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We present a compositional denotational semantics for a functional language with first-class parallel composi-
tion and shared-memory operations whose operational semantics follows the Release/Acquire weak memory
model (RA). The semantics is formulated in Moggi’s monadic approach, and is based on Brookes-style traces.
To do so we adapt Brookes’s traces to Kang et al.’s view-based machine for RA, and supplement Brookes’s
mumble and stutter closure operations with additional operations, specific to RA. The latter provides a more
nuanced understanding of traces that uncouples them from operational interrupted executions. We show
that our denotational semantics is adequate and use it to validate various program transformations of in-
terest. This is the first work to put weak memory models on the same footing as many other programming
effects in Moggi’s standard monadic approach.
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1 Introduction
Denotational semantics defines the meaning of programs compositionally, where the meaning of a
program term is a function of the meanings assigned to its immediate syntactic constituents. This
key feature makes denotational semantics instrumental in understanding the meaning a piece of
code independently of the context under which the code will run.This style of semantics contrasts
with standard operational semantics, which only executes closed/whole programs. A basic require-
ment of such a denotation function J−K is for it to be adequate w.r.t. a given operational semantics:
plugging program terms 𝑀 and 𝑁 with equal denotations—i.e. J𝑀K = J𝑁 K—into some program
context Ξ [−] that closes over their variables, results in observationally indistinguishable closed
programs in the given operational semantics. Moreover, assuming that denotations have a defined
order (≤), a “directed” version of adequacy ensures that J𝑀K ≤ J𝑁 K implies that all observable
behaviors exhibited by Ξ [𝑀] under the operational semantics are also exhibited by Ξ [𝑁 ].
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For shared-memory concurrent programming, Brookes’s seminal work [13] defined a denota-
tional semantics, where the denotation J𝑀KB is a set of totally ordered traces of 𝑀 closed under
certain operations, called stutter and mumble. Traces consist of sequences of memory snapshots
that𝑀 guarantees to provide while relying on its environment to make other memory snapshots.
Brookes [12] used the insights behind this semantics to develop a model for separation logic, and
Turon and Wand [51] used them to design a separation logic for refinement. Additionally, Xu
et al. [53] used traces as a foundation for the Rely/Guarantee approach for verification of concur-
rent programs, and Liang et al. [36, 37] used a trace-based program logic for refinement.

A memory model decides what outcomes an execution of a program can have. Brookes [13]
established the adequacy of the trace-based denotational semantics w.r.t. the operational semantics
of the strongest model, known as sequential consistency (SC), where every memory access happens
instantaneously and immediately affects all concurrent threads. However, SC is too strong tomodel
real-world sharedmemory, whether it be of modern hardware, such as x86-TSO [42] and ARM [47],
or of programming languages such as C/C++ [4] and Java [39].These runtimes followweakmemory
models that allow performant implementations, but admit more behaviors than SC.

Do weak memory models admit adequate Brookes-style denotational semantics? This question
has been answered affirmatively once, by Jagadeesan et al. [25], who closely followed Brookes
to define denotational semantics for x86-TSO. Other weak memory models, in particular, models
of programming languages, and non-multi-copy-atomic models, where writes can be observed by
different threads in different orders, were so far out of reach of Brookes’s totally ordered traces,
only captured by much more sophisticated models based on partial orders [15, 19, 24, 26, 29, 43].

In this paper we target the Release/Acquire memory model (RA, for short). This model, ob-
tained by restricting the C/C++11 memory model to Release/Acquire atomics, is a well-studied
fundamental memory model that is weaker than x86-TSO. RA, roughly speaking, ensures “causal
consistency” together with “per-location-SC” and “RMW (read-modify-write) atomicity” [30, 31].
These assurances make RA sufficiently strong for implementing common synchronization idioms.
RA allows more performant implementations than SC, since, in particular, it allows the reordering
of a write followed by a read from a different location, which is commonly performed by hardware,
and it is non-multi-copy-atomic, thus allowing less centralized architectures like POWER [48].

