y, each encapsulated in diagram(s) such as
the two in Figure 18.The detailed proof, including all of the diagrams, is in Appendix F. Specifically,
see diagrams 31 and 42 for larger and more detailed versions of those in Figure 18.

Each diagram shows the assumed rewrite sequence 𝜏 x−→ 𝜋
y−→ 𝜚 on the left, with the conditions

that are known because they were required for the rewrites to be applicable; and the deduced
sequence 𝜏 x−→ 𝜋 ′

y−→ 𝜚 on the right, with the conditions that need to hold for the rewrites to be
applicable. The conditions are enough to show that the rewrite rules apply for pre-traces, but for
the sequence to be valid, we must verify that 𝜋 ′ is a trace. This is done by inferring from the fact
that it was x-rewritten from the trace 𝜏 , and y-rewritten to the trace 𝜋 , using the conditions we
have collected as we presented the rewrite rules.

The cases in Figure 18 are among the more interesting cases in which the activities of x and
y overlap. The left diagram shows a sub-case of Ab � Cn in which the absorbing message (𝜖)
also serves as the condensing message. On the right, a sub-case of Di � Cn in which the diluted
message (𝜖) is also the message that is being condensed. This case is particularly tricky because
the pulls need to be commuted, as in (− [↑𝜖]) [↑𝜖 [↑𝜖]] = (− [↑𝜖]) [↑𝜖 [↑𝜖]]. �

Remark. When defining the rewrite rules, we could have restricted 𝜈 ←⊂ 𝜖 (and similarly 𝜈 ←⊂= 𝜖) to
messages with equal views: 𝜈.vw = 𝜖.vw, resulting in equivalent closures. For example, to apply the
restricted version of absorb, one first applies tighten, which is also an 𝔞-rewrite, to make the views
equal. In fact, we used this slightly simpler presentation in the abridged version of this paper [21].
Using the simpler presentation would require a less tidy statement in Rewrite Commutativity. For

example, we would not have Di � Ls, because it may be the case that we “dilute” an environment

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 37

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜖 ←⊂ 𝜖

Cn

𝜖𝜈.ii ←⊂ 𝜖

𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]
Ab

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜖 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Cn

𝜈 ←⊂= 𝜖

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

Fig. 18. Two cases from the proof of Rewrite Commutativity in which “active” messages overlap.

message and then “loosen” it. After commuting, using the restricted version of dilute, we would need to
then “tighten” the new local message to recover the resulting trace from the original rewrite sequence.

As a corollary to Rewrite Commutativity, we can commute 𝔠𝔞-rewrites out of the G-operators:

Lemma 7.2 (DefeRRal of ClosuRe). Let 𝔠 ⊆ ★ ⊆ 𝔠𝔞. For all 𝑃𝑖 ∈ G𝑋𝑖 and 𝑓 : 𝑋1 → G𝑋2:(
𝑃★1 ⟫=

G 𝑓 ★
)★

=
(
𝑃1 ⟫=G 𝑓

)★ (
𝑃★1 | | |G𝑃★2

)★
=
(
𝑃1 | | |G𝑃2

)★
PRoof. In the proof we rely on the fact that every closure in 𝔞 is mirrored in 𝔤. For example,

instead of rewriting some trace 𝜏 ∈ 𝑃1 by Ab and then “binding” it with a trace 𝜋 ∈ 𝑓 (𝜏 .vl), we
can instead mirror its effect by Ex-rewriting 𝜋 to make its messages match 𝜏 ’s, bind those together,
and then use Ab after the bind.

The detailed proof is in Appendix A. �

Deferral of Closure also applies to M and A instead of G, since G𝑋 ⊇ M𝑋 ⊇ A𝑋 . Since
calculations in G are relatively simple, this lemma is quite convenient to have.

Example 7.3. The associativity laws forM and A are implied by the one for G. To show this
forM, we specialize Deferral of Closure to ★ = 𝔠, and restrict to 𝑃 ∈ M𝑋 , 𝑓 : 𝑋 → M𝑌 , and
𝑔 : 𝑌 →M𝑍 , obtaining:(

𝑃 ⟫=M 𝑓
)
⟫=M 𝑔 =

((
𝑃 ⟫=G 𝑓

)𝔠
⟫=G𝑔

)𝔠
=

((
𝑃 ⟫=G 𝑓

)
⟫=G𝑔

)𝔠
𝑃 ⟫=M

(
𝜆𝑟 . 𝑓 (𝑟) ⟫=M 𝑔

)
=

(
𝑃 ⟫=G

(
𝜆𝑟 . 𝑓 (𝑟) ⟫=G𝑔

)𝔠)𝔠
=

(
𝑃 ⟫=G

(
𝜆𝑟 . 𝑓 (𝑟) ⟫=G𝑔

))𝔠
The same can be repeated for A by specializing to ★ = 𝔠𝔞.

When calculating denotations of terms, we can use Deferral of Closure to similarly delay taking
the closure. For programs specifically, we can delay all the way through, only taking the closure at
the top level. RelatingM to A in this way is a key step in our proof of adequacy. Thus, we state:

Lemma 7.4 (RetRoactive ClosuRe). If𝑀 is a program, then J𝑀Kc
A = J𝑀Kc

M
𝔞 .

The proof is in Appendix A.
The main focus in the rest of §7 is the denotational semantics over A. To emphasize this fact,

and to avoid clutter, we henceforth omitA from its semantic notations. In particular, we write J𝑀Kc

rather than J𝑀Kc
A .

7.2 Compositionality
To state compositionality, and later adequacy, we need a few technical concepts involving captur-
ing and capture-avoiding substitution in 𝝀RA and its semantics. We extend 𝝀RA with well-typed
second-order metavariables: these are binding-aware identifiers 𝛤 ` M : 𝐴. Metavariables repre-
sent “holes” into whichwe can slot well-typed terms 𝛤 ` 𝑀 : 𝐴, in an operation calledmetavariable

, Vol. 1, No. 1, Article . Publication date: October 2024.

38 Yotam Dvir, Ohad Kammar, and Ori Lahav

substitution. When such a metavariable appears in a term, it is accompanied by an explicit value
substitution governing which values to substitute when we slot a term into it. Metavariable sub-
stitution captures the variables of which the metavariables are aware.

Example 7.5. Consider the following metavariable that is aware of a context with two variables:
𝑎 : Loc, 𝑏 : Val ` M : 1. The term ` M[𝑎 ↦→ x, 𝑏 ↦→ 42] : 1 contains this metavariable and no other
variables. Metasubstituting the open term 𝑎 : Loc, 𝑏 : Val ` 𝑎 := 𝑏 for M yields ` x := 42 : 1.

This treatment of metavariables and their substitution is tedious but standard given the binding
structure in the syntax. A (term) context 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵 is a term of type 𝐵 with variables
from 𝛥 and one meta-variable 𝛤 ` − : 𝐴 of type𝐴 that assumes a binding context 𝛤 . It is a program
context if 𝛥 is empty and 𝐵 =𝐺 is ground.

The recursive definition of a term’s denotation only uses the denotations of its subterms, so the
semantics is automatically compositional. Abbreviating 𝛤 ` 𝑀 : 𝐴 and 𝛤 ` 𝑁 : 𝐴 into 𝛤 ` 𝑀, 𝑁 : 𝐴:

PRoposition 7.6 (Compositionality). Let 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵 be a term context and assume
𝛤 ` 𝑀, 𝑁 : 𝐴. If J𝑀Kc = J𝑁 Kc then JΞ [𝑀]Kc = JΞ [𝑁]Kc.

However, we are interested in a directional version of this, dealing not only with set equality
but also with set inclusion. Simply replacing = with ⊆ in Proposition 7.6 results in a false claim.
This is because the language is higher-order, so only a “nested” form of containment holds, which
degenerates to containment when restricted programs:

TheoRem 7.7 (DiRectional Compositionality). Let · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 be a program context
and assume 𝛤 ` 𝑀, 𝑁 : 𝐴. If J𝑀Kc ⊆ J𝑁 Kc then JΞ [𝑀]Kc ⊆ JΞ [𝑁]Kc.

The proof is in Appendix B.

7.3 Soundness
A basic part of the correspondence between the denotational and the operational semantics is its
soundness, in the sense that the denotation of a program has traces corresponding to evaluations.
More specifically, program evaluation is reflected in the denotation of the program by a single-
transition trace, using the greatest lower bound of the initial view tree as the initial view:

TheoRem 7.8 (Soundness). For a program 𝑀 , if 〈𝑇, 𝜇〉 , 𝑀 ⇓ 𝑉 , then there exist 𝜇′ and 𝜔 such
that inf𝜇 𝑇 〈𝜇, 𝜇′〉 𝜔 ∴ 𝑉 ∈ J𝑀Kc

M

The proof is in Appendix C. By Retroactive Closure we can replace J𝑀Kc
M with J𝑀Kc above.

Impossible outcomes. The contrapositive presentation of Soundness states that certain evalua-
tions of a program can be ruled out by inspecting its denotation. For example, the impossible
evaluations of (MP) from Example 5.2 can be shown indirectly by calculating its denotation.

7.4 Adequacy
Adequacy uses contextual refinements to formalize how denotations capture behavior within any
context: for 𝛤 ` 𝑀, 𝑁 : 𝐴, we say that 𝑀 contextually refines 𝑁 , denoted 𝛤 ` 𝑀 v 𝑁 : 𝐴,
or 𝑀 v 𝑁 for short, if 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑀] ⇓ 𝑉 =⇒ 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑁] ⇓ 𝑉 for every program context
· ` Ξ [𝛤 ` − : 𝐴] : 𝐺 , initial configuration state 〈 ¤𝛼, 𝜇〉, and value 𝑉 .

TheoRem 7.9 (DiRectional Adeacy). If J𝑀Kc ⊆ J𝑁 Kc then𝑀 v 𝑁 .

The proof begins by examining the tight correspondence between traces in denotations overM
and interrupted executions. Formally, we write 𝑀 :: 𝜏 :: 𝑉 when 𝑀 executes through 𝜏 to 𝑉 : there

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 39

is an interrupted execution from 𝑀 to 𝑉 such that 𝜏 .vl = J𝑉 Kv
M , which starts with the view-leaf

labeled by 𝜏 .ivw, passes exactly through the memory transitions of 𝜏 .ch, and ends with the view-
leaf labeled by 𝜏 .fvw. By the Fundamental Lemma, the statement and proof of which we relegate
to Appendix D, if 𝜏 ∈ J𝑀Kc

M then there exists an appropriate value 𝑉 such that𝑀 :: 𝜏 :: 𝑉 .
Traces in denotations overA do not enjoy this correspondence, due to the model’s abstraction.

However, a looser correspondence holds, between denotations of programs to their evaluations:

Lemma 7.10 (Evaluation Lemma). For a program𝑀 , if 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀Kc then 〈 ¤𝛼, 𝜇〉 , 𝑀 ⇓ 𝑟 .

PRoof. By Retroactive Closure the trace is obtained by 𝔞-rewriting a trace in theM denotation.
We proceed by induction on the length of this sequence. In the base case, we use the Fundamental
Lemma which, for a single-transition trace degenerates to an uninterrupted execution. For the
step, we observe that 𝔞-rewrites preserve evaluation. We leave the details to Appendix D. �

The converse of the Evaluation Lemma we already have as a special case of Soundness. These
two, together with Directional Compositionality, give us Directional Adequacy:

PRoof of DiRectional Adeacy. Assume J𝑀Kc ⊆ J𝑁 Kc. Let · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 be a pro-
gram context and assume 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑀] ⇓ 𝑉 . By Soundness, 𝜏 ∈ JΞ [𝑀]Kc for some 𝜏 of the form
𝛼 〈𝜇,−〉 − ∴ 𝑉 . By Directional Compositionality and the assumption, 𝜏 ∈ JΞ [𝑁]Kc. By the Evalu-
ation Lemma, 〈 ¤𝛼, 𝜇〉 ,Ξ [𝑁] ⇓ 𝑉 . �

7.5 Validating Transformations
Using Directional Adequacy, we can validate𝑀 � 𝑁 in our model by showing that J𝑀Kc ⊇ J𝑁 Kc.
This already justifies structural transformations by virtue of using standard denotational semantics,
as mentioned in §6.1. For others, thanks to Deferral of Closure and closure preserving containment,
we can use the G operators instead of the A operators, making calculations simpler.

Figure 3 lists various transformations that we support in this way. As indicated there, some
transformations are supported thanks to the inclusion of the abstract rewrite rules. Another feature
that facilitates abstraction is the restriction of denotations to traces in which semantic invariants
are captured; this additional abstraction is witnessed by Jx? ; 〈〉Kc ⊇ J〈〉Kc supporting Irrelevant
Read Elimination. Appendix E includes a more general collection (Table 2) and proofs.

The listed memory-access transformations are stated in ground terms, but imply more general
variants. For example,Write-Write Elimination is stated as ℓ :=𝑤 ;ℓ :=𝑣 � ℓ :=𝑣 , fromwhich we can
deduce e.g., 𝜆𝑎 : Loc . 𝑎 :=𝑤 ; 𝑎 := 𝑣 � 𝜆𝑎 : Loc . 𝑎 := 𝑣 . This is a consequence of using the standard
semantics: structural transformations include any pure computations that result in the same value,
and in particular, we can replace the locations and (storable) values with pure computations that
result in them, or program variables of the same type.

All told, we claim that our adequate denotational semantics is sufficiently abstract. This sup-
ports the case that Moggi’s semantic toolkit can successfully scale to handle the intricacies of RA
concurrency by adapting Brookes’s traces.

8 Related Work and Concluding Remarks
Our work follows the approach of Brookes [13] and its extension to higher-order functions us-
ing monads by Benton et al. [6]. Brookes developed a denotational semantics for shared memory
concurrency under standard sequentially consistency [35], and established full abstraction w.r.t. a
language that has a global atomic await instruction that locks the entire memory. The concepts
behind this approach had been used in multiple related developments, e.g. [12, 36, 37, 50]. We hope
that our work that targets RA will pave the way for similar continuations.

, Vol. 1, No. 1, Article . Publication date: October 2024.

40 Yotam Dvir, Ohad Kammar, and Ori Lahav

Jagadeesan et al. [25] adapted Brookes’s semantics to the x86-TSO memory model [42]. They
showed that for x86-TSO it suffices to include the final store buffer at the end of the trace and add
two additional simple closure rules that emulate non-deterministic propagation of writes from
store buffers to memory, and identify observably equivalent store buffers. The x86-TSO model,
however, is much closer to sequential consistency than RA, which we study in this paper. In partic-
ular, unlike RA, x86-TSO is “multi-copy-atomic” (writes by one thread are made globally visible to
all other threads at the same time) and successful RMWoperations are immediately globally visible.
Additionally, the parallel composition construct in Jagadeesan et al. [25] is rather strong: threads
are forked and joined only when the store buffers are empty. Being non-multi-copy-atomic, RA
requires a more delicate notion of traces and closure rules, but it has more natural meta-theoretic
properties, which one would expect from a programming language concurrency model: sequenc-
ing, a.k.a. thread-inlining, is unsound under x86-TSO [see 25, 33] but sound under RA (see Figure 3).

Burckhardt et al. [14] developed a denotational semantics for hardware weak memory mod-
els (including x86-TSO) following an alternative approach. They represent sequential code blocks
by sequences of operations that the code performs, and close them under certain rewrite rules (re-
orderings and eliminations) that characterize the memory model. This approach does not validates
important optimizations, such as Read-Read Elimination. Moreover, unlike x86-TSO, RA cannot
be characterized by rewrite operations on SC traces [33].

Dodds et al. [19] developed a fully abstract denotational semantics for RA, extended with fences
and non-atomic accesses. Their semantics is based on RA’s declarative (a.k.a. axiomatic) formula-
tion as acyclicity criteria on execution graphs. Roughly speaking, their denotation of code blocks
(that they assume to be sequential) quantifies over all possible context execution graphs and calcu-
lates for each context the “happens-before” relation between context actions that is induced by the
block. They further use a finite approximation of these histories to atomically validate refinement
in a model checker. While we target RA as well, there are two crucial differences between Dodds
et al.’s work and ours. First, we employ Brookes-style totally ordered traces and use interleaving-
based operational presentation of RA. Second, and more importantly, we strive for a compositional
semantics where denotations of compound programs are defined as functions of denotations of
their constituents, which is not the case for Dodds et al.’s definitions. Their model can nonetheless
validate transformations by checking them locally without access to the full program.

Others present non-compositional techniques and tools to check refinement under weak mem-
ory models between whole-thread sequential programs that apply for any concurrent context.
Poetzl and Kroening [46] considered the SC-for-DRF model, using locks to avoid races. Their ap-
proach matches source to target by checking that they perform the same state transitions from
lock to subsequent unlock operations and that the source does not allow more data-races. Moris-
set et al. [41] and Chakraborty and Vafeiadis [16] addressed this problem for the C/C++11 model,
of which RA is a central fragment, by implementing matching algorithms between source and
target that validate that all transformations between them have been independently proven to be
safe under C/C++11.