Our first contribution is a Brookes-style denotational semantics for RA. As Brookes’s traces are
totally ordered, this result may seem counterintuitive. The standard semantics for RA is a declar-
ative (a.k.a. axiomatic) memory model, in the form of acyclicity consistency constraints over par-
tially ordered candidate execution graphs. Since events in these graphs are not totally ordered, one
might expect that Brookes’s traces are insufficient. Nevertheless, our first key observation is that
an operational presentation of RA as an interleaving semantics of a weak memory system lends
itself to Brookes-style semantics. For that matter, we develop a notion of traces compatible with
Kang et al.’s “view-based” machine [28], an operational semantics that is equivalent to RA’s declar-
ative formulation. Our main technical result is the (directed) adequacy of the proposed Brookes-
style semantics w.r.t. that operational semantics of RA.

A main challenge when developing a denotational semantics lies in making it sufficiently ab-
stract. While full abstraction is often out of reach, as a yardstick, we want our semantics to be
able to justify various compiler transformations/optimizations that are known to be sound under
RA [52]. Indeed, an immediate practical application of a denotational semantics is the ability to
provide local formal justifications of program transformations, such as those performed by opti-
mizing compilers. In this setting, to show that an optimization𝑁 ↠ 𝑀 is valid amounts to showing
that replacing 𝑁 by 𝑀 anywhere in a larger program does not introduce new behaviors, which
follows from J𝑀K ≤ J𝑁 K given a directionally adequate denotation function J−K.
, Vol. 1, No. 1, Article . Publication date: December 2024.



A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 3

To support various compiler transformations, we close our denotations under certain opera-
tions, including analogs to Brookes’s stutter and mumble, but also several RA-specific operations,
that allow us to relate programs which would naively correspond to rather different sets of traces.
Given these closure operations, our semantics validates standard program transformations, includ-
ing structural transformations, algebraic laws of parallel programming, and all known thread-local
RA-valid compiler optimizations. Thus, the denotational semantics is instrumental in formally es-
tablishing validity of transformations under RA, which is a non-trivial task [19, 52].

Our second contribution is to connect the core semantics of parallel programming languages
exhibiting weak behaviors to the more standard semantic account for programming languages
with effects. Brookes presented his semantics for a simple imperativeWHILE language, but Benton
et al. [6] and Dvir et al. [20] later use Moggi’s monad-based approach [40], defining a semantics for
a functional, higher-order core language. In this approach the core language is modularly extended
with effect constructs to denote program effects. In particular, we define parallel composition as a
first-class operator.This is in contrast to most of the research of weak memory models that employ
imperative languages and assume a single top-level parallel composition.

A denotational semantics given in this monadic style comes ready-made with a rich semantic
toolkit for program denotation [7], transformations [5, 8–10, 23], reasoning [2, 38], etc. We chal-
lenge and reuse this diverse toolkit throughout the development. We follow a standard approach
and develop specialized logical relations [45, 49] to establish the compositionality property of our
proposed semantics; its soundness, which allows one to use the denotational semantics to show
that certain outcomes are impossible under RA; and adequacy. This development puts weak mem-
ory models, which often require bespoke and highly specialized presentations, on a similar footing
to many other programming effects.

Outline. In §2 we recall the Release/Acquire operational semantics and the trace-based denota-
tional semantics that we use and extend in this paper. In §3 we summarize our contributions.

The rest of the paper goes into further detail. In §4 we present the programming language syntax
and typing system, which in §5 we equip with an extended presentation of the RA operational
semantics. In §6 we establish semantic invariants for RA that will support our definition of traces.
In §7 we define our trace-based denotational semantics for RA, and in §8 we work up to and
establish our main results. Finally, we conclude and discuss related work in §9.

Comparison with the conference version. Sections 1-3 and 9 cover of the conference version of this
paper [21]. The rest of this paper extends the conference version. Here, definitions and theorems
are formally specified and proved. The account in this manuscript also provides a more detailed
discussion and more examples. By expanding in breadth and depth, we state (and prove) some
results in a stronger form here, such as the denotational semantics supporting transformations
involving arbitrary RMWs; and a tighter characterization of the permissible rewrite permutations.

2 Preliminaries
We recall previous work, with minor alterations. Particularly, we present a programming lan-
guage and its operational semantics under the Sequential Consistency (SC) memory model (§2.1),
Brookes’s denotational semantics for SC (§2.2), and Kang et al.’s operational presentation of the
RA memory model (§2.3). See §4 for the full specification of the programming language, and §5
for a detailed account of the RA operational semantics.

2.1 Language and Operational Semantics
The programming language we use is an extension of a functional language with shared-state
constructs. We can compose program terms𝑀 and 𝑁 sequentially: explicitly as𝑀 ;𝑁 , or implicitly
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4 Yotam Dvir, Ohad Kammar, and Ori Lahav

by left-to-right evaluation in the pairing construct 〈𝑀, 𝑁 〉. We can compose them in parallel as
𝑀 ∥ 𝑁 . We assume preemptive scheduling, thus imposing no restrictions on the interleaving of
execution steps between parallel threads. To introduce the memory-access constructs, we present
the well-known message passing litmus test, adapted to the functional setting:

(x – 1 ; y – 1) ∥ 〈y?, x?〉 (MP)

Here, x and y refer to distinct shared memory locations. Assignment ℓ – 𝑣 stores the value 𝑣 at
location ℓ in memory, and dereference ℓ? loads a value from ℓ . The language also includes atomic
read-modify-write (RMW) constructs. For example, assuming integer storable values, FAA (ℓ, 𝑣)
(Fetch-And-Add) atomically adds 𝑣 to the value stored in ℓ . In contrast, interleaving is permitted
between the dereferencing, adding, and storing in ℓ – (ℓ? + 𝑣). The underlying memory model
dictates the behavior of the memory-access constructs more precisely.

In the functional setting, execution results in a returned value: ℓ – 𝑣 returns the unit value 〈〉,
i.e. the empty tuple; ℓ?, and the RMW constructs such as FAA (ℓ, 𝑣), return the loaded value;𝑀 ;𝑁
returns what 𝑁 returns; and 〈𝑀, 𝑁 〉, as well as 𝑀 ∥ 𝑁 , return the pair consisting of the return
value of 𝑀 and the return value of 𝑁 . We assume left-to-right execution of pairs, so in the (MP)
example 〈y?, x?〉 steps to 〈𝑣, x?〉 for a value 𝑣 loaded from y, and 〈𝑣, x?〉 steps to 〈𝑣,𝑤〉 for a value
𝑤 loaded from x. The left side of the parallel composition operator (∥) can step between them,
affecting which 𝑣 and𝑤 the right side can observe.

We can use intermediate results in subsequent computations via let binding: let𝑎 =𝑀 in𝑁 binds
the result of𝑀 to𝑎 in𝑁 . We execute𝑀 first, and continue execution of𝑁 [𝑎 ↦→𝑉 ], i.e., substitute the
resulting value 𝑉 for 𝑎 in 𝑁 . Similarly, we deconstruct pairs by matching: match𝑀 with 〈𝑎,𝑏〉. 𝑁
binds the components of the pair that 𝑀 returns to 𝑎 and 𝑏 in 𝑁 . We define the first and second
projections fst and snd, as well as the operation swap that swaps the pair constituents, standardly.

Traditionally, we compare weak memory models using litmus test programs, such as (MP), with
which one model supports a specific observable behavior that the other does not. Since different
models feature quite different notions of internal state, and observing the memory directly is not
feasible, we ignore internal interactions. We do not consider infinite executions in this paper, so
we conflate observable behaviors with outcomes: values that the program may evaluate to from
given initial memory values. Litmus tests traditionally initialize all initial values to 0.

The literature on weak-memory models traditionally presents litmus tests imperatively using
local registers a, b. We instead systematically replace registers with let-bindings. Translating the
imperative style to the functional style is mechanical. For example, we compare the imperative
message passing litmus tests in the two styles:

Style Imperative Functional

Program x – 1
y – 1

a – y
b – x

x – 1 ;
y – 1

let a = y? in
let b = x? in 〈a, b〉

Relevant outcome end state: a = 1 ∧ b = 0 return value: 〈〈〉 , 〈1, 0〉〉
The resulting functional test on the right is equivalent, using standard memory-model agnostic
program transformations, to the (MP) program above.