Cho et al. [18] introduced a specialized semantics for sequential programs that can be used for
justifying compiler optimizations under weak memory concurrency. They showed that behavior
refinement under their sequential semantics implies refinement under any (sequential or parallel)
context in the Promising Semantics 2.1 [17]. Their work focuses on optimizations of race-free
accesses that are similar to C11’s “non-atomics” [4, 34]. It cannot be used to establish the soundness
of program transformations that we study in this paper. Adding non-atomics to our model is an
important future work.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 41

Denotational approaches were developed for models much weaker than RA [15, 24, 26, 29, 43]
that allow the infamous Read-Write Reorder and thus, for a high-level programming language, re-
quire addressing the challenge of detecting semantic dependencies between instructions [3].These
approaches are based on summarizingmultiple partial orders between actions that may arise when
a given program is executed under some context. In contrast, we use totally ordered traces by re-
lating to RA’s interleaving operational semantics. In particular, Kavanagh and Brookes [29] use
partial orders, Castellan, Paviotti et al. [15, 43] use event structures, and Jagadeesan et al., Jeffrey
et al. [24, 26] employ “Pomsets with Preconditions” which trades compositionality for supporting
non-multi-copy-atomicity, as in RA. These approaches do not validate certain access eliminations,
nor Irrelevant Load Introduction, which our model validates.

An exciting aspect of our work is the connection between memory models to Moggi’s monadic
approach [40]. For SC, Abadi and Plotkin, Dvir et al. [1, 20] have made an even stronger connection
via algebraic theories [44]. These allow to modularly combine shared memory concurrency with
other computational effects. Birkedal et al. [11] develop semantics for a type-and-effect system
for SC memory which they use to enhance compiler optimizations based on assumptions on the
context that come from the type system.We hope to the current work can serve as a basis to extend
such accounts to weaker models.

References
[1] Martín Abadi and Gordon Plotkin. 2010. A Model of Cooperative Threads. Log. Methods Comput. Sci. 6, 4 (2010).

https://doi.org/10.2168/LMCS-6(4:2)2010
[2] Alejandro Aguirre, Shin-ya Katsumata, and Satoshi Kura. 2022. Weakest preconditions in fibrations. Mathematical

Structures in Computer Science 32, 4 (2022). https://doi.org/10.1017/S0960129522000330
[3] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of

Programming Language Concurrency Semantics. In ESOP (LNCS, Vol. 9032). Springer. https://doi.org/10.1007/978-3-
662-46669-8_12

[4] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In
POPL. ACM. https://doi.org/10.1145/1926385.1926394

[5] Nick Benton, Martin Hofmann, and Vivek Nigam. 2014. Abstract effects and proof-relevant logical relations. In POPL.
ACM.

[6] Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. Effect-dependent transformations for concurrent programs.
In PPDP. ACM. https://doi.org/10.1145/2967973.2968602

[7] Nick Benton, John Hughes, and Eugenio Moggi. 2000. Monads and Effects. In APPSEM.
[8] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2007. Relational semantics for effect-based

program transformations with dynamic allocation. In PPDP. ACM.
[9] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2009. Relational semantics for effect-based

program transformations: higher-order store. In PPDP. ACM.
[10] Nick Benton and Benjamin Leperchey. 2005. Relational Reasoning in a Nominal Semantics for Storage. In TLCA.

Springer.
[11] Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation. In CSL (LIPIcs, Vol. 16).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2012.107
[12] Stephen Brookes. 2007. A semantics for concurrent separation logic. Theor. Comput. Sci. 375, 1-3 (2007). https:

//doi.org/10.1016/j.tcs.2006.12.034
[13] Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Inf. Comput. 127, 2 (1996). https:

//doi.org/10.1006/inco.1996.0056
[14] Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying Local Transformations on Relaxed Mem-

ory Models. In CC (LNCS, Vol. 6011). Springer. https://doi.org/10.1007/978-3-642-11970-5_7
[15] Simon Castellan. 2016. Weak memory models using event structures. In JFLA. Saint-Malo, France. https://hal.inria.

fr/hal-01333582
[16] Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimizations of concurrent C/C++ programs. In CGO.

ACM. https://doi.org/10.1145/2854038.2854051
[17] Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular data-race-freedom guarantees in the

promising semantics. In PLDI. ACM. https://doi.org/10.1145/3453483.3454082

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.1017/S0960129522000330
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-642-11970-5_7
https://hal.inria.fr/hal-01333582
https://hal.inria.fr/hal-01333582
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/3453483.3454082

42 Yotam Dvir, Ohad Kammar, and Ori Lahav

[18] Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022. Sequential reasoning for optimizing
compilers under weak memory concurrency. In PLDI. ACM. https://doi.org/10.1145/3519939.3523718

[19] Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional Verification of Compiler Optimisations on Re-
laxed Memory. In ESOP (LNCS, Vol. 10801). Springer. https://doi.org/10.1007/978-3-319-89884-1_36

[20] YotamDvir, Ohad Kammar, and Ori Lahav. 2022. An AlgebraicTheory for Shared-State Concurrency. InAPLAS (LNCS,
Vol. 13658). Springer. https://doi.org/10.1007/978-3-031-21037-2_1

[21] Yotam Dvir, Ohad Kammar, and Ori Lahav. 2024. A Denotational Approach to Release/Acquire Concurrency. In ESOP
(LNCS). Springer, 121–149. https://doi.org/10.1007/978-3-031-57267-8_5

[22] Tony Hoare and Stephan van Staden. 2014. The laws of programming unify process calculi. Sci. Comput. Program. 85
(2014). https://doi.org/10.1016/j.scico.2013.08.012

[23] Martin Hofmann. 2008. Correctness of effect-based program transformations. In Formal Logical Methods for System
Security and Correctness. IOS Press.

[24] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with preconditions: a simple model of relaxedmemory.
Proc. ACM Program. Lang. 4, OOPSLA (2020). https://doi.org/10.1145/3428262

[25] Radha Jagadeesan, Gustavo Petri, and James Riely. 2012. Brookes Is Relaxed, Almost!. In FOSSACS (LNCS, Vol. 7213).
Springer. https://doi.org/10.1007/978-3-642-28729-9_12

[26] Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The leaky semicolon:
compositional semantic dependencies for relaxed-memory concurrency. Proc. ACM Program. Lang. 6, POPL (2022).
https://doi.org/10.1145/3498716

[27] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak
Memory: Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Pro-
gramming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

[28] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for
relaxed-memory concurrency. In POPL. ACM. https://doi.org/10.1145/3009837.3009850

[29] Ryan Kavanagh and Stephen Brookes. 2018. A Denotational Semantics for SPARC TSO. In MFPS (ENTCS, Vol. 341).
Elsevier. https://doi.org/10.1016/j.entcs.2018.03.025

[30] Ori Lahav. 2019. Verification under Causally Consistent Shared Memory. ACM SIGLOG News 6, 2 (April 2019). https:
//doi.org/10.1145/3326938.3326942

[31] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In POPL. ACM. https:
//doi.org/10.1145/2837614.2837643

[32] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis. 2021. Making weak memory
models fair. Proc. ACM Program. Lang. 5, OOPSLA (2021). https://doi.org/10.1145/3485475

[33] Ori Lahav and Viktor Vafeiadis. 2016. Explaining Relaxed Memory Models with Program Transformations. In FM
(LNCS, Vol. 9995). https://doi.org/10.1007/978-3-319-48989-6_29

[34] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency
in C/C++11. In PLDI. ACM. https://doi.org/10.1145/3062341.3062352

[35] Leslie Lamport. 1979. How toMake aMultiprocessor ComputerThat Correctly Executes Multiprocess Programs. IEEE
Trans. Computers 28, 9 (1979). https://doi.org/10.1109/TC.1979.1675439

[36] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation for verifying concurrent program
transformations. In POPL. ACM. https://doi.org/10.1145/2103656.2103711

[37] Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of
Concurrent Program Transformations. ACM Trans. Program. Lang. Syst. 36, 1 (2014). https://doi.org/10.1145/2576235

[38] Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2019. The next 700 Relational Program
Logics. Proc. ACM Program. Lang. 4, POPL, Article 4 (Dec. 2019). https://doi.org/10.1145/3371072

[39] Jeremy Manson, William W. Pugh, and Sarita V. Adve. 2005. The Java memory model. In POPL. ACM. https://doi.org/
10.1145/1040305.1040336

[40] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991). https://doi.org/10.1016/0890-
5401(91)90052-4

[41] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler testing via a theory of sound optimisa-
tions in the C11/C++11 memory model. In PLDI. ACM. https://doi.org/10.1145/2491956.2491967

[42] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs (LNCS,
Vol. 5674). Springer. https://doi.org/10.1007/978-3-642-03359-9_27

[43] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed
Dependencies in Weak Memory Concurrency. In ESOP (LNCS, Vol. 12075). Springer. https://doi.org/10.1007/978-3-
030-44914-8_22

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5
https://doi.org/10.1016/j.scico.2013.08.012
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1145/3498716
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3485475
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1145/3371072
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 43

[44] Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In FOSSACS. Springer Berlin
Heidelberg.

[45] Gordon D Plotkin. 1973. Lambda-definability and logical relations. Univ. of Edinburgh School of Artificial Intelligence
Memorandum SAI-RM-4 (1973).

[46] Daniel Poetzl and Daniel Kroening. 2016. Formalizing and CheckingThread Refinement for Data-Race-Free Execution
Models. In TACAS (LNCS, Vol. 9636). Springer. https://doi.org/10.1007/978-3-662-49674-9_30

[47] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL
(2018). https://doi.org/10.1145/3158107

[48] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multi-
processors. In PLDI. ACM. https://doi.org/10.1145/1993498.1993520

[49] Lau Skorstengaard. 2019. An Introduction to Logical Relations. arXiv:1907.11133 [cs.PL] https://arxiv.org/abs/1907.
11133 Based on Amal Ahmed’s OPLSS 2015 course.

[50] Aaron Joseph Turon and Mitchell Wand. 2011. A separation logic for refining concurrent objects. In POPL. ACM.
https://doi.org/10.1145/1926385.1926415

[51] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Com-
mon Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. In POPL. ACM.
https://doi.org/10.1145/2676726.2676995

[52] Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable
Concurrent Programs. Formal Aspects Comput. 9, 2 (1997). https://doi.org/10.1007/BF01211617

A Proofs for Commutativity
The proof of Rewrite Commutativity is in Appendix F. Below are proofs of other claims from §7.1.

PRoof of DefeRRal of ClosuRe. Since (−)★ is a closure operator, it is monotonic, so the ⊇
containment follows from the monotonicity of

(
⟫=G

)
and

(
| | |G

)
(Proposition 6.3). Moreover, for

the ⊆ containment, suffice it we show that 𝑃★1 ⟫=
G 𝑓 ★ ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃★1 | | |

G𝑃★2 ⊆
(
𝑃1 | | |G𝑃2

)★
.

Denote by 𝑃𝑛 the set of traces obtained by ★-rewriting 𝑛 times a trace from 𝑃 , and similarly for
𝑓 𝑛 . So it is sufficient to show that for all 𝑛1, 𝑛2 ∈ N, 𝑃𝑛1

1 ⟫=
G 𝑓 𝑛2 ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃𝑛1

1 | | |
G𝑃𝑛2

2 ⊆(
𝑃1 | | |G𝑃2

)★
. We show this by induction on 𝑛1 + 𝑛2, where the base case 𝑃1 ⟫=G 𝑓 ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃1 | | |G𝑃2 ⊆

(
𝑃1 | | |G𝑃2

)★
holds since (−)★ is a closure operator.

For the induction step, the induction hypothesis is that the claim holds for 𝑛1 + 𝑛2 ≤𝑚, and we
must show it holds for 𝑛1 +𝑛2 =𝑚 + 1. So either 𝑛1 = 𝑛′1 + 1 or 𝑛2 = 𝑛′2 + 1. We focus on the claim
for

(
| | |G

)
, since we find that proving the claim for

(
⟫=G

)
to be similar and somewhat easier.

Let 𝜏 ∈ 𝑃𝑛1
1 | | |

G𝑃𝑛2
2 . So 𝜏 = inf𝜉 .o {𝛼1, 𝛼2} 𝜉 𝜔1 t𝜔2 ∴ 〈𝑟1, 𝑟2〉 where 𝜏𝑖 B 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑛𝑖𝑖 and

𝜉 ∈ 𝜉1 ‖ 𝜉2. Assume w.l.o.g. that 𝑛1 = 𝑛′1 + 1. So there is some 𝜏 ′1 ∈ 𝑃
𝑛′1
1 and x ∈ ★ such that 𝜏 ′1

x−→ 𝜏1.
By case analysis on x, we show that there exists 𝜏 ′ ∈ 𝑃𝑛

′
1

1 | | |
G𝑃𝑛2

2 such that 𝜏 ′ ★-rewrites to 𝜏 . By
the induction hypothesis 𝜏 ′ ∈

(
𝑃1 | | |G𝑃2

)★
, and so 𝜏 ∈

(
𝑃1 | | |G𝑃2

)★
.

For the x ∈ ★∩ 𝔠 cases, we construct 𝜏 ′ from 𝜏 ′1 and 𝜏2. The procedure depends on x:
Rw. So 𝜏 ′1 = 𝛼 ′1 𝜉1 𝜔1 ∴ 𝑟1 where 𝛼1 ≤ 𝛼 ′1. We take

𝜏 ′ B inf𝜉 .o
{
𝛼 ′1, 𝛼2

}
𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since inf𝜉 .o {𝛼1, 𝛼2} ≤ inf𝜉 .o
{
𝛼 ′1, 𝛼2

}
, we have 𝜏 ′ Rw−−→ 𝜏 .

Fw. Similar to Rw.
St. So 𝜏 ′1 = 𝛼1 𝜂1𝜂

′
1 𝜔1 ∴ 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜇〉 𝜂′1. Since 𝜉 ∈ 𝜉1 ‖ 𝜉2, there exist 𝜂, 𝜂′ such that

𝜉 = 𝜂 〈𝜇, 𝜇〉 𝜂′, where 𝜂 includes the transitions from 𝜂1 and 𝜂′ includes the transitions from

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1007/978-3-662-49674-9_30
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1993498.1993520
https://arxiv.org/abs/1907.11133
https://arxiv.org/abs/1907.11133
https://arxiv.org/abs/1907.11133
https://doi.org/10.1145/1926385.1926415
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/BF01211617

44 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝜂′1. Formally, there exist 𝜂2, 𝜂′2 such that 𝜉2 = 𝜂2𝜂′2, 𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ∈ 𝜂′1 ‖ 𝜂′2. In particular,
𝜂𝜂′ ∈ 𝜂1𝜂′1 ‖ 𝜂2𝜂′2 = 𝜂1𝜂′1 ‖ 𝜉2. Denoting 𝜉 ′ B 𝜂𝜂′, we take

𝜏 ′ B inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

We have 𝜉 .o ⊆ 𝜉 ′ .o, so inf𝜉 .o {𝛼1, 𝛼2} ≤ inf𝜉 ′ .o {𝛼1, 𝛼2}. So 𝜏 ′ Rw−−→ 𝜏 ′′, where

𝜏 ′′ B inf𝜉 .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since 𝜉 = 𝜂 〈𝜇, 𝜇〉 𝜂′, we have 𝜏 ′′ St−→ 𝜏 .
Mu. So 𝜏 ′1 = 𝛼1 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 𝜔1 ∴ 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜃〉 𝜂′1. Since 𝜉 ∈ 𝜉1 ‖ 𝜉2, there exist

𝜂, 𝜂′ such that 𝜉 = 𝜂 〈𝜇, 𝜃〉 𝜂′, where 𝜂 includes the transitions from 𝜂1 and 𝜂′ includes the
transitions from 𝜂′1. Formally, there exist 𝜂2, 𝜂′2 such that 𝜉2 = 𝜂2𝜂

′
2, 𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ∈

𝜂′1 ‖ 𝜂′2. In particular, 𝜂 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′ ∈ 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 ‖ 𝜂2𝜂′2 = 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 ‖ 𝜉2.
Denoting 𝜉 ′ B 𝜂 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′, we take

𝜏 ′ B inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since 𝜉 = 𝜂 〈𝜇, 𝜃〉 𝜂′, and 𝜉 ′ .o = 𝜉 .o and 𝜂′ .o = 𝜂.o, we have 𝜏 ′ Mu−−→ 𝜏 .
For the x ∈ ★∩𝔞 cases, we construct 𝜏 ′ from 𝜏 ′1 and a 𝜏 ′2 defined such that 𝜏2

y−→ 𝜏 ′2 for some y ∈ 𝔤.
By iterating Rewrite Commutativity 𝑛2 times to commute y−→ through the★-rewrite sequence that
resulted in 𝜏2, we find that 𝜏 ′2 ∈ 𝑃