In the strongest memory model of Sequential Consistency (SC), every value stored is immedi-
ately made available to every thread, and every dereference must load the latest stored value. The
underlying memory model uses maps from locations to values for the memory state that evolves
during program execution. Given an initial state, the behavior of a program in SC depends only on
the choice of interleaving of steps. In (MP) the order of the two stores and the two loads ensures
that 〈〈〉 , 〈0, 0〉〉, 〈〈〉 , 〈0, 1〉〉, and 〈〈〉 , 〈1, 1〉〉 are observable, but 〈〈〉 , 〈1, 0〉〉 is not.
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A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 5

Observable behavior as defined for whole programs is too crude to study program terms that
can interact with the program context within which they run. Indeed, compare 𝑀1 defined as
x–1 ;y– 1 ;y? versus𝑀2 defined as x–1 ;y– x? ;y?. Under SC, the difference between them as
whole programs is unobservable: starting from any initial state both return 1. Now consider them
within the program context − ∥ x – 2. That is, compare𝑀1 ∥ x – 2 versus𝑀2 ∥ x – 2. In the first,
𝑀1 still always returns 1; but in the second,𝑀2 can also return 2 by interleaving the store of 2 in x
immediately after the store of 1 in x. Thus, if J𝑀K, i.e. 𝑀’s denotation, were to simply map initial
states to possible results according to executions of 𝑀 , we could not define J𝑀 ∥ 𝑁 K in terms ofJ𝑀K and J𝑁 K alone, because we would have J𝑀1K = J𝑀2K but also J𝑀1 ∥ x – 2K ≠ J𝑀2 ∥ x – 2K.
Therefore J𝑀K must contain more information about 𝑀 than an “input-output” relation; it must
account for interference by the environment.

2.2 Brookes’s Trace-based Semantics for Sequential Consistency
Brookes’s [13] prominent approach defines fully-compositional denotational semantics for con-
current programs. He defined a denotational semantics J−KB for SC by taking J𝑀KB to be a set
of traces of 𝑀 closed under certain closure rules as we detail below. Brookes established a (direc-
tional) adequacy theorem: if J𝑀KB ⊇ J𝑁 KB then the transformation𝑀 ↠ 𝑁 is valid under SC.The
latter means that, when assuming SC-based operational semantics,𝑀 can be replaced by 𝑁 within
a program without introducing new observable behaviors for it. Thus, adequacy formally grounds
the intuition that the denotational semantics soundly captures behavior of program terms.

As a particular practical benefit, we can replace formal and informal simulation arguments that
justify transformations in operational semantics by cleaner and simpler proofs based on the de-
notational semantics. For example, a simple argument shows that Jx – 𝑣 ; x –𝑤KB ⊇ Jx –𝑤KB
holds in Brookes’s semantics. Thanks to adequacy, this can justify the transformation Write-Write
Elimination (WW-Elim) x – 𝑣 ; x –𝑤 ↠ x –𝑤 in SC.

Traces in SC. In Brookes’s semantics, a program term denotes a set of traces, each trace consist-
ing of a sequence of transitions. Each transition is of the form 〈𝜇, 𝜌〉, where 𝜇 and 𝜌 are memories,
i.e. maps from locations to values. A transition describes a program term’s execution relying on a
memory state snapshot 𝜇 in order to guarantee the memory state snapshot 𝜌 .

For example, Jx –𝑤KB includes all traces of the form 〈𝜌, 𝜌 [x – 𝑤]〉 , where 𝜌 [x – 𝑤] is
equal to 𝜌 except for mapping x to 𝑤 . The definition is compositional: we obtain the traces inJx – 𝑣 ; x –𝑤KB from sequential compositions of traces of Jx – 𝑣KB with traces of Jx –𝑤KB ,
including all traces of the form 〈𝜇, 𝜇 [x – 𝑣]〉 〈𝜌, 𝜌 [x – 𝑤]〉 . Such a trace relies on 𝜇 in order to
guarantee 𝜇 [x – 𝑣], and then relies on 𝜌 in order to guarantee 𝜌 [x – 𝑤]. Allowing 𝜌 ≠ 𝜇 [x – 𝑣]
reflects the possibility of environment interference between the two store instructions. Indeed,
when denoting parallel composition J𝑀 ∥ 𝑁 KB we include all traces obtained by interleaving tran-
sitions from a trace from J𝑀KB with transitions from a trace from J𝑁 KB . By sequencing and in-
terleaving, one subterm’s guarantee can fulfill the requirement which another subterm relies on.
They may also relegate reliances and guarantees to their mutual context.