𝑛2
2 . This is because 𝑃2 ∈ G𝑋2. The procedure depends on x:

Ti. So 𝜏 ′1 = 𝛼1 𝜂1 〈𝜇, 𝜌] {𝜈}〉 𝜂′1] {𝜈} 𝜔1∴ 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜌] {𝜖}〉 𝜂′1]{𝜖} and 𝜈 ≤vw 𝜖 . Since
𝜉 ∈ 𝜉1 ‖ 𝜉2, there are 𝜂, 𝜂′, 𝜂2, 𝜂′2 such that 𝜉 = 𝜂 〈𝜇, 𝜌] {𝜖}〉 (𝜂′] {𝜖}), 𝜉2 = 𝜂2 (𝜂′2] {𝜖}),
𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′] {𝜖} ∈ 𝜂′1] {𝜖} ‖ 𝜂′2] {𝜖}. Taking the same order of interleaving,
𝜂′] {𝜈} ∈ 𝜂′1] {𝜈} ‖ 𝜂′2] {𝜈}. Therefore, we have 𝜉 ′ ∈ 𝜉 ′1 ‖ 𝜉 ′2, where

𝜉 ′ B 𝜂 〈𝜇, 𝜌] {𝜈}〉 (𝜂′] {𝜈}), 𝜉 ′1 B 𝜂1 〈𝜇, 𝜌] {𝜈}〉 𝜂′1] {𝜈} , and 𝜉 ′2 B 𝜂2 (𝜂′2] {𝜈})

Define 𝜏 ′2 B 𝛼2 𝜉
′
2 𝜔2 ∴ 𝑟2. Since 𝜏2

Ls−→ 𝜏 ′2, indeed 𝜏 ′2 ∈ 𝑃
𝑛2
2 . We take

𝜏 ′ B inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉

Since 𝜉 .o = 𝜉 ′ .o, we have 𝜏 ′ Ti−→ 𝜏 .
Ab. Similar to Ti, using 𝜏2

Ex−−→ 𝜏 ′2.
Di. So 𝜏 ′1 =

(
𝛼1 𝜂1 〈𝜇, 𝜌] {𝜈}〉 𝜂′1] {𝜈} 𝜔1 ∴ 𝑟

)
[↑𝜖], where 𝜉 = 𝜂1 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂′1] {𝜈, 𝜖}. The

reasoning in this case proceeds similarly, using 𝜏2
Cn−−→ 𝜏 ′2 and interleaving 𝜏 ′1 with 𝜏 ′2 to take

𝜏 ′ B inf𝜉 ′ .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]} 𝜉 ′ 𝜔1 [↑𝜖] t 𝜔2 [↑𝜖] ∴ 〈𝑟1, 𝑟2〉

We have 𝜉 .o = 𝜉 ′ .o again too. Moreover, 𝜉 is the chronicle of a trace, and 𝜖 appears in it. So
no view that appears in the trace can point into the interior of 𝜖’s segment. Otherwise, since
view must point to timestamps of messages, we would have a memory that is not scattered.
We show inf𝜉 .o {𝛼1, 𝛼2} [↑𝜖] ≤ inf𝜉 .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]}. Indeed, for 𝜅 ↩→ 𝜉 .o, assume 𝜅 ≤ 𝛼𝑖 .
Therefore, 𝜅 [↑𝜖] ≤ 𝛼𝑖 [↑𝜖], and so 𝜅 [↑𝜖] ≤ inf𝜉 .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]}. Thus in particular for
𝜅 = inf𝜉 .o {𝛼1, 𝛼2}.
By order-comparing (𝜔𝑖)𝜖.lc to 𝜖.i, one also finds that (𝜔1 t 𝜔2) [↑𝜖] = 𝜔1 [↑𝜖] t 𝜔2 [↑𝜖].
And so we obtain 𝜏 ′ Rw−−→ Di−−→ 𝜏 . �

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 45

From here on we work to prove Retroactive Closure via logical relation. To compensate for
the rewrite closure being taken at different stages of higher-order constructions, we use a refined
notion of equality.

Egli-Milner lifting. The trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ Trace𝑋 × Trace𝑌
defined 𝜏 ∼ 𝜏 ′ B 𝜏 .st = 𝜏 ′ .st ∧ 𝜏 .vl ∼ 𝜏 ′ .vl. This in turn lifts to the Egli-Milner relation
∼ ⊆ P (Trace𝑋) × P (Trace𝑌) where 𝑈 ∼ 𝐸 B ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈ 𝐸. 𝜏 ∼ 𝜏 ′ ∧ ∀𝜏 ′ ∈ 𝐸 ∃ 𝜏 ∈ 𝑈 . 𝜏 ∼ 𝜏 ′.
We call this last relation the EM-trace lifting of the first relation. We use the same notation for the
relations because we will always be able to infer which relation is meant by the objects related.

Logical relation. For every type 𝐴 we define V†{|𝐴|} ⊆ J𝐴K × J𝐴KM and C†{|𝐴|} ⊆ A J𝐴K ×
MJ𝐴KM by mutual recursion. The definition of V†{|𝐴|} follows the standard “related-inputs to
related-outputs” mantra:

V†{|𝐴→ 𝐵 |} B
{
〈𝑓 , 𝑔〉

�� ∀ 〈𝑟, 𝑠〉 ∈ V†{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C†{|𝐵 |}}
V†{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B

{
〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉

�� ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V†{|𝐴𝑖 |}
}

V†{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖

{
〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉

�� 〈𝑟, 𝑠〉 ∈ V†{|𝐴𝑖 |}
}

The relation trivializes on ground types: V†{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if〈J𝑉 Kv, J𝑊 Kv
M
〉
∈ V†{|𝐺 |}, then 𝑉 =𝑊 because as program values, J𝑉 Kv =𝑉 and J𝑊 Kv

M =𝑊 .
The bespoke C†{|𝐴|} B

{
〈𝑃,𝑄〉

�� 〈𝑃,𝑄𝔞〉 ∈ V†{|𝐴|}
}
uses the EM-trace lifting ofV†{|𝐴|} to relate

abstract denotations to generating denotations by nesting 𝔞-closures.
In regards to open terms, for every typing context 𝛤 we define X†{|𝛤 |} ⊆ J𝛤 K × J𝛤 KM by:

X†{|𝛤 |} B
{
〈𝛾, 𝛿〉

�� ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V†{|𝐴|}
}

and define 𝛤 �† 𝑀 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |} .
〈J𝑀Kc 𝛾, J𝑀Kc

M𝛿
〉
∈ C†{|𝐴|}. We show this

semantic judgment is soundwith respect to the typing relation, following some supportive lemmas.

Lemma A.1. If 〈𝑟, 𝑠〉 ∈ V†{|𝐴|} then
〈
return 𝑟, returnM𝑠

〉
∈ C†{|𝐴|}.

PRoof. For the first half of the EM-trace lifting, let 𝜏 ∈ return 𝑟 =
(
returnM𝑟

)𝔞 , where we
used Rewrite Commutativity to reorder the rewrites. So there exists 𝜋 ∈ returnM𝑟 such that
𝜋

𝔞−→ 𝜏 . Obtain 𝜏 ′, 𝜋 ′ from 𝜏, 𝜋 respectively by replacing their return value 𝑟 with 𝑠 . By construction,
〈𝜏, 𝜏 ′〉 ∈ V†{|𝐴|}. Moreover, 𝜋 ′ ∈ returnM𝑠 . By reusing the rewrite sequence, 𝜋 ′ 𝔞−→ 𝜏 ′. Therefore,
𝜏 ′ ∈

(
returnM𝑠

)𝔞 is a witness as required.
The same idea in reverse shows the second half of the EM-trace lifting. �

Lemma A.2. If 〈𝑃,𝑄〉 ∈ C†{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V†{|𝐴→ 𝐵 |} then
〈
𝑃 ⟫= 𝑓 ,𝑄 ⟫=M 𝑔

〉
∈ C†{|𝐵 |}.

PRoof. For the first half of the EM-trace lifting, let 𝜏 ∈ 𝑃 ⟫= 𝑓 =
(
𝑃 ⟫=M 𝑓

)𝔞
, where we used

Lemma 7.1 to reorder the rewrites. So there exists 𝜋 ∈ 𝑃 ⟫=M 𝑓 such that 𝜋 𝔞−→ 𝜏 . So there exist
𝛼 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 and 𝜎 𝜂 𝜔 ∴ 𝑠 ∈ 𝑓 𝑟 where 𝜅 ≤ 𝜎 such that 𝜋 = 𝛼 𝜉𝜂 𝜔 ∴ 𝑠 .
• By the first assumption, there exists 𝑟 ′ such that 〈𝑟, 𝑟 ′〉 ∈ V†{|𝐴|} and 𝛼 𝜉 𝜅 ∴ 𝑟 ′ ∈ 𝑄𝔞 .
• By the second assumption, there exists 𝑠′ such that 〈𝑠, 𝑠′〉 ∈ V†{|𝐵 |} and 𝜎 𝜂 𝜔 ∴ 𝑠′ ∈ (𝑔𝑟 ′)𝔞 .

So 𝜋 ′ B 𝛼 𝜉𝜂 𝜔∴ 𝑠′ ∈ 𝑄𝔞 ⟫=M 𝑔𝔞 . Obtain 𝜏 ′ from 𝜏 by replacing its return value 𝑠 by 𝑠′. By reusing
the rewrite sequence, 𝜋 ′ 𝔞−→ 𝜏 ′. By Deferral of Closure, 𝜏 ′ ∈

(
𝑄𝔞 ⟫=M 𝑔𝔞

)𝔞
=
(
𝑄 ⟫=M 𝑔

)𝔞
.

The same idea in reverse shows the second half of the EM-trace lifting. �

, Vol. 1, No. 1, Article . Publication date: October 2024.

46 Yotam Dvir, Ohad Kammar, and Ori Lahav

Lemma A.3.
〈Jstoreℓ,𝑣K, Jstoreℓ,𝑣KM〉

∈ C†{|1|} and
〈q
rmwℓ,𝜑

y
,
q
rmwℓ,𝜑

y
M
〉
∈ C†{|Val|}.

PRoof. Since 1 and Val are ground types, the sets are equal by Deferral of Closure, reasoning
as in Lemma A.1. �

Lemma A.4. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C†{|𝐴𝑖 |} then
〈
𝑃1 | | | 𝑃2, 𝑄1 | | |M𝑄2

〉
∈ C†{|(𝐴1 ∗𝐴2) |}.

PRoof. Similar to Lemma A.2. �

PRoposition A.5. If 𝛤 ` 𝑀 : 𝐴 then 𝛤 �†𝑀 : 𝐴.

PRoof. By induction on the derivation of 𝛤 ` 𝑀 : 𝐴. We detail some paradigmatic examples:
Let 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |}. If 〈𝑟, 𝑠〉 ∈ V†{|𝐴|}, then 〈𝛾 [𝑎 ↦→𝑟], 𝛿 [𝑎 ↦→𝑠]〉 ∈
X†{|𝛤, 𝑎 : 𝐴|}. By assumption,

〈J𝑀Kc 𝛾 [𝑎 ↦→𝑟], J𝑀Kc
M𝛿 [𝑎 ↦→𝑠]

〉
∈ C†{|𝐵 |}.

Therefore,
〈
𝜆𝑟 . J𝑀Kc 𝛾 [𝑎 ↦→𝑟], 𝜆𝑠. J𝑀Kc

M𝛿 [𝑎 ↦→𝑠]
〉
∈ V†{|𝐴→ 𝐵 |}. Apply-

𝛤, 𝑎 : 𝐴 �†𝑀 : 𝐵

𝛤 �†𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

ing Lemma A.1,
〈J𝜆𝑎. 𝑀Kc 𝛾, J𝜆𝑎.𝑀Kc

M𝛿
〉
∈ C†{|𝐴→ 𝐵 |}.

Let 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |}. If 〈𝑓 , 𝑔〉 ∈ V†{|𝐴→ 𝐵 |}, then by Lemma A.2
with the first assumption,

〈J𝑀Kc 𝛾 ⟫= 𝑓 , J𝑀Kc
M𝛿 ⟫=

M 𝑔
〉
∈ C†{|𝐵 |}.

Thus
〈
𝜆𝑓 . J𝑀Kc 𝛾 ⟫= 𝑓 , 𝜆𝑔. J𝑀Kc

M𝛿 ⟫=
M 𝑔

〉
∈ V†{|(𝐴→ 𝐵) → 𝐵 |}.

𝛤 �†𝑀 : 𝐴 𝛤 �†𝑁 : 𝐴→ 𝐵

𝛤 �†𝑁𝑀 : 𝐵

So by Lemma A.2 with the second assumption,
〈J𝑁𝑀Kc 𝛾, J𝑁𝑀Kc

M𝛿
〉
∈ C†{|𝐵 |}.

The other cases follow by similar reasoning with Lemmas A.1 and A.2, where in the cases of the
effects we also use the respective Lemmas A.3 and A.4. �

PRoof of RetRoactive ClosuRe. Since𝑀 is a program, by Proposition A.5, · �𝑀 : 𝐺 for some
ground type𝐺 . That is,

〈J𝑀Kc, J𝑀Kc
M
〉
∈ C†{|𝐴|}. Since the EM-trace lifting degenerates to equality

on ground types, J𝑀Kc = J𝑀Kc
M

𝔞 . �

B Proof of Directional Compositionality
We prove Directional Compositionality via logical relation. For this, we use a refinement of the
notion of set-containment.

Hoare lifting. The trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ Trace𝑋 × Trace𝑌
defined 𝜏 ∼ 𝜏 ′ B 𝜏 .st = 𝜏 ′ .st ∧ 𝜏 .vl ∼ 𝜏 ′ .vl. This in turn lifts to the Hoare relation ∼ ⊆
P (Trace𝑋) × P (Trace𝑌) where𝑈 ∼ 𝐸 B ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈ 𝐸. 𝜏 ∼ 𝜏 ′. We call this last relation the H-
trace lifting of the first relation.

Logical relation. For every type𝐴we defineV◦{|𝐴|} ⊆ J𝐴K×J𝐴K and C◦{|𝐴|} ⊆ A J𝐴K×A J𝐴K by
mutual recursion.The definition ofV◦{|𝐴|} follows the standard “related-inputs to related-outputs”
mantra:

V◦{|𝐴→ 𝐵 |} B {〈𝑓 , 𝑔〉 | ∀ 〈𝑟, 𝑠〉 ∈ V◦{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C◦{|𝐵 |}}
V◦{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B {〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉 | ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V◦{|𝐴𝑖 |}}

V◦{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖 {〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉 | 〈𝑟, 𝑠〉 ∈ V◦{|𝐴𝑖 |}}
The relation trivializes on ground types: V◦{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if〈J𝑉 Kv, J𝑊 Kv〉 ∈ V◦{|𝐺 |}, then 𝑉 =𝑊 because as program values, J𝑉 Kv = 𝑉 and J𝑊 Kv =𝑊 . We
H-trace liftV◦{|𝐴|} to obtain C◦{|𝐴|}. It too trivializes on ground types: C◦{|𝐺 |} is containment. In
regards to open terms, for every typing context 𝛤 we define X◦{|𝛤 |} ⊆ J𝛤 K × J𝛤 K by:

X◦{|𝛤 |} B {〈𝛾, 𝛿〉 | ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V◦{|𝐴|}}

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 47

and define 𝛤 �◦𝑀 ® 𝑁 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X◦{|𝛤 |} .
〈J𝑀Kc 𝛾, J𝑁 Kc 𝛿

〉
∈ C◦{|𝐴|}.

As in Appendix A, we have the same supportive lemmas for this logical relation. The proofs are
similar, though slightly simpler because there is no need for Lemma 7.2.

Lemma B.1. If 〈𝑟, 𝑠〉 ∈ V◦{|𝐴|} then 〈return 𝑟, return 𝑠〉 ∈ C◦{|𝐴|}.
Lemma B.2. If 〈𝑃,𝑄〉 ∈ C◦{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V◦{|𝐴→ 𝐵 |} then 〈𝑃 ⟫= 𝑓 ,𝑄 ⟫= 𝑔〉 ∈ C◦{|𝐵 |}.
Lemma B.3.

〈Jstoreℓ,𝑣K, Jstoreℓ,𝑣K〉 ∈ C◦{|1|} and 〈q
rmwℓ,𝜑

y
,
q
rmwℓ,𝜑

y〉
∈ C◦{|Val|}.