In the functional setting, executions not only modify the state but also return values. In this
setting, traces are pairs, which we write as 𝜉 6 𝑟 , where 𝜉 is the sequence of transitions and 𝑟
represents the final value that the program term guarantees to return [6]. For example, the seman-
tics of dereference Jx?KB includes all traces of the form 〈𝜇, 𝜇〉 6 𝜇 (x). Indeed, the execution of x?
does not change the memory and returns the value loaded from x. In the semantics of assignmentJx – 𝑣KB , instead of 〈𝜇, 𝜇 [x – 𝑣]〉 we have 〈𝜇, 𝜇 [x – 𝑣]〉 6 〈〉.
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6 Yotam Dvir, Ohad Kammar, and Ori Lahav

Closure rules in SC. Were denotations in Brookes’s semantics defined to only include the traces
we explicitly mentioned above, it would not be abstract enough to justify (WW-Elim), which elim-
inates redundant writes. Indeed, we only saw traces with two transitions in Jx – 𝑣 ; x –𝑤KB , but
in Jx –𝑤KB we saw traces with one. The semantics would still be adequate, but it would lack ab-
straction. To achieve abstraction, Brookes introduces another main idea: closing the denotations
under two closure conditions. These are:

Stutter: if 𝜉𝜂 6 𝑟 is in the set, then 𝜉 〈𝜇, 𝜇〉 𝜂 6 𝑟 is too. Intuitively, a program term can always
guarantee what it relies on.

Mumble: if 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 6 𝑟 is in the set, then 𝜉 〈𝜇, 𝜃〉 𝜂 6 𝑟 is too. Intuitively, a program
term can always omit a guarantee to the environment, and rely on its own omitted guarantee
instead of relying on the environment.

Denotations in Brookes’s semantics are sets of traces that are closed under these conditions. For
example, Jx –𝑤KB is the least closed set with all traces of the form 〈𝜌, 𝜌 [x – 𝑤]〉 6 〈〉, andJx – 𝑣 ; x –𝑤KB is the least closed set with all sequential compositions of traces of Jx – 𝑣KB
with trace of Jx –𝑤KB .

The closure conditions in Brookes’s semantics make the traces in J𝑀KB correspond precisely to
interrupted executions of𝑀 , which are executions of𝑀 in which thememory can arbitrarily change
between steps of execution. Each transition 〈𝜇, 𝜌〉 in a trace in J𝑀KB corresponds to multiple exe-
cution steps of𝑀 that transition 𝜇 into 𝜌 , and each gap between transitions accounts for possible
environment interruption. The closure rules maintain this correspondence: stutter corresponds to
taking 0 steps, and mumble corresponds to taking 𝑛 +𝑚 steps instead of taking 𝑛 steps and then
𝑚 steps when the environment did not observably change the memory in between. Brookes’s ade-
quacy proof is based on this precise correspondence. In particular, the single-pair traces in J𝑀KB
correspond to the (uninterrupted) executions, the “input-output” relation, of𝑀 .

2.3 Overview of Release/Acquire Operational Semantics
Memory accesses in RA are more subtle than in SC. We adopt Kang et al.’s “view-based” ma-
chine [28], an operational presentation of RA proven to be equivalent to the original declarative
formulation of RA [e.g. 31]. In this model, rather than the memory holding only the latest value
written to every variable, the memory accumulates a set of memory update messages for each lo-
cation. Each thread maintains its own view that captures which messages the thread can observe,
by constraining the messages that the thread may read and write. The messages in the memory
carry views as well, which are inherited from the thread that wrote the message, and passed to any
thread that reads the message. This indirectly maintains a causal relationship between messages
in memory throughout the evolution of the system.

More concretely, causality is enforced by timestamping messages, thus placing them on their
location’s timeline. A view 𝜅 associates a timestamp 𝜅ℓ to each location ℓ , obscuring the portion
of ℓ’s timeline before 𝜅ℓ . The view points to a message at ℓ with timestamp 𝜅ℓ . A message point to
messages via the view it carries. Every message must point to itself.

To capture the atomicity of RMWs, each message occupies a half-open segment (𝑞, 𝑡] on their
location’s timeline, where 𝑡 is the message’s timestamp. A message with segment (𝑞, 𝑡] dovetails
after a message at the same location with timestamp 𝑞, if there is one. When an RMW writes it
must dovetail after the message it read. Messages are apart if neither dovetails after the other.