Lemma B.4. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C◦{|𝐴𝑖 |} then 〈𝑃1 | | | 𝑃2, 𝑄1 | | | 𝑄2〉 ∈ C◦{|(𝐴1 ∗𝐴2) |}.
The judgment is closed under term contexts:

Lemma B.5. For 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵, if 𝛤 �◦𝑀 ® 𝑁 : 𝐴, then 𝛥 �◦Ξ [𝑀] ® Ξ [𝑁] : 𝐵.
PRoof. By induction on the derivation of 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵. The metavariable case holds

by assumption. The rest uses the supportive lemmas Lemmas B.1 to B.4 as in the proof of Proposi-
tion A.5. �

PRoposition B.6. If A J𝐴K 3 𝑃 ′ ⊆ 𝑃 and 〈𝑃,𝑄〉 ∈ C◦{|𝐴|} then 〈𝑃 ′, 𝑄〉 ∈ C◦{|𝐴|}.
PRoof. Assuming a statement about all elements of 𝑃 we deduce the same statement about all

elements of 𝑃 ′. �

Lemma B.7. For𝑀, 𝑁 ∈ 𝛤 ` 𝐴, if J𝑀Kc ⊆ J𝑁 Kc then 𝛤 �◦𝑀 ® 𝑁 : 𝐴.

PRoof. Let 〈𝛾, 𝛿〉 ∈ X◦{|𝛤 |}. By Lemma B.5 with 𝑁 itself as the context (the degenerate case with
no metavariable appearance),

〈J𝑁 Kc 𝛾, J𝑁 Kc 𝛿
〉
∈ C◦{|𝐴|}. By assumption, J𝑀Kc 𝛾 ⊆ J𝑁 Kc 𝛾 . So by

Proposition B.6,
〈J𝑀Kc 𝛾, J𝑁 Kc 𝛿

〉
∈ C◦{|𝐴|}. �

PRoof of TheoRem 7.7. By Lemma B.7, 𝛤 �◦𝑀 ® 𝑁 : 𝐴. By Lemma B.5, · �◦ Ξ [𝑀] ® Ξ [𝑁] :
𝐺 . That is,

〈JΞ [𝑀]Kc, JΞ [𝑁]Kc〉 ∈ C◦{|𝐺 |}. Since 𝐺 is ground, this degenerates to JΞ [𝑀]Kc ⊆JΞ [𝑁]Kc. �

C Proof of Soundness
To enable optimizations, the abstract model decouples traces far enough from the operational
semantics to make it non-trivial to prove Soundness. To overcome this challenge we use a logical
relation to relate the abstract model to a model which corresponds tightly to the execution steps of
the operational semantics, by tracking the initial view-tree and the memory accesses individually.
Formally, for a set 𝑋 , an 𝑋 -run-trace is an element of VTree ×Mem × Chro × View × 𝑋 , written
𝜏 = 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 . We denote the set of 𝑋 -run-traces by OpTrace𝑋 .

As in traces, the run-trace’smain component is its chronicle 𝜏 .ch = 𝜉 , with transitions consisting
of well-formed memories. Here, each transition represents a single memory-accessing step during
the interrupted execution; i.e. those labeled by •. We call such steps loud, and the other step silent;
i.e. those labeled by ◦. Respectively, the run-trace is silent if 𝜉 is empty, otherwise it is loud.

The run-trace’s initial state is 〈𝑇, 𝜇〉. This represents the state from the execution’s initial con-
figuration, so we require that 𝑇 ↩→ 𝜇. However, the environment may add messages before the
term starts running, so in the loud case we only require 𝜇 ⊆ 𝜉 .o.

The run-trace’s final view is 𝜏 .fvw = 𝜔 . The corresponding interrupted execution ends with ¤𝜔 .
In the silent case we require 𝑇 = ¤𝜔 since silent steps do not change the state. As a derived notion,
the run-trace’s final state is 〈 ¤𝜔, (〈𝜇, 𝜇〉 𝜉).c〉, so we require 𝜔 ↩→ 〈𝜇, 𝜇〉 𝜉 .c.

In light of Lemma 5.16, we require moreover that 𝜅 ≤ 𝜔 for every 𝜅 ∈ 𝑇 .lf, denote by 𝑇 ≤ 𝜔 .
Moreover, considering Lemma 5.15, we require ∀𝜈 ∈ 𝜉 .own∃𝛼 ∈ 𝑇 .lf. 𝛼 ≤ 𝜈.vw ≤ 𝜔 ∧𝛼𝜈.lc < 𝜈.t.

, Vol. 1, No. 1, Article . Publication date: October 2024.

48 Yotam Dvir, Ohad Kammar, and Ori Lahav

Finally, the run-trace’s return value is 𝜏 .ret = 𝑟 . This corresponds to the program value the
interrupted execution returns.

We define a monad structure R𝑋 B
〈
R𝑋, returnR, ⟫=R

〉
:

R𝑋 B P (OpTrace𝑋) returnR𝑟 B {〈 ¤𝜅, 𝜇〉 · 𝜅 ∴ 𝑟 }
𝑃 ⟫=R 𝑓 B

{
〈𝑇, 𝜇〉 𝜉𝜂 𝜔 ∴ 𝑠 ∈ R𝑌

�� ∃ 𝑟, 𝜅. 〈𝑇, 𝜇〉 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 ∧ 〈¤𝜅, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑠 ∈ 𝑓 𝑟
}

In the return operator, we make sure that the initial and final states are equal. In the bind operator,
we make sure that the final state of the first run-trace is the initial state of the second run-trace.

PRoposition C.1. R is a monad.

Next we extend R with shared-memory constructs.

Concurrent execution. Consider a program 𝑀 ∥ 𝑁 . Either the state has a leaf ¤𝜅 as its view-tree,
in which case the first step it takes has to be PaRInit, or it has a node as its view tree 𝑇̂𝑅, in
which case the first step it takes cannot be PaRInit. Either way, it then takes some steps due to
steps of𝑀 and 𝑁 (with PaRLeft and PaRRight), then finally it steps with PaRFin to synchronize.

𝑃1 | | |R𝑃2 B
{
〈𝑇, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉 ∈ R (𝑋1 × 𝑋2) | ∃ 𝜉1, 𝜉2. 𝜉 ∈ 𝜉1 ‖ 𝜉2 ∧ ∃𝑇1,𝑇2 .(
∀𝑖 ∈ {1, 2} . 〈𝑇𝑖 , 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖

)
∧
(
𝑇 =𝑇1̂𝑇2 ∨ ∃𝜅.𝑇 =𝑇1 =𝑇2 = ¤𝜅

)}
Memory access. The definitions follow the StoRe, ReadOnly, and RMW rules:

Jstoreℓ,𝑣KR B {
〈 ¤𝛼, 𝜇〉 〈𝜌, 𝜌] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}〉 𝛼 [ℓ ↦→𝑡] ∴ 〈〉 ∈ R1

}q
rmwRO

ℓ,Φ

y
R B

{
〈 ¤𝛼, 𝜇〉 〈𝜌, 𝜌〉 𝛼 t 𝜅 ∴ 𝑣 ∈ RVal

�� Φ𝑣 = ⊥, ℓ :𝑣@(−, 𝜅ℓ]⟪𝜅⟫ ∈ 𝜌, 𝛼ℓ ≤ 𝜅ℓ
}

q
rmwRMW

ℓ,Φ

y
R B

{
〈 ¤𝛼, 𝜇〉 〈𝜌, 𝜌] {ℓ :Φ𝑣@(𝜅ℓ , 𝑡]⟪𝜔⟫}〉 𝜔 ∴ 𝑣 ∈ RVal
| 𝜔 = (𝛼 t 𝜅) [ℓ ↦→𝑡], ℓ :𝑣@(−, 𝑡]⟪𝜅⟫ ∈ 𝜌

}
Jrmwℓ,ΦKR B q

rmwRO
ℓ,Φ

y
R ∪

q
rmwRMW

ℓ,Φ

y
R

Some of the premises of the corresponding rules appear as conditions in the set notations, while
other do not appear because they hold implicitly due to the requirements on run-traces.

The importance of a run-trace’s initial memory is in making sense of the initial view-tree, even
if the chronicle is empty. In particular, messages unseen by the initial view-tree are redundant:

Lemma C.2. If 〈𝑇, 𝜇′〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc
R and 𝑇 ↩→ 𝜇 ⊆ 𝜇′ then 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc

R .

Single-step soundness. To make the relationship between these denotations and the operational
semantics precise, we can follow an execution backwards, adding a transition for every •-step:

Lemma C.3. Assume 〈𝑇, 𝜇〉 , 𝑀 𝑒
 RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′ and 〈𝑇 ′, 𝜇′〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀 ′Kc

R .

• If 𝑒 = ◦, then 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc
R .

• If 𝑒 = •, then 〈𝑇, 𝜇〉 〈𝜇, 𝜇′〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀Kc
R .

PRoof. By induction on the derivation of 〈𝑇, 𝜇〉 , 𝑀 𝑒
 RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′. Paradigmatic examples

follow:
App Assume 〈 ¤𝜅, 𝜇〉 , (𝜆𝑎.𝑀)𝑉 ◦

 RA 〈 ¤𝜅, 𝜇〉 , 𝑀 [𝑎 ↦→𝑉] and 𝜏 B 〈 ¤𝜅, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∈ J𝑀 [𝑎 ↦→𝑉]Kc
R . By

the Substitution Lemma, J𝑀 [𝑎 ↦→𝑉]Kc
R = J(𝜆𝑎. 𝑀)𝑉 Kc

R . So indeed 𝜏 ∈ J(𝜆𝑎.𝑀)𝑉 Kc
R .

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 49

PaRLeft Assume
〈
𝑇̂𝑅, 𝜇

〉
, 𝑀 ∥ 𝑁 •

 RA
〈
𝑇 ′̂𝑅, 𝜇′

〉
, 𝑀 ′ ∥ 𝑁 and

〈
𝑇 ′̂𝑅, 𝜇′

〉
𝜉 𝜔 ∴ 〈𝑟, 𝑠〉 ∈J𝑀 ′ ∥ 𝑁 Kc

R . So there exist 𝜉1, 𝜉2 such that 𝜉 ∈ 𝜉1 ‖ 𝜉2, and there exist 𝜔1, 𝜔2 where 𝜔 =
𝜔1 t 𝜔2 such that 〈𝑇 ′, 𝜇′〉 𝜉1 𝜔1 ∴ 𝑟 ∈ J𝑀 ′Kc

R and 〈𝑅, 𝜇′〉 𝜉2 𝜔2 ∴ 𝑠 ∈ J𝑁 Kc
R . In that lat-

ter we can replace 𝜇′ with 𝜇 using Lemma C.2. By the induction hypothesis and the former,
〈𝑇, 𝜇〉 〈𝜇, 𝜇′〉 𝜉1 𝜔1∴𝑟 ∈ J𝑀Kc

R . Since 〈𝜇, 𝜇′〉 𝜉 ∈ 〈𝜇, 𝜇′〉 𝜉1 ‖ 𝜉2, we have
〈
𝑇̂𝑅, 𝜇

〉
〈𝜇, 𝜇′〉 𝜉 𝜔∴

〈𝑟, 𝑠〉 ∈ J𝑀 ∥ 𝑁 Kc
R . �

We say a chronicle 𝜉 is gapless if 𝜌 = 𝜌 ′ whenever 〈𝜇, 𝜌〉 is followed by 〈𝜌 ′, 𝜃〉 in 𝜉 . Traces that
feature gapless chronicles can be rewritten using mumble to obtain single-transition traces.

PRoposition C.4. If 〈𝑇, 𝜇〉 , 𝑀 ∗
RA 〈 ¤𝜔, 𝜇′〉 ,𝑉 , then 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ J𝑉 Kv

R ∈ J𝑀Kc
R , where 𝜂 =

〈𝜇, 𝜇〉 𝜉 is gapless and 𝜂.c = 𝜇′, i.e. either: (i) 𝜉 is empty and 𝜇 = 𝜇′; or (ii) 𝜉 .o = 𝜇, 𝜉 .c = 𝜇′, and 𝜉
is gapless.

PRoof. By induction on the number of small-steps. Case (i) applies so long as all the steps so
far are silent. Case (ii) applies otherwise. �

Hoare run-lifting. The run-trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ OpTrace𝑋 ×
Trace𝑌 defined 𝜏 ∼ 𝜏 ′ B ∃𝑇, 𝜇, 𝜉, 𝜔, 𝑟, 𝑠 . 𝜏 = 〈𝑇, 𝜇〉 𝜉 𝜔 ∴ 𝑟 ∧𝜏 ′ = inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜔 ∴ 𝑠 ∧ 𝑟 ∼ 𝑠 . This
in turn lifts to the Hoare relation ∼ ⊆ P (OpTrace𝑋) × P (Trace𝑌) where𝑈 ∼ 𝐸 B ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈
𝐸. 𝜏 ∼ 𝜏 ′. We call this last relation the H-run-trace lifting of the first relation.

Logical relation. For every type 𝐴 we define V∗{|𝐴|} ⊆ J𝐴KR × J𝐴KM and C∗{|𝐴|} ⊆ RJ𝐴KR ×
MJ𝐴KM by mutual recursion. The definition of V∗{|𝐴|} follows the standard “related-inputs to
related-outputs” mantra, while the bespoke C∗{|𝐴|} part transforms the view tree to its greatest
lower bound using the notation inf𝜇 𝑇 B inf𝜇 𝑇 .lf, and adds a transition for the first memory:

V∗{|𝐴→ 𝐵 |} B {〈𝑓 , 𝑔〉 | ∀ 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C∗{|𝐵 |}}
V∗{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B {〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉 | ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}}

V∗{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖 {〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉 | 〈𝑟, 𝑠〉 ∈ V∗{|𝐴𝑖 |}}

The relation trivializes on ground types: V∗{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if
〈𝑉 ,𝑊 〉 ∈ V∗{|𝐺 |}, then𝑉 =𝑊 because as ground-typed values, J𝑉 Kv

R =𝑉 and J𝑊 Kv
M =𝑊 . We H-

trace liftV∗{|𝐴|} to obtain C∗{|𝐴|}.
In regards to open terms, for every typing context 𝛤 we define X∗{|𝛤 |} ⊆ J𝛤 KR × J𝛤 KM by:

X∗{|𝛤 |} B {〈𝛾, 𝛿〉 | ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V∗{|𝐴|}}

and define 𝛤 �∗ 𝑀 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |} .
〈J𝑀Kc

R𝛾, J𝑀Kc
M𝛿

〉
∈ C∗{|𝐴|}. We show this

semantic judgment is soundwith respect to the typing relation, following some supportive lemmas.

Lemma C.5. If 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} then
〈
returnR𝑟, return 𝑠

〉
∈ C∗{|𝐴|}.

PRoof. Assume 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|}. W.l.o.g., let 〈 ¤𝜅, 𝜇〉 · 𝜅 ∴ 𝑟 ∈ returnR𝑟 , where 𝜅 ↩→ 𝜇. Note that
𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝑠 ∈ return 𝑠 . Trivially, 〈𝜇, 𝜇〉 · = 〈𝜇, 𝜇〉 and inf𝜇 ¤𝜅 = 𝜅. Substituting these, together with
our assumption, we obtain the required precisely:

∀ 〈¤𝜅, 𝜇〉 · 𝜅 ∴ 𝑟 ∈ returnR𝑟 ∃ 𝑠 . inf𝜇 ¤𝜅 〈𝜇, 𝜇〉 · 𝜅 ∴ 𝑠 ∈ return 𝑠 ∧ 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} �

Lemma C.6. If 〈𝑃,𝑄〉 ∈ C∗{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |} then
〈
𝑃 ⟫=R 𝑓 ,𝑄 ⟫= 𝑔

〉
∈ C∗{|𝐵 |}.

, Vol. 1, No. 1, Article . Publication date: October 2024.

50 Yotam Dvir, Ohad Kammar, and Ori Lahav

PRoof. Assume 〈𝑃,𝑄〉 ∈ C∗{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |}. Let 〈𝑇, 𝜇〉 𝜉𝜂 𝜔 ∴ 𝑟 ′ ∈ 𝑃 ⟫=R 𝑓 . So
there exist 𝑟 and 𝜅 such that 〈𝑇, 𝜇〉 𝜉 𝜅 ∴ 𝑟 ∈ 𝑃 and 〈 ¤𝜅, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑟 ′ ∈ 𝑓 𝑟 .

By the first assumption there exists an 𝑠 such that inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜅 ∴ 𝑠 ∈ 𝑄 and 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|}.
Using the second assumption we find that 〈𝑓 𝑟, 𝑔𝑠〉 ∈ C∗{|𝐵 |}. In particular, there exists an 𝑠′ such
that 𝜅 〈(〈𝜇, 𝜇〉 𝜉).c, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑠′ ∈ 𝑔𝑠 and 〈𝑟 ′, 𝑠′〉 ∈ V∗{|𝐵 |}. So we have

inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 〈(〈𝜇, 𝜇〉 𝜉).c, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 ∴ 𝑠′ ∈ 𝑄 ⟫= 𝑔

By using mumble, we have the required inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉𝜂 𝜔 ∴ 𝑠′ ∈ 𝑄 ⟫= 𝑔. �

Lemma C.7.
〈Jstoreℓ,𝑣KR, Jstoreℓ,𝑣KM〉

∈ C∗{|1|} and
〈q
rmwℓ,𝜑

y
R,

q
rmwℓ,𝜑

y
M
〉
∈ C∗{|Val|}.

PRoof. Using stutter to compensate for the additional transition from the initial memory, and
rewind to compensate for the view not necessarily already pointing to the loaded message. �

Lemma C.8. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C∗{|𝐴𝑖 |} then 〈𝑃1 | | | 𝑃2, 𝑄1 | | | 𝑄2〉 ∈ C∗{|(𝐴1 ∗𝐴2) |}.

PRoof. Assume 〈𝑃𝑖 , 𝑄𝑖〉 ∈ C∗{|𝐴𝑖 |}, and let 𝜏 ∈ 𝑃1 | | | 𝑃2. We proceed by case analysis depending
on whether the initial view tree is a leaf:
Leaf. W.l.o.g., 𝜏 = 〈 ¤𝜅, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉, where 〈 ¤𝜅, 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖 and 𝜉 ∈ 𝜉1 ‖ 𝜉2.

So there exist 𝑠𝑖 such that 𝜅 〈𝜇, 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑠𝑖 ∈ 𝑄𝑖 and 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}. By definition,
𝜅 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑠1, 𝑠2〉 ∈ 𝑄1 | | |G𝑄2. Using mumble we have 𝜅 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴
〈𝑠1, 𝑠2〉 ∈ 𝑄1 | | | 𝑄2. Since 〈〈𝑟1, 𝑟2〉, 〈𝑠1, 𝑠2〉〉 ∈ V∗{|(𝐴1 ∗𝐴2) |}, we are done.

Node. W.l.o.g., 𝜏 =
〈
𝑇1̂𝑇2, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑟1, 𝑟2〉, where 〈𝑇𝑖 , 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ 𝑃𝑖 and 𝜉 ∈ 𝜉1 ‖ 𝜉2.

So there exist 𝑠𝑖 such that inf𝜇 𝑇𝑖 〈𝜇, 𝜇〉 𝜉𝑖 𝜔𝑖 ∴ 𝑠𝑖 ∈ 𝑄𝑖 and 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}. Rudimentarily,
inf𝜇

{
inf𝜇 𝑇1, inf𝜇 𝑇2

}
= inf𝜇

(
𝑇1̂𝑇2) , so inf𝜇

(
𝑇1̂𝑇2) 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 ∴ 〈𝑠1, 𝑠2〉 ∈

𝑄1 | | |G𝑄2. The rest is like before. �

PRoposition C.9. If 𝛤 ` 𝑀 : 𝐴 then 𝛤 �∗𝑀 : 𝐴.

PRoof. By induction on the derivation of 𝛤 ` 𝑀 : 𝐴. We detail some paradigmatic examples:
Let 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |}. We have J𝜆𝑎. 𝑀Kc

R𝛾 = returnR𝜆𝑟 . J𝑀Kc
R𝛾 [𝑎 ↦→𝑟] andJ𝜆𝑎. 𝑀Kc

M𝛿 = return 𝜆𝑠. J𝑀Kc
M𝛿 [𝑎 ↦→𝑠] by definition. By Lemma C.5 and

the definition ofV∗{|𝐴→ 𝐵 |}, it suffices to show that if 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|},

𝛤, 𝑎 : 𝐴 �∗𝑀 : 𝐵

𝛤 �∗𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

then
〈J𝑀Kc

R𝛾 [𝑎 ↦→𝑟], J𝑀Kc
M𝛿 [𝑎 ↦→𝑠]

〉
∈ C∗{|𝐵 |}, which is implied by the induction hypothesis.

Let 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |}. By definition, J𝑁𝑀Kc
R𝛾 = J𝑁 Kc

R𝛾 ⟫=
R

𝜆𝑓 . J𝑀Kc
R𝛾 ⟫=

R 𝑓 , and J𝑁𝑀Kc
M𝛿 = J𝑁 Kc

M𝛿 ⟫= 𝜆𝑔. J𝑀Kc
M𝛿 ⟫= 𝑔.

By the first induction hypothesis,
〈J𝑀Kc

R𝛾, J𝑀Kc
M𝛿

〉
∈ C∗{|𝐴|}.

𝛤 �∗𝑀 : 𝐴 𝛤 �∗𝑁 : 𝐴→ 𝐵

𝛤 �∗𝑁𝑀 : 𝐵

So by Lemma C.6, if 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |} then
〈J𝑀Kc

R𝛾 ⟫=
R 𝑓 , J𝑀Kc

M𝛿 ⟫= 𝑔
〉
∈ C∗{|𝐵 |}. But this is

exactly the definition of
〈
𝜆𝑓 . J𝑀Kc

R𝛾 ⟫=
R 𝑓 , 𝜆𝑔. J𝑀Kc

M𝛿 ⟫= 𝑔
〉
∈ V∗{|(𝐴→ 𝐵) → 𝐵 |}.

By the second induction hypothesis,
〈J𝑁 Kc

R𝛾, J𝑁 Kc
M𝛿

〉
∈ C∗{|𝐴→ 𝐵 |}. Using Lemma C.6 again,

we have
〈J𝑁 Kc

R𝛾 ⟫=
R 𝜆𝑓 . J𝑀Kc

R𝛾 ⟫=
R 𝑓 , J𝑁 Kc

M𝛿 ⟫= 𝜆𝑔. J𝑀Kc
M𝛿 ⟫= 𝑔

〉
∈ C∗{|𝐵 |}, as required.

The other cases follow by similar reasoning with Lemmas C.5 and C.6, where in the cases of the
effects we also use the respective Lemmas C.7 and C.8. �

The proof of soundness concludes by using Propositions C.4 and C.9:

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 51

PRoof of Soundness. We have 〈𝑇, 𝜇〉 𝜉 𝜔 ∴𝑉 ∈ J𝑀Kc
R by Proposition C.4 since𝑀 is of ground

type. Therefore, Proposition C.9 implies that inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜔 ∴ 𝑉 ∈ J𝑀Kc
M . Thanks to the extra

conclusions of Proposition C.4, inf𝜇 𝑇 〈𝜇, 𝜇′〉 𝜔 ∴𝑉 ∈ J𝑀Kc
M by iterativelymumble-rewriting. �

D Proof of Adequacy
The proof of adequacy starts with the Fundamental Lemma, stating that M-traces correspond
to interrupted executions. The main reason behind this fact is simple: 𝔠-rewrites preserve this
correspondence. That is:

Lemma D.1. If𝑀 :: 𝜏 :: 𝑉 and 𝜏 x−→ 𝜋 for x ∈ 𝔠, then𝑀 :: 𝜋 :: 𝑉 .

PRoof. We split to the different x ∈ 𝔠 cases:
St Add a transition that doesn’t change the configuration.
Mu Meld adjacent transitions with equal configurations at the boundary.
Fw Append an Adv step to the final transition.
Rw Prepend an Adv step to the initial transition. �

Logical relation. We mutually define, indexed over type 𝐴, sets V{|𝐴|} of closed values of type
𝐴 and sets C{|𝐴|} of closed terms of type 𝐴:

V{|𝐴→ 𝐵 |} B {𝜆𝑎.𝑀 | ∀𝑉 ∈ V{|𝐴|} . 𝑀 [𝑎 ↦→𝑉] ∈ C{|𝐵 |}}
V{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} B {〈𝑉1, ... ,𝑉𝑛〉 | ∀𝑖 .𝑉𝑖 ∈ V{|𝐴𝑖 |}}

V{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} B
⋃

𝑖 {𝜄𝑖 𝑉 | 𝑉 ∈ V{|𝐴𝑖 |}}

C{|𝐴|} B
{
𝑀 ∈ · ` 𝐴

�� ∀𝜏 ∈ J𝑀Kc
M∃𝑉 ∈ V{|𝐴|} . 𝑀 :: 𝜏 :: 𝑉

}
In regards to open terms, for every typing context 𝛤 we define

X{|𝛤 |} B {Θ ∈ Sub𝛤 | ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}}
and define 𝛤 �𝑀 : 𝐴 for 𝛤 ` 𝑀 : 𝐴 as ∀Θ ∈ X{|𝛤 |} .Θ𝑀 ∈ C{|𝐴|}.

TheoRem D.2 (Fundamental Lemma). If 𝛤 ` 𝑀 : 𝐴, then 𝛤 �𝑀 : 𝐴.

We devote lemmas to inductive cases of the Fundamental Lemma’s proof.

Lemma D.3. If 𝜏 B 𝛼 𝜉 𝜔 ∴ 〈〉 ∈ Jstoreℓ,𝑣KM , then ℓ := 𝑣 :: 𝜏 :: 〈〉.

PRoof. W.l.o.g. 𝜏 ∈ Jstoreℓ,𝑣KG , because the general case then follows from Lemma D.1.
Thus, the interrupted execution is just a single StoRe step. Indeed, the states 〈 ¤𝛼, 𝜉 .o〉 and 〈 ¤𝜔, 𝜉 .c〉

match those in StoRe’s conclusion. The conditions of StoRe are met thanks to 𝜏 being a trace,
e.g. the segment of the stored message being unoccupied due to 𝜉 .c being well-formed. �

Lemma D.4. If 𝜏 B 𝛼 𝜉 𝜔 ∴ 𝑣 ∈
q
rmwℓ,𝜑 ®𝑤

y
M , then rmw𝜑 (ℓ ; ®𝑤) :: 𝜏 :: 𝑣 .

PRoof. W.l.o.g. 𝜏 ∈
q
rmwℓ,𝜑 ®𝑤

y
G , because the general case then follows from Lemma D.1.

Thus, the interrupted execution is a single ReadOnly step (if 𝜏 ∈
r
rmwRO

ℓ,𝜑 ®𝑤

z
G
) or a single RMW

step (if 𝜏 ∈
r
rmwRMW

ℓ,𝜑 ®𝑤

z
G
), in which the initial view points to the loaded message. �

Lemma D.5. If 𝜉 ∈ 𝜉1 ‖ 𝜉2 and𝑀𝑖 :: 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 :: 𝑉𝑖 , then

𝑀1 | | 𝑀2 :: inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} ∴ 〈𝑟1, 𝑟2〉 :: 〈𝑉1,𝑉2〉

, Vol. 1, No. 1, Article . Publication date: October 2024.

52 Yotam Dvir, Ohad Kammar, and Ori Lahav

PRoof. We obtain the required interrupted execution by interleaving the interrupted executions
following the interleaving that generated 𝜉 from 𝜉1 and 𝜉2 with the following modifications:
• prepending Adv—lifted suitably with PaRLeft/PaRRight—to the first transition taken by

each side;
• prepending PaRInit to the first transition;
• appending PaRFin to the last transition (since sup𝜉 .c {𝜔1, 𝜔2} = 𝜔1 t 𝜔2). �

PRoof of the Fundamental Lemma. By induction on the typing derivation 𝛤 ` 𝑀 : 𝐴.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. To show Θ𝑎 = Θ𝑎 ∈ C{|𝐴|},
let 𝜏 ∈ JΘ𝑎Kc

M = returnMJΘ𝑎Kv
M . Suffice it we show Θ𝑎 :: 𝜏 :: Θ𝑎 . Using Lemma D.1,

we restrict to the case of 𝜏 ∈ returnGJΘ𝑎Kv
M . So 𝜏 is of the form 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ JΘ𝑎Kv

M .

(𝑎 : 𝐴) ∈ 𝛤
𝛤 � 𝑎 : 𝐴

The required interrupted execution is obtained by taking no steps in its only transition.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. Denote by 𝐾
the term Θ (𝜆𝑎 : 𝐴.𝑀) = 𝜆𝑎 : 𝐴. Θ|∉{𝑎} 𝑀 . To show that 𝐾 ∈ C{|𝐴|},
let 𝜏 ∈ J𝐾Kc

M = returnMJ𝐾Kv
M . Like the previous case, we can show

𝛤, 𝑎 : 𝐴 �𝑀 : 𝐵

𝛤 � 𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

𝐾 :: 𝜏 :: 𝐾 using Lemma D.1. This is sufficient, because 𝐾 ∈ V{|𝐴→ 𝐵 |}. Indeed, for 𝑉 ∈ V{|𝐴|},
denoting by Θ[𝑉 /𝑎] the substitution equal to Θ except at 𝑉 which it maps to 𝑎, by the induction
hypothesis we have

(
Θ|∉{𝑎} 𝑀

)
[𝑎 ↦→𝑉] = Θ[𝑉 /𝑎]𝑀 ∈ C{|𝐵 |}.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}.
To show that Θ(𝑁𝑀) = (Θ𝑁) (Θ𝑀) ∈ C{|𝐴|} holds, let 𝜏 ∈J(Θ𝑁) (Θ𝑀)Kc

M = JΘ𝑁 Kc
M ⟫=

M 𝜆𝑓 . JΘ𝑀Kc
M ⟫=

M 𝑓 . Unfolding:

𝛤 �𝑀 : 𝐴 𝛤 � 𝑁 : 𝐴→ 𝐵

𝛤 � 𝑁𝑀 : 𝐵

∃ 𝜏1 B 𝛼1 𝜉1 𝜔1 ∴ 𝑓 ∈ JΘ𝑁 Kc
M, 𝜏2 B 𝛼2 𝜉2 𝜔2 ∴ 𝑟 ∈ JΘ𝑀Kc

M, 𝜏3 B 𝛼3 𝜉3 𝜔3 ∴ 𝑠 ∈ 𝑓 𝑟 .
𝜔1 ≤ 𝛼2 ∧ 𝜔2 ≤ 𝛼3 ∧ 𝜏 = 𝛼1 𝜉1𝜉2𝜉3 𝜔3 ∴ 𝑠 ∈ J(Θ𝑁) (Θ𝑀)Kc

M

By the induction hypotheses, there exists 𝜆𝑎 : 𝐴. 𝐾 ∈ V{|𝐴→ 𝐵 |} such that Θ𝑁 :: 𝜏1 :: 𝜆𝑎 : 𝐴. 𝐾 ,
and there exists𝑉 ∈ V{|𝐴|} such thatΘ𝑀 :: 𝜏2 :: 𝑉 . So𝐾 [𝑎 ↦→𝑉] ∈ C{|𝐵 |}, and using the Substitution
Lemma: 𝑓 𝑟 = J𝜆𝑎 : 𝐴. 𝐾Kv

MJ𝑉 Kv
M = J𝐾 [𝑎 ↦→𝑉]Kc

M . Therefore, there exists𝑊 ∈ V{|𝐵 |} such that
𝐾 [𝑎 ↦→𝑉] :: 𝜏3 ::𝑊 . We transform to sequence the interrupted executions into one that corresponds
to 𝜏 as follows: we lift the one corresponding to 𝜏1 using AppLeft to the context [−] (Θ𝑀), we lift
the one corresponding to 𝜏2 using AppRight to the context (𝜆𝑎 : 𝐴. 𝐾) [−], and we prepend App
to the one corresponding to 𝜏3. By using Adv to compensate for the difference in delimiting views,
we get (Θ𝑁) (Θ𝑀) :: 𝜏 ::𝑊 .

Binds unfold like
in the case above.
The rest is handled

𝛤 �𝑀 : Loc 𝛤 � 𝑁 : Val

𝛤 �𝑀 := 𝑁 : 1

𝜑 ∈ RMW𝑛 𝛤 �𝑀 : Loc 𝛤 � 𝑁 : Val𝑛

𝛤 � rmw𝜑 (𝑀 ;𝑁) : Val
using Lemma D.3 and Lemma D.4 respectively.

Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. Thanks to
Lemma D.1, to show Θ(𝑀1 ∥ 𝑀2) = Θ𝑀1 ∥ Θ𝑀2 ∈ C{|𝐴1 ∗𝐴2 |}, it
is sufficient to consider 𝜏 ∈ JΘ𝑀1Kc

M | | |G JΘ𝑀2Kc
M . Unfolding the

𝛤 �𝑀1 : 𝐴1 𝛤 �𝑀2 : 𝐴2

𝛤 �𝑀1 ∥ 𝑀2 : (𝐴1 ∗𝐴2)
concurrent construct, there exist 𝜏𝑖 B 𝛼𝑖 𝜉𝑖 𝜔𝑖 ∴ 𝑟𝑖 ∈ JΘ𝑀𝑖Kc

M and 𝜉 ∈ 𝜉1 ‖ 𝜉2 such that 𝜏 B
inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} ∴ 〈𝑟1, 𝑟2〉. By induction hypotheses, there exist 𝑉𝑖 ∈ V{|𝐴𝑖 |} such
that Θ𝑀𝑖 :: 𝜏𝑖 :: 𝑉𝑖 . So 〈𝑉1,𝑉2〉 ∈ V{|𝐴1 ∗𝐴2 |}, and by Lemma D.5, Θ𝑀1 ∥ Θ𝑀2 :: 𝜏 :: 〈𝑉1,𝑉2〉.

The other cases are treated similarly. �

To prove the Evaluation Lemma we observe that 𝔞-rewrites preserve evaluation:

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 53

Table 2. Validated transformations. Needed rules used from 𝔞 appear above the symbol�.

Generalized Sequencing
(let𝑎 =𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in𝑁2) �
match𝑀1 ∥ 𝑁1 with 〈𝑎, 𝑏〉. 𝑀2 ∥ 𝑁2

Sequencing 𝑀 ∥ 𝑁 � 〈𝑀, 𝑁 〉
Irrelevant Read Introduction 〈〉 � ℓ? ; 〈〉
Irrelevant Read Elimination ℓ? ; 〈〉 � 〈〉
Write-Write Elimination
ℓ :=𝑤 ; ℓ := 𝑣

Ab
� ℓ := 𝑣

Write-Read Deorder (ℓ ≠ ℓ ′)
〈ℓ := 𝑣, ℓ ′?〉 Ti

� ℓ := 𝑣 ∥ ℓ ′?
RMW Expansion (𝜑®𝑣 ≤ 𝜓 ®𝑤)

rmw𝜑 (ℓ ; ®𝑣)
Di
� rmw𝜓 (ℓ ; ®𝑤)

ℓ?
Di
� CAS (ℓ, 𝑣, 𝑣)

CAS (ℓ, 𝑣, 𝑣) Di
� FAA (ℓ, 0)

Atomic Store
ℓ := 𝑣 � XCHG (ℓ, 𝑣) ; 〈〉

Symmetric-Monoidal Laws, e.g.
𝑀 ∥ 𝑁 � match𝑁 ∥ 𝑀 with 〈𝑏, 𝑎〉. 〈𝑎, 𝑏〉

Write-RMW Elimination
ℓ := 𝑣 ; rmw𝜑 (ℓ ; ®𝑤)

Ab
� ℓ := 𝜑 id

®𝑤𝑣 ; 𝑣
ℓ := 𝑣 ; ℓ? � ℓ := 𝑣 ; 𝑣

ℓ := 𝑣 ; CAS (ℓ, 𝑣,𝑢) Ab
� ℓ := 𝑢 ; 𝑣

ℓ := 𝑣 ; CAS (ℓ,𝑤,𝑢) � ℓ := 𝑣 ; 𝑣 (𝑣 ≠ 𝑤)
ℓ := 𝑣 ; FAA (ℓ,𝑤) Ab

� ℓ := 𝑣 +𝑤 ; 𝑣

ℓ := 𝑣 ; XCHG (ℓ,𝑤) Ab
� ℓ :=𝑤 ; 𝑣

RMW-Write Elimination (dom𝜓 ®𝑤 ⊇ dom𝜑 ®𝑢)
let𝑎 = rmw𝜑 (ℓ ; ®𝑢) in

match (𝜓 ®𝑤) 𝑎 with
{𝜄⊥ _.𝑎 | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝑎}

Ab
� rmw𝜓 (ℓ ; ®𝑤)

let𝑎 = ℓ? in (if 𝑎 = 𝑣
then ℓ :=𝑤 else 〈〉) ; 𝑎 � CAS (ℓ, 𝑣,𝑤)

let𝑎 = ℓ? in ℓ := 𝑎 + 𝑣 ; 𝑎 � FAA (ℓ, 𝑣)
let𝑎 = ℓ? in ℓ := 𝑣 ; 𝑎 � XCHG (ℓ, 𝑣)

RMW-RMW Elimination
〈
rmw𝜑 (ℓ ; ®𝑣) , rmw𝜓 (ℓ ; ®𝑤)

〉 Ab
� let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉
(𝜁 ®𝑢 =𝜓 ®𝑤 ◦id 𝜑®𝑣)

〈ℓ?, ℓ?〉 � let𝑎 = ℓ? in 〈𝑎, 𝑎〉 〈FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)〉 � let𝑎 = FAA (ℓ, 𝑣 +𝑤) in 〈𝑎, 𝑎 + 𝑣〉
〈ℓ?,CAS (ℓ, 𝑣,𝑤)〉 � let𝑎 = CAS (ℓ, 𝑣,𝑤) in 〈𝑎, 𝑎〉 〈XCHG (ℓ,𝑤) , ℓ?〉 � let𝑎 = XCHG (ℓ,𝑤) in 〈𝑎,𝑤〉

Lemma D.6. For x ∈ 𝔞, if 𝜋 x−→ 𝜏 and
〈 ¤𝜋.ivw, 𝜋 .ch.o

〉
, 𝑀 ⇓ 𝜋.vl, then

〈 ¤𝜏 .ivw, 𝜏 .ch.o
〉
, 𝑀 ⇓ 𝜏 .vl.

PRoof. In any case, 𝜏 .vl = 𝜋.vl. If x = Ti or x = Ab, then also 𝜏 .ivw = 𝜋.ivw and 𝜏 .ch.o =
𝜏 .ch.o, so the claim holds trivially. Only x = Di remains, where 𝜋.ivw = 𝜏 .ivw [↑𝜖] and 𝜋.ch.o =
𝜏 .ch.o [↑𝜖] for some message 𝜖 . We obtain the required execution underlying

〈 ¤𝜏 .ivw, 𝜏 .ch.o
〉
, 𝑀 ⇓

𝜏 .vl from the one that underlies
〈 ¤𝜋.ivw, 𝜋 .ch.o

〉
, 𝑀 ⇓ 𝜋.vl by replacing the timestamp 𝜖.i with

𝜖.t everywhere. We elide the straightforward simulation argument that justifies this. �

PRoof of the Evaluation Lemma. Denote 𝜏 B 𝛼 〈𝜇, 𝜌〉 𝜔 ∴ 𝑟 ∈ J𝑀Kc. By Retroactive Closure,J𝑀Kc = J𝑀Kc
M

𝔞 . So there exists 𝜋 ∈ J𝑀Kc
M such that 𝜋 𝔞−→ 𝜏 . Proceed by induction on the number

of 𝔞-rewrites. If none, 𝜏 = 𝜋 ∈ J𝑀Kc
M , so by the Fundamental Lemma,𝑀 :: 𝜏 :: 𝑉 for some 𝑉 . Since

𝑀 is of ground type, so is 𝑉 = J𝑉 Kv
M = 𝑟 , and thus 〈 ¤𝛼, 𝜇〉 , 𝑀 ∗

RA≤ 〈 ¤𝜔, 𝜌〉 , 𝑟 , so 〈 ¤𝛼, 𝜇〉 , 𝑀 ⇓ 𝑟 .
Otherwise, we have 𝜋 𝔞−→ 𝜏 ′

x−→ 𝜏 where x ∈ 𝔞 and
〈 ¤𝜏 ′ .ivw, 𝜏 ′ .ch.o

〉
, 𝑀 ⇓ 𝜏 ′ .vl by the induction

hypothesis. We replace 𝜏 ′ with 𝜏 using Lemma D.6, as required. �

E Validating Transformations
Table 2 lists various transformations𝑀 � 𝑁 that can be proved this way, organized such that the
general pattern appears first, followed by specific instantiations and corollaries.

For handling the RMW modifiers, we use additional notations. For modifiers Φ,Ψ ∈ Val ⇀ Val:
• The domain of definition of Φ is domΦ B {𝑣 ∈ Val | Φ𝑣 ≠ ⊥}.

, Vol. 1, No. 1, Article . Publication date: October 2024.

54 Yotam Dvir, Ohad Kammar, and Ori Lahav

• We say that Ψ is an expansion of Φ, denoted by Φ ≤ Ψ, if Φ𝑣 ≠ Ψ𝑣 occurs only when Φ𝑣 = ⊥
and Ψ𝑣 = 𝑣 . Intuitively, this means that Φ and Ψ are the same, except that in some cases in
which Φ reads and does not write, Ψ atomically reads and rewrites the read value.
• We denote by Φid the unique expansion of Φ that is total: Φid𝑣 B if Φ𝑣=⊥ then 𝑣 elseΦ𝑣 .

Intuitively, Φid rewrites the read value whenever Φ reads but does not write.
• We let

(
Ψ ◦id Φ

)
𝑣 B if Φ𝑣=⊥ thenΨ𝑣 elseΨid (Φ𝑣). Intuitively,

(
Ψ ◦id Φ

)
composes the mod-

ification of Φ followed by the modification of Ψ, only failing if both do.
Moreover, some optimizations involving modifiers assume the language can express correspond-
ing constructs. For example, the Write-RMW Elimination instantiated with 𝜑 = faa requires addi-
tion (+), and the RMW-Write Elimination instantiated with 𝜑 = cas requires branching on value
comparison (if − = − then− else−). Under this assumption, for every primitive modifier 𝜑 and
every tuple ®𝑣 of length 𝜑.ar, both 𝜑®𝑣 and 𝜑 id

®𝑣 are represented by closed, pure (effect-free) terms, of
type Val→ {𝜄⊥ of 1 | 𝜄> of Val} and Val→ Val respectively. These are used implicitly in Table 2.

In the following we prove selected results from Table 2. We explicitly mention the use of 𝔞-
rewrites, but often leave uses of 𝔠-rewrites implicit. For convenience, we denote 𝛼 𝜉𝜂 𝜔 ∴ 𝑠 B
(𝛼 𝜉 𝜅 ∴ 𝑟) ⟫= (𝜎 𝜂 𝜔 ∴ 𝑠), and we say this trace resulted from binding the first with the second.

PRoposition E.1. If 𝛤 ` 𝑀1 : 𝐴1; 𝛤 ` 𝑁1 : 𝐵1; 𝛤, 𝑎 : 𝐴′ ` 𝑀2 : 𝐴2; and 𝛤,𝑏 : 𝐵′ ` 𝑁2 : 𝐵2:J(let𝑎 =𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in𝑁2)Kc ⊇ Jmatch𝑀1 ∥ 𝑁1 with 〈𝑎, 𝑏〉. 𝑀2 ∥ 𝑁2Kc

(Formally, in the right denotation we use 𝛤, 𝑎 : 𝐴′, 𝑏 : 𝐵′ ` 𝑀2 : 𝐴2 and 𝛤, 𝑎 : 𝐴′, 𝑏 : 𝐵′ ` 𝑁2 : 𝐵2.)

PRoof. Let 𝛾 ∈ J𝛤 K and denote the left and right sets of the required containment by 𝑃 and 𝑄
respectively. Thus we require 𝑃 ⊇ 𝑄 .

Let 𝜚 ∈ 𝑄 . By Deferral of Closure, 𝜚 is in the 𝔠𝔞-closure of:

𝑄 ′ B J𝑀1Kc 𝛾 | | |G J𝑁1Kc 𝛾 ⟫=G 𝜆〈𝛾𝑎, 𝛾𝑏〉. J𝑀2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑎:𝐴′ | | |G J𝑁2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑏:𝐵′
So there exists 𝜚 ′ ∈ 𝑄 ′ that 𝔠𝔞-rewrites to 𝜚 . This 𝜚 ′ results from binding two traces. On the left,
inf𝜉 .o {𝛼1, 𝜅1} 𝜉 𝜔1 t 𝜎1 ∴ 〈𝑟1, 𝑠1〉, where:

𝜏1 B 𝛼1 𝜉1 𝜔1 ∴ 𝑟1 ∈ J𝑀1Kc 𝛾 ; 𝜋1 B 𝜅1 𝜂1 𝜎1 ∴ 𝑠1 ∈ J𝑁1Kc 𝛾 ; 𝜉 ∈ 𝜉1 ‖ 𝜂1
On the right, inf𝜂.o {𝛼2, 𝜅2} 𝜂 𝜔2 t 𝜎2 ∴ 〈𝑟2, 𝑠2〉, where, setting 𝛾𝑎 B 𝑟1 and 𝛾𝑏 B 𝑠1:

𝜏2 B 𝛼2 𝜉2 𝜔2∴𝑟2 ∈ J𝑀2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑎:𝐴′ ; 𝜋2 B 𝜅2 𝜂2 𝜎2∴𝑠2 ∈ J𝑁2Kc (𝛾𝑐) (𝑐 :𝐶) ∈𝛤,𝑏:𝐵′ ; 𝜂 ∈ 𝜉2 ‖ 𝜂2
The binding implies that 𝜔1 t 𝜎1 ≤ inf𝜂.o {𝛼2, 𝜅2}. In particular, 𝜔1 ≤ 𝛼2 and 𝜎1 ≤ 𝜅2. Therefore,
𝜏1 ⟫= 𝜏2 = 𝛼1 𝜉1𝜉2 𝜔2∴𝑟2 ∈ Jlet𝑎 =𝑀1 in𝑀2Kc and 𝜋1 ⟫= 𝜋2 = 𝜅1 𝜂1𝜂2 𝜎2∴𝑠2 ∈ Jlet𝑏 = 𝑁1 in𝑁2Kc.
Since 𝜉𝜂 ∈ 𝜉1𝜉2 ‖ 𝜂1𝜂2 and (𝜉𝜂).o = 𝜉 .o, we obtain 𝜚 ′ by interleaving these. Therefore, 𝜚 ′ ∈ 𝑃 .
Since 𝑃 is 𝔠𝔞-closed, 𝜚 ∈ 𝑃 . �

In the rest of this section we show results of the form J𝑀Kc ⊇ J𝑁 Kc
G . Each entails J𝑀Kc ⊇ J𝑁 Kc

by Deferral of Closure, thus justifying𝑀 � 𝑁 in Table 2.

PRoposition E.2. J〈〉Kc ⊇ Jℓ? ; 〈〉Kc
G .

PRoof. Let 𝜏 ∈ Jℓ? ; 〈〉Kc
G . Unfolding definitions:

Jℓ? ; 〈〉Kc
G B Jrmwℓ,𝜆_.⊥KG ⟫=G 𝜆_. returnG 〈〉 = {

𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 ∴ 〈〉 ∈ Trace1
�� ∃𝜈 ∈ 𝜇ℓ . 𝛼 � 𝜈

}
Therefore, we have the form 𝜏 = 𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 ∴ 〈〉. From 𝛼 〈𝜇, 𝜇〉 𝛼 ∴ 〈〉 ∈ J〈〉Kc

G , we obtain
𝜏 ∈ J〈〉Kc by stuttering (St) and forwarding (Fw). �

PRoposition E.3. Jℓ := 𝑣Kc ⊇ JXCHG (ℓ, 𝑣) ; 〈〉Kc
G .

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 55

PRoof. By taking the traces in Jℓ := 𝑣Kc
G in which the newly added message dovetails with the

previous message in memory by choosing the initial timestamp appropriately. �

PRoposition E.4. Assuming ℓ ≠ ℓ ′, J〈ℓ := 𝑣, ℓ ′?〉Kc ⊇ Jℓ := 𝑣 ∥ ℓ ′?Kc
G .

PRoof. The elements of Jstoreℓ,𝑣KG | | |G Jrmwℓ ′,𝜆_.⊥KG are formed by interleaving a store

𝜅 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] ∴ 〈〉 ∈ Jstoreℓ,𝑣KG
with a load 𝜎 〈𝜌, 𝜌〉 𝜎 ∴ 𝑤 ∈ Jrmwℓ ′,𝜆_.⊥KG . Depending on the order, this results in one of:

inf𝜇 {𝜅, 𝜎} 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 〈𝜌, 𝜌〉 𝜅 [ℓ ↦→𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 (WR)
inf𝜌 {𝜅, 𝜎} 〈𝜌, 𝜌〉 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 (RW)

We prove separately that these interleavings are in J〈ℓ := 𝑣, ℓ ′?〉Kc.
• (WR): Denoting𝜃 B (𝜌 \ {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫})]{ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}where𝛼 B inf𝜇 {𝜅, 𝜎}:

𝛼 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}〉 𝛼 [ℓ ↦→𝑡] ∴ 〈〉 ∈ Jstoreℓ,𝑣KG
𝛼 [ℓ ↦→𝑡] t 𝜎 〈𝜃, 𝜃〉 𝛼 [ℓ ↦→𝑡] t 𝜎 ∴ 𝑤 ∈ Jrmwℓ ′,𝜆_.⊥KG

By forwarding (Fw) after binding we obtain:

𝛼 〈𝜇, 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}〉 〈𝜃, 𝜃〉 𝜅 [ℓ ↦→𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 ∈ J〈ℓ := 𝑣, ℓ ′?〉Kc

All that remains is to tighten (Ti) ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫ to ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫.
• (RW): Using the result for (WR), with 𝜃 B 𝜇] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}:

inf𝜇 {𝜅, 𝜎} 〈𝜇, 𝜃〉 〈𝜃, 𝜃〉 𝜅 [ℓ ↦→𝑡] t 𝜎 ∴ 〈〈〉,𝑤〉 ∈ J〈ℓ := 𝑣, ℓ ′?〉Kc

We can rewind (Rw) inf𝜇 {𝜅, 𝜎} to inf𝜌 {𝜅, 𝜎}, since 𝜌 ⊆ 𝜇. By mumbling (Mu) and stuttering
(St), we are done. �

PRoposition E.5. Assuming 𝜑®𝑣 ≤ 𝜓 ®𝑤 ,
q
rmw𝜑 (ℓ ; ®𝑣)

yc ⊇
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G .

PRoof. Let 𝜏 ∈
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G , resulting from loading a value 𝑢 from a message 𝜈 . If 𝜑®𝑣𝑢 =

𝜓 ®𝑤𝑢, then obviously 𝜏 ∈
q
rmw𝜑 (ℓ ; ®𝑣)

yc
G . Otherwise, by assumption 𝜑®𝑣𝑢 = ⊥ and 𝜓 ®𝑤𝑢 = 𝑢.

So we have 𝜏 = 𝜅 〈𝜇, 𝜇] {𝜖}〉 𝜅 [ℓ ↦→𝑡] ∴ 𝑢, with 𝜖 B ℓ :𝑢@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫, where 𝜈 ∈ 𝜇ℓ and
𝜈.t = 𝜅ℓ . In the left denotation, by loading 𝜈 [↑𝜖] we have 𝜅 [↑𝜖] 〈𝜇 [↑𝜖], 𝜇 [↑𝜖]〉 𝜅 [↑𝜖] ∴ 𝑢 =(
𝜅 〈𝜇, 𝜇〉 𝜅 [ℓ ↦→𝑡] ∴ 𝑢

)
[↑𝜖]. By diluting (Di) we obtain 𝜏 . �

PRoposition E.6. Assuming ∀ 𝑣 ′ ∈ Val. 𝜁 ®𝑢𝑣 ′ =
(
𝜓 ®𝑤𝑣′ ◦id 𝜑®𝑣

)
𝑣 ′,q

let𝑎 = rmw𝜑 (ℓ ; ®𝑣) in
〈
𝑎, rmw𝜓 (ℓ ; ®𝑤𝑎)

〉yc ⊇
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G

PRoof. Let 𝜋 ∈
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G
. So a 𝜏 ′ B 𝛼 〈𝜇, 𝜌〉 𝜔∴𝑣 ′ ∈

q
rmw𝜁 (ℓ ; ®𝑢)

yc
G

exists due to loading 𝜈 ∈ 𝜇ℓ with 𝜈.vl = 𝑣 ′, such that 𝜏 B 𝛼 〈𝜇, 𝜌〉 𝜔 ∴
〈
𝑣 ′, 𝜑 id

®𝑣 𝑣
′
〉

St−→ Fw−−→ 𝜋 .

RO. If 𝜏 ′ ∈
r
rmwRO

ℓ,𝜁 ®𝑢

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇〉 𝜅 ∴

〈
𝑣 ′, 𝜑 id

®𝑣 𝑣
′
〉
where 𝜁 ®𝑢𝑣 ′ = ⊥ and 𝜈.t = 𝜅ℓ .

By assumption, 𝜑®𝑣𝑣 ′ = ⊥, so 𝜑 id
®𝑣 𝑣
′ = 𝑣 ′; and 𝜓 ®𝑤𝑣′𝑣

′ = ⊥, so by loading 𝜈 in both RMWs we
can obtain 𝜏 in the left denotation.

, Vol. 1, No. 1, Article . Publication date: October 2024.

56 Yotam Dvir, Ohad Kammar, and Ori Lahav

RMW. If 𝜏 ′ ∈
r
rmwRMW

ℓ,𝜁 ®𝑢

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇] {ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] ∴〈

𝑣 ′, 𝜑 id
®𝑣 𝑣
′
〉
where 𝜁 ®𝑢𝑣 ′ = 𝑢′ and 𝜈.t = 𝜅ℓ . The 𝜑®𝑣𝑣 ′ = ⊥ case is similar to before, where

again 𝜏 is found in the left denotation by loading 𝜈 in both RMWs, with the difference that
here𝜓 ®𝑤𝑣′𝑣

′ = 𝑢′, to the second RMW also writes the message ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫.
The 𝜑®𝑣𝑣 ′ = 𝑤 ′ case remains, in which 𝜑 id

®𝑣 𝑣
′ = 𝑤 ′. In the sub-case that 𝜓®𝑣𝑤 ′ = ⊥ we have

𝑤 ′ = 𝑢′, and we find 𝜏 in the left denotation by loading 𝜈 and writing ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫
in the first RMW, which the second RMW loads.
In the sub-case where𝜓®𝑣𝑤 ′ = 𝑢′, the first RMW writes ℓ :𝑤 ′@(𝜅ℓ , 𝜅ℓ+𝑡2]⟪𝜅 [ℓ ↦→

𝜅ℓ+𝑡
2]⟫ instead.

For the second RMW we take a trace with initial view 𝜅 [ℓ ↦→𝜅ℓ+𝑡
2], enabling its loading of

this new message and writing ℓ :𝑢′@(𝜅ℓ+𝑡2 , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫. To find 𝜏 in the left denotation we
have the latter message absorb (Ab) the former message.

Either way, 𝜏 is in
q
let𝑎 = rmw𝜑 (ℓ ; ®𝑣) in

〈
𝑎, rmw𝜓 (ℓ ; ®𝑤𝑎)

〉yc, and therefore so is 𝜋 . �

CoRollaRy E.7. Assuming 𝜁 ®𝑢 =𝜓 ®𝑤 ◦id 𝜑®𝑣 ,q〈
rmw𝜑 (ℓ ; ®𝑣) , rmw𝜓 (ℓ ; ®𝑤)

〉yc ⊇
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G

PRoof. Using a special case of Proposition E.6, where𝜓 is independent of its final parameter. �

PRoposition E.8.
q
ℓ := 𝑣 ; rmw𝜑 (ℓ ; ®𝑤)

yc ⊇
r
ℓ := 𝜑 id

®𝑤𝑣 ; 𝑣
zc

G
.

PRoof. Same as the RMW case in the proof of Proposition E.6, except the initial timestamp does
not have to equal the timestamp of the loaded message. �

PRoposition E.9. Jℓ :=𝑤 ; ℓ := 𝑣Kc ⊇ Jℓ := 𝑣Kc
G .

PRoof. Replace the second assignment on the left using Proposition E.3, and follow with Propo-
sition E.8. �

PRoposition E.10. Assuming dom𝜓 ®𝑤 ⊇ dom𝜑 ®𝑢 ,q
let𝑎 = rmw𝜑 (ℓ ; ®𝑢) in match𝜓 ®𝑤𝑎 with {𝜄⊥ _.𝑎 | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝑎}

yc ⊇
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G

PRoof. Let 𝜏 ∈
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G =

q
rmwℓ,𝜓 ®𝑤

y
G =

r
rmwRO

ℓ,𝜓 ®𝑤

z
G
∪

r
rmwRMW

ℓ,𝜓 ®𝑤

z
G
.

RO. If 𝜏 ∈
r
rmwRO

ℓ,𝜓 ®𝑤

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl where 𝜓 ®𝑤 (𝜈.vl) = ⊥, 𝜈 ∈ 𝜇ℓ , and

𝜈.t = 𝜅ℓ . Structurally, we haveJmatch (𝜓 ®𝑤) 𝜈.vl with {𝜄⊥ _.𝜈 .vl | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝜈.vl}Kc = return𝜈.vl

By assumption, 𝜑 ®𝑢 (𝜈.vl) = ⊥. Loading the same message 𝜈 , we have 𝜏 ∈
q
rmw𝜑 (ℓ ; ®𝑢)

yc.
We obtain the desired trace from binding it with 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl ∈ return𝜈.vl.

RMW. If 𝜏 ∈
r
rmwRMW

ℓ,𝜓 ®𝑤

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇] {ℓ :𝑣@(𝜈.t, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] ∴ 𝜈.vl

where𝜓 ®𝑤 (𝜈.vl) = 𝑣 , 𝜈 ∈ 𝜇ℓ , and 𝜈.t = 𝜅ℓ . Structurally, we haveJmatch𝜓 ®𝑤 (𝜈.vl) with {𝜄⊥ _.𝜈 .vl | 𝜄> 𝑣 .ℓ := 𝑣 ; 𝜈.vl}Kc = Jℓ := 𝑣 ; 𝜈.vlKc

Loading the same message 𝜈 , we proceed depending on 𝜑 ®𝑢 (𝜈.vl).
𝜑 ®𝑢 (𝜈.vl) = ⊥. We can bind 𝜅 〈𝜇, 𝜇〉 𝜅 ∴ 𝜈.vl ∈

q
rmw𝜑 (ℓ ; ®𝑢)

yc, with 𝜏 ∈ Jℓ := 𝑣 ; 𝜈.vlKc.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 57

Table 3. Components filling roles in the definition of rewrite rules, using the notations of Table 1.

rule source target
’er ’ee ’er ’ee

loosen 𝜖 𝜈
expel 𝜖𝜈.ii 𝜖 𝜈
condense 𝜈 𝜖 𝜈 [↑𝜖]
stutter 〈𝜇, 𝜇〉
mumble 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 〈𝜇, 𝜃〉
tighten 𝜈 𝜖
absorb 𝜖 𝜈 𝜖𝜈.ii
dilute 𝜈 [↑𝜖] 𝜈 𝑒

𝜑 ®𝑢 (𝜈.vl) ≠ ⊥. Then we have 𝜅 〈𝜇, 𝜌〉 𝜅 [ℓ ↦→𝜅ℓ+𝑡
2] ∴ 𝜈.vl ∈

q
rmw𝜑 (ℓ ; ®𝑢)

yc, where 𝜌 B
𝜇]

{
ℓ :𝜑 ®𝑢 (𝜈.vl) @(𝜈.t, 𝜅ℓ+𝑡2]⟪𝜅 [ℓ ↦→

𝜅ℓ+𝑡
2]⟫

}
. We can bind it with

𝜅 [ℓ ↦→𝜅ℓ+𝑡
2]

〈
𝜌, 𝜌]

{
ℓ :𝑣@(𝜅ℓ+𝑡2 , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫

}〉
𝜅 [ℓ ↦→𝑡] ∴ 𝜈.vl ∈ Jℓ := 𝑣 ; 𝜈.vlKc

where at the end we absorb (Ab) the first message into the second. �

F Proof of Rewrite Commutativity
In this section we prove Rewrite Commutativity. We make a few observations to help us navigate
the elaborate case-split that makes up the proof.

Active roles in rewrite rules. Intuitively, the 𝔤- and 𝔞-rules have an object message that is acted
upon, and sometimes a subject message that partakes in the action. For example, in the absorb rule
there is a message, which we call the absorb’ee, that is being “absorbed” into another, which we
call the absorb’er. We think of the absorb’er as a message that changed, rather than two different
messages. In stutter and mumble the active components are transitions rather than messages.

Table 3 lists which components of the source and target of each rewrite rule fill the subject and
object roles. We use these roles to distinguish scenarios within each commutativity case in the
proof of Rewrite Commutativity. The roles for forward and rewind are omitted because there is no
need to analyze different scenarios within the cases involving them in the proof.

Conditions for rewrite validity. Aswe introduced the rewrite rules in §6, we noted conditions that
imply that the target of a rewrite is a trace, assuming the source is. We summarize these below:

Lemma F.1. For x ∈ 𝔤𝔠, assume 𝜏 is a trace and 𝜏 x−→ 𝜋 . Then, using the notations of Table 1:
• If x = Mu, then 𝜋 ∈ Trace.
• If x = Ls, then 𝜋 ∈ Trace iff LsØ(𝜈, 𝜂): either 𝜂 is empty, or 𝜈 ↩→

(
𝜂] {𝜈}

)
.o.

• If x = Ex, then 𝜋 ∈ Trace iff ExØ(𝜈, 𝜂): either 𝜂 is empty, or 𝜈 ↩→
(
𝜂] {𝜈}

)
.o.

• If x = Cn, then 𝜋 ∈ Trace iff CnØ(𝜖, 𝜉): either 𝜉 is empty, 𝜖.i ∉ 𝜉 .c.t, or 𝜖.seg∩⋃ 𝜉 .c.seg = ∅.
• If x = St, then 𝜋 ∈ Trace iff StØ(𝛼, 𝜇): 𝛼 � 𝜇 ∈ Mem.
• If x = Fw, then 𝜋 ∈ Trace iff FwØ(𝜔, 𝜉): 𝜔 ↩→ 𝜉 .c.
• If x = Rw, then 𝜋 ∈ Trace iff RwØ(𝛼, 𝜉): 𝛼 ↩→ 𝜉 .o.

In each case in the proof, the rewrite sequence after commuting includes a new pre-trace. We
must show that this is a trace for the sequence to be valid, because Rewrite Commutativity regards
the restriction of the rewrite rules to traces. Lemma F.1 is the workhorse that powers this task.

, Vol. 1, No. 1, Article . Publication date: October 2024.

58 Yotam Dvir, Ohad Kammar, and Ori Lahav

Table 4. Diagrams for different scenarios of each case of x � y.

y\x St Mu Fw Rw Ti Ab Di
Ls 1, 2 7, 8 13 14 19, 20 26, 27 33, 34, 35
Ex 3, 4 9, 10 15 16 21, 22 28, 29 36, 37, 38
Cn 5, 6 11, 12 17 18 23, 24, 25 30, 31, 32 39, 40, 41, 42
St 43, 44 45, 46 47, 48
Mu 49, 50, 51, 52 53, 54, 55, 56 57, 58, 59, 60
Fw 61 63 65
Rw 62 64 66

PRoof of RewRite Commutativity. Diagrams attached below depict how the rewrite rules
commute in different scenarios. We summarize the reasoning involved below. Use Table 4 to nav-
igate through the cases.
• For cases of St � y where y ∈ 𝔤 (1, 2, 3, 4, 5, 6), the required condition is about the same

chronicle as the assumed condition, except for possibly a removed transition. This means
that its opening memory is an extension of the original (result of adding messages), and the
closing memory is a reduction of the original (result of removing messages). The condition
of pointing downwards into a memory is stable under extensions, and the condition of non-
intersection is stable under reductions. Cases of Mu � y where y ∈ 𝔤 (7, 8, 9, 10, 11, 12) are
simpler because the opening and closing memory remain the same.
• The cases of Fw � y and Rw � y where y ∈ 𝔤 (13, 14, 15, 16, 17, 18) are trivial because the

required condition remains the same.
• For cases of Ti � y where y ∈ 𝔤, the required condition in the cases of y ∈ {Ls,Ex} (19,

20, 21, 22) holds because pointing downwards into a memory is stable under “loosening” a
message within the memory (𝜈 ≤ 𝜖).The remaining y = Cn case (23, 24, 25) holds because the
difference between the required condition and the original keeps the occupied timestamps
the same, and the ←⊂= relation is stable under “loosening” the first argument.
• For cases of Ab � y where y ∈ 𝔤, the required condition in the cases of y ∈ {Ls,Ex}
(26, 27, 28, 29) holds because pointing downwards into a memory is stable under changing a
message’s initial timestamp and adding amessage within thememory.The remaining y = Cn
case (30, 31, 32) holds because the difference between the required condition and the original
keeps the occupied timestamps the same, and the ←⊂= relation is stable under changing the
initial timestamp of the first argument.
• Cases of Di � y where y ∈ 𝔤 hold thanks to Lemma 6.5 when y ∈ {Ls,Ex} (33, 34, 35, 36, 37,

38). The remaining y = Cn case (39, 40, 41, 42) is the most complicated. First, we note that
(− [↑𝜖]) [↑𝜖 [↑𝜖]] = (− [↑𝜖]) [↑𝜖 [↑𝜖]], which means that the pre-trace to be “diluted” is of
the correct shape.The rewrite itself is valid because ←⊂= is stable under changing the timestamp
of the second argument. In particular, it is stable under pulling both arguments along the
same message which does not intersect the arguments’ segments. Finally, the condition for
the pre-trace to be a trace is satisfied because the message is being pulled along a message
that was either removed or known to appear later in the chronicle (as a local message);
either way, the segment is free. There are also the cases where they overlap this way or that,
in which we use the trivial dovetailing geometry of ←⊂=.
• For cases of x � St where x ∈ 𝔞, the required condition in the cases of x ∈ {Ti,Ab} (43, 44,

45, 46) holds because there remains a message at each timestamp where there was a message

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 59

originally, and the initial view remains the same. The remaining y = Di case (47, 48) holds
because pointing-to is stable under pulling along a message; and if the initial view pointed
to the dilute’ee then after pulling it, it will point to the dilute’er pulled along the dilute’ee.
• The cases of x � Mu where x ∈ 𝔞 (49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60) do not require

special considerations regarding conditions.
• For cases of x � y where x ∈ 𝔞 and y ∈ {Fw,Rw}, the required condition in the cases

of x ∈ {Ti,Ab} (61, 62, 63, 64) holds because pointing downwards into a memory is stable
under “loosening” a message within the memory (𝜈 ≤ 𝜖). The case of x ∈ Di (65, 66) hold
thanks to Lemma 6.5, and the fact that pointing downward into a memory is stable under
pulling along the samemessage; and if the delimiting view pointed to the dilute’ee then after
pulling it, it will point to the dilute’er pulled along the dilute’ee. �

𝛼 𝜉𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

St

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

St

1. The St � Ls case when the loosen’ee does not appear across the stutter’ee.

𝛼 𝜉
(
𝜉 ′] {𝜖}

) (
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜇] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

St

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

2. The St � Ls case when the loosen’ee appears across the stutter’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

60 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

St

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

St

3. The St � Ex case when the expel’ee does not appear across the stutter’ee.

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜇]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

St

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜉 ′𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

4. The St � Ex case when the expel’ee appears across the stutter’ee.

𝛼 𝜉𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜇〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

St

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′𝜂)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

5. The St � Cn case when the condense’ee does not appear across the stutter’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 61

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

St

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

St

6. The St � Cn case when the condense’ee appears across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

Mu

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂′)

Mu

7. The Mu � Ls case when the loosen’ee does not appear across the mumble’er.

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖}〉 〈𝜌] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

Mu

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

8. The Mu � Ls case when the loosen’ee appears across the mumble’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

62 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Mu

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂′)

Mu

9. The Mu � Ex case when the expel’ee does not appear across the mumble’er.

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii

}〉 〈
𝜌]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Mu

Ex
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

10. The Mu � Ex case when the expel’ee appears across the mumble’er.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜃〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

Mu

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

11. The Mu � Cn case when the condense’ee does not appear across the mumble’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 63

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

Mu

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Mu

12. The Mu � Cn case when the condense’ee appears across the mumble’er.

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

Fw
𝜅 ≤ 𝜔

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

𝜅 ≤ 𝜔
Fw

13. The Fw � Ls case.

𝜅 𝜉
(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

𝜅 𝜉
(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

Rw
𝛼 ≤ 𝜅

Ls
𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ(𝜈, 𝜂)

𝛼 ≤ 𝜅
Rw

14. The Rw � Ls case.

, Vol. 1, No. 1, Article . Publication date: October 2024.

64 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜅

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Fw
𝜅 ≤ 𝜔

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

𝜅 ≤ 𝜔
Fw

15. The Fw � Ex case.

𝜅 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Rw
𝛼 ≤ 𝜅

Ex
𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ(𝜈, 𝜂)

𝛼 ≤ 𝜅
Rw

16. The Rw � Ex case.

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜅
)
[↑𝜖]

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

Fw
𝜅 ≤ 𝜔

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜅 ≤ 𝜔
Fw

17. The Fw � Cn case.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 65

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝜅 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

Rw
𝛼 ≤ 𝜅

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝛼 ≤ 𝜅
Rw

18. The Rw � Cn case.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜂′] {𝜈}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜂′] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

19. The Ti � Ls case when the loosen’ee appears first after the tighten’ee.

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖, 𝜖}〉 𝜂] {𝜖, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

Ti
𝜈 ≤vw 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

20. The Ti � Ls case when the loosen’ee appears first before the tighten’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

66 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′]

{
𝜈, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′]

{
𝜖, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈, 𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜂′] {𝜈}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜂′] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

21. The Ti � Ex case when the expel’ee appears first after the tighten’ee.

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜖, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

Ti
𝜈 ≤vw 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

22. The Ti � Ex case when the expel’ee appears first before the tighten’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉

(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]

Ti

23. The Ti � Cn case when the condense’ee appears first after the tighten’ee, and the tighten’ee
is not the condense’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 67

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜂] {𝜖}

) (
𝜂′] {𝜖, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉

(
𝜂] {𝜖}

) (
𝜂′] {𝜖}

)
𝜔
)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)

Cn

𝜖 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]

Ti

24. The Ti � Cn case when the condense’ee appears first after the tighten’ee, and the tighten’ee
is the condense’er.

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]
Ti

25. The Ti � Cn case when the condense’ee appears first before the tighten’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜂′] {𝜈, 𝜖}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜂′]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

26. The Ab � Ls case when the loosen’ee appears first after the absorb’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

68 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜖}

) 〈
𝜇] {𝜖}, 𝜌]

{
𝜖𝜈.ii , 𝜖

}〉
𝜂]

{
𝜖𝜈.ii , 𝜖

}
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈}

) 〈
𝜇] {𝜈}, 𝜌]

{
𝜖𝜈.ii , 𝜈

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈

}
𝜔

Ab
𝜈 ←⊂ 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ LsØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

27. The Ab � Ls case when the loosen’ee appears first before the absorb’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′]

{
𝜈, 𝜖, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈, 𝜖

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜂′] {𝜈, 𝜖}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜂′]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

28. The Ab � Ex case when the expel’ee appears first after the absorb’ee.

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii , 𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii , 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) 〈
𝜇] {𝜈, 𝜖}, 𝜌]

{
𝜖𝜈.ii , 𝜈, 𝜖

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈, 𝜖

}
𝜔

Ab
𝜈 ←⊂ 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ ExØ

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

29. The Ab � Ex case when the expel’ee appears first before the absorb’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 69

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈, 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜈

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉

〈
𝜇, 𝜌]

{
𝜈𝜖.ii

}〉
𝜂]

{
𝜈𝜖.ii

})
𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]

Ab

30. The Ab � Cn case when the condense’ee appears first after the absorb’er, and the absorb’er is
not the condense’er.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii , 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

}) (
𝜂′]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜖 ←⊂= 𝜖 ∧ CnØ

(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)

Cn

𝜖𝜈.ii ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉

〈
𝜇, 𝜌]

{
𝜈𝜖.ii

}〉
𝜂]

{
𝜈𝜖.ii

})
𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]

Ab

31. The Ab � Cn case when the condense’ee appears first after the absorb’er, and the absorb’er is
the condense’er.

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

) 〈
𝜇] {𝜈, 𝜖}, 𝜌]

{
𝜖𝜈.ii , 𝜈, 𝜖

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈, 𝜖

}
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

) 〈
𝜇] {𝜈}, 𝜌]

{
𝜖𝜈.ii , 𝜈

}〉
𝜂]

{
𝜖𝜈.ii , 𝜈

}
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]
Ab

32. The Ab � Cn case when the condense’ee appears first before the absorb’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

70 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ LsØ

(
𝜈 [↑𝜖] ,

(
𝜂′] {𝜈}

)
[↑𝜖]

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜂′] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

33. The Di � Ls case when the loosen’ee appears first after the dilute’ee.

(
𝛼 𝜉

(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜈, 𝜖, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

Di
𝜈 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ LsØ

(
𝜈 [↑𝜖] ,

(
𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)
[↑𝜖]

)

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

34. The Di � Ls case when the loosen’ee appears first before the dilute’ee, and the dilute’er is
not the loosen’ee.

(
𝛼 𝜉

(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖}〉 𝜂] {𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖, 𝜖}〉 𝜂] {𝜖, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

Di
𝜖 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ LsØ(𝜈 [↑𝜖] , (𝜉 ′ 〈𝜇, 𝜌〉 𝜂) [↑𝜖])

Ls

𝜈 ≤vw 𝜖 ∧ LsØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ←⊂= 𝜖

Di

35. The Di � Ls case when the loosen’ee appears first before the dilute’ee, and the dilute’er is the
loosen’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 71

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′]

{
𝜈, 𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′]

{
𝜈, 𝜖, 𝜖𝜈.ii

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ ExØ

(
𝜈 [↑𝜖] ,

(
𝜂′] {𝜈}

)
[↑𝜖]

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜂′] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

36. The Di � Ex case when the expel’er appears first after the dilute’ee.

(
𝛼 𝜉

(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖𝜈.ii

}
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜈, 𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜈, 𝜖, 𝜖𝜈.ii

}
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

Di
𝜈 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ ExØ

(
𝜈 [↑𝜖] ,

(
𝜉 ′ 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)
[↑𝜖]

)

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

37. The Di � Ex case when the expel’er appears first before the dilute’ee, and the dilute’er is not
the expel’er.

(
𝛼 𝜉

(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii

}〉
𝜂]

{
𝜖𝜈.ii

}
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖, 𝜖𝜈.ii

}〉
𝜂]

{
𝜖, 𝜖𝜈.ii

}
𝜔

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

Di
𝜖 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ ExØ(𝜈 [↑𝜖] , (𝜉 ′ 〈𝜇, 𝜌〉 𝜂) [↑𝜖])

Ex

𝜈 ≤vw 𝜖 ∧ ExØ
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌] {𝜖}〉 𝜂] {𝜖}

)
𝜈 ←⊂= 𝜖

Di

38. The Di � Ex case when the expel’er appears first before the dilute’ee, and the dilute’er is the
expel’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

72 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

((
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ

(
𝜖 [↑𝜖] , 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Di

39. The Di � Cn case when the condense’ee appears first after the dilute’ee, and the dilute’ee is
not the condense’er.

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜈}〉 𝜂] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈, 𝜖, 𝜈}〉 𝜂] {𝜈, 𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ(𝜖 [↑𝜖] , 𝜉 [↑𝜖])

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

40. The Di � Cn case when the condense’ee appears first before the dilute’ee, and the dilute’er is
not the condense’ee.

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖, 𝜖}

)
𝜔

((
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜂] {𝜈}

) (
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

) (
𝜂′] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ

(
𝜖 [↑𝜖] , 𝜉 〈𝜇, 𝜌] {𝜈}〉 𝜂] {𝜈}

)

Cn

𝜖 ←⊂= 𝜖 ∧ CnØ
(
𝜖, 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖}

)
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Di

41. The Di � Cn case when the condense’ee appears first after the dilute’ee, and the dilute’ee is
the condense’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 73

(
𝛼 𝜉

(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 𝜂] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜖, 𝜈, 𝜖}〉 𝜂] {𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 𝜂] {𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜖, 𝜈}〉 𝜂] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜖 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ CnØ(𝜖 [↑𝜖] , 𝜉 [↑𝜖])

Cn

𝜈 ←⊂= 𝜖 ∧ CnØ(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

42. The Di � Cn case when the condense’ee appears first before the dilute’ee, and the dilute’er is
the condense’ee.

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

St
StØ(𝛼, 𝜇)

St

StØ(𝛼, 𝜇)

𝜈 ≤vw 𝜖

Ti

43. The Ti � St case when the tighten’ee does not appear across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

) (
𝜂] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜇] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

St
StØ(𝛼, 𝜇] {𝜈})

St

StØ(𝛼, 𝜇] {𝜖})

𝜈 ≤vw 𝜖

Ti

44. The Ti � St case when the tighten’ee appears across the stutter’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

74 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉𝜂
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

St
StØ(𝛼, 𝜇)

St

StØ(𝛼, 𝜇)

𝜈 ←⊂ 𝜖
Ab

45. The Ab � St case when the absorb’ee does not appear across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜉 ′]

{
𝜖𝜈.ii

}) (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 (
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜇]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

St
StØ(𝛼, 𝜇] {𝜈, 𝜖})

St

StØ
(
𝛼, 𝜇]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

46. The Ab � St case when the absorb’ee appears across the stutter’ee.

(
𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

St
StØ(𝛼 [↑𝜖] , 𝜇 [↑𝜖])

St

StØ(𝛼, 𝜇)

𝜈 ←⊂= 𝜖
Di

47. The Di � St case when the dilute’ee does not appear across the stutter’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 75

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

) (
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

) (
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜇] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜇] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

St
StØ(𝛼 [↑𝜖] , (𝜇] {𝜈}) [↑𝜖])

St

StØ(𝛼, 𝜇] {𝜖})

𝜈 ←⊂= 𝜖
Di

48. The Di � St case when the dilute’ee appears across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜖}〉
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

49. The Ti � Mu case when the tighten’ee appears in neither themumble’er nor themumble’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜌] {𝜖}〉 〈𝜌] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉
(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉
(
𝜉 ′] {𝜖}

)
〈𝜇] {𝜖}, 𝜃] {𝜖}〉

(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

50. The Ti � Mu case when the tighten’ee appears in both the mumble’er and the mumble’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

76 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌] {𝜖}〉 〈𝜌] {𝜖}, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

51. The Ti � Mu case when the tighten’ee appears first in the mumble’er.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂
(
𝜂′] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜖}〉 𝜂
(
𝜂′] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

52. The Ti � Mu case when the tighten’ee appears first in the mumble’ee.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

53. The Ab � Mu case when the absorb’ee appears in neither themumble’er nor themumble’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 77

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜌]

{
𝜖𝜈.ii

}〉 〈
𝜌]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′]

{
𝜖𝜈.ii

}) 〈
𝜇]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉 (
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

54. The Ab � Mu case when the absorb’ee appears in both the mumble’er and the mumble’ee.

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌]

{
𝜖𝜈.ii

}〉 〈
𝜌]

{
𝜖𝜈.ii

}
, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

55. The Ab � Mu case when the absorb’ee appears first in the mumble’er.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉
〈
𝜌, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜃]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

56. The Ab � Mu case when the absorb’ee appears first in the mumble’ee.

, Vol. 1, No. 1, Article . Publication date: October 2024.

78 Yotam Dvir, Ohad Kammar, and Ori Lahav

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈}〉

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

57. The Di � Mu case when the dilute’ee appears in neither the mumble’er nor the mumble’ee.

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉

(
𝜉 ′] {𝜈}

)
〈𝜇] {𝜈}, 𝜃] {𝜈}〉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉
(
𝜉 ′] {𝜈, 𝜖}

)
〈𝜇] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉

(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

58. The Di � Mu case when the dilute’ee appears in both the mumble’er and the mumble’ee.

(
𝛼 𝜉 〈𝜇, 𝜌] {𝜈}〉 〈𝜌] {𝜈}, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌] {𝜈, 𝜖}〉 〈𝜌] {𝜈, 𝜖}, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

59. The Di � Mu case when the dilute’ee appears first in the mumble’er.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 79

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃] {𝜈}〉 𝜂

(
𝜂′] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃] {𝜈, 𝜖}〉 𝜂
(
𝜂′] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

60. The Di � Mu case when the dilute’ee appears first in the mumble’ee.

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜅

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Fw
𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜈})) .c)

Fw

𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜖})) .c)
𝜈 ≤vw 𝜖

Ti

61. The Ti � Fw case.

𝜅 𝜉
(
𝜂] {𝜈}

)
𝜔

𝜅 𝜉
(
𝜂] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Rw
𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜈})) .o)

Rw

𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜖})) .o)
𝜈 ≤vw 𝜖

Ti

62. The Ti � Rw case.

, Vol. 1, No. 1, Article . Publication date: October 2024.

80 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜅

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Fw
𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜈, 𝜖})) .c)

Fw

𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {
𝜖𝜈.ii

}))
.c
)

𝜈 ←⊂ 𝜖
Ab

63. The Ab � Fw case.

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝜅 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Rw
𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜈, 𝜖})) .c)

Rw

𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {
𝜖𝜈.ii

}))
.c
)

𝜈 ←⊂ 𝜖
Ab

64. The Ab � Rw case.

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜅
)
[↑𝜖]

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜅

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Fw
𝜅 [↑𝜖] ≤vw𝜔 [↑𝜖] ∧ FwØ(𝜔 [↑𝜖] , ((𝜉 (𝜂] {𝜈})) [↑𝜖]) .c)

Fw

𝜅 ≤vw𝜔 ∧ FwØ(𝜔, (𝜉 (𝜂] {𝜖})) .c)
𝜈 ←⊂= 𝜖

Di

65. The Di � Fw case.

, Vol. 1, No. 1, Article . Publication date: October 2024.

A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 81

(
𝜅 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝜅 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜂] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜂] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Rw
𝛼 [↑𝜖] ≤vw 𝜅 [↑𝜖] ∧ RwØ(𝛼 [↑𝜖] , ((𝜉 (𝜂] {𝜈})) [↑𝜖]) .c)

Rw

𝛼 ≤vw 𝜅 ∧ RwØ(𝛼, (𝜉 (𝜂] {𝜖})) .c)
𝜈 ←⊂= 𝜖

Di

66. The Di � Rw case.

, Vol. 1, No. 1, Article . Publication date: October 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Language and Operational Semantics
	2.2 Traces in SC
	2.3 RA Operational Semantics

	3 Contribution Summary
	3.1 Traces for RA
	3.2 Compositionality and the Monadic Presentation
	3.3 Relating the Denotational Semantics to the Operational Semantics

	4 Language and Typing
	5 Operational Semantics
	5.1 View-based Semantics
	5.2 View Forwarding
	5.3 Invariants

	6 Denotational Semantics
	6.1 Monad-based Semantics
	6.2 Trace-based Semantics
	6.3 Generating Denotations
	6.4 Concrete Denotations
	6.5 Abstract Denotations

	7 Metatheory
	7.1 Commutativity
	7.2 Compositionality
	7.3 Soundness
	7.4 Adequacy
	7.5 Transformations

	8 Conclusion
	References
	A Commutativity Proofs
	B Compositionality Proof
	C Soundness Proof
	D Adequacy Proof
	E Validating Transformations
	F Rewrite Commutativity Proof