We explain our notation using the example memory in Figure 1 (top) which consists of two
locations, x and y. Consider the notation of themessage 𝜈3 – x:1@(.5, 1.7] ⟪y@3.5⟫ in this memory:
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Fig. 1. Illustrations of a memory (top) and a trace (bottom), involving two memory locations, x and y. Top:
A memory holding six messages. The timelines are deliberately misaligned and have different scales, em-
phasizing that timestamps for different locations are incomparable and that only the order between them is
relevant. The arrows pointing between messages illustrate the graph structure that the views impose. Mes-
sages are spatially parted iff they are apart, e.g. 𝜈3 dovetails after 𝜈2, which is apart from 𝜈1. Bottom: A trace
with two transitions: 𝛼 〈𝜇1, 𝜌1〉 〈𝜇2, 𝜌2〉 𝜔 6 5. The memory illustrated on top is 𝜌2. We highlight messages
that are not part of a previous memory. The local messages are 𝜈2 and 𝜈3; the rest are environment messages.

• its location is x;
• it carries the value 1;
• it occupies the segment (.5, 1.7]

on x’s timeline;

• it carries the view 𝜅 such that:
– 𝜅x = 1.7, so 𝜈3 points at itself, like every message;

and
– 𝜅y = 3.5, so 𝜈3 points at 𝜖3.

A threadmay only write a message with a timestamp visible from its view.When a thread writes
to a location ℓ , it must increase the timestamp its view associates with ℓ and use its new view as the
message’s view. The message’s segment must not overlap with any other segment on ℓ’s timeline.
In particular, only one message can ever dovetail after a given message. A thread can only read
from messages visible from its view, and when it reads, its view increases as needed to dominate
the view of the loaded message. Formally, a view 𝜔 dominates a view 𝛼 , written 𝛼 ≤ 𝜔 , if 𝛼ℓ ≤ 𝜔ℓ

for every ℓ . Increasing the view in this way may obscure messages at the location of the read as
well as other locations.

Revisit the (MP) litmus test: (x – 1 ; y – 1) ∥ 〈y?, x?〉. Start with a memory with a single mes-
sage holding 0 at each location, and with all views pointing to the timestamps of these message.
Suppose the right thread loaded 1 from y, as Figure 2 (left) depicts. Such a message can only be
available if the left thread stored it. Before storing 1 to y, the left thread stored 1 to x, obscuring
the initial x message from its view. The right thread inherits this causal constraint by inheriting
the view, preventing a load of 0 from x. Therefore, RA forbids the outcome 〈〈〉 , 〈1, 0〉〉.

In contrast, consider the store buffering litmus test:

(x – 1 ; y?) ∥ (y – 1 ; x?) (SB)

By considering the possible interleavings, one can check that no execution in SC returns 〈0, 0〉.
However, in RA some do. Indeed, even if the left thread stores to x before the right thread loads
from x, the right thread’s view allows it to load 0, as Figure 2 (right) depicts.

We can recover the SC behavior by interspersing fences between sequenced memory accesses,
which we impose with FAA (z, 0) to a third location z. Compare (SB) to the store buffering with
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y:
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𝜎 ′

Fig. 2. Depictions of a step during an execution of a litmus test, with the view of the right thread changing
from 𝜎 to 𝜎 ′. The value that each message carries is in its bottom-right corner. Views are illustrated implicitly
in the graph structure that they impose. Obscuredmessages are faded. Left:As the right thread in (MP) loads
1 from y, it inherits the view of 𝜖1, obscuring 𝜈0. Right: The right thread in (SB) loading 0 from x. The earlier
step of storing 𝜖1 did not obscure 𝜈0.

fences litmus test:
(x – 1 ; FAA (z, 0) ; y?) ∥ (y – 1 ; FAA (z, 0) ; x?) (SB+F)

Each FAA (z, 0) instruction stores a message 𝜈𝑖 that must dovetail after the message that they load
from, and inherit that message’s view. They cannot both dovetail after the initial message at z
because their segments cannot intersect. Thus, one of them will have to dovetail after the other.
Suppose the message 𝜈2 from the right thread dovetails after 𝜈1 from the left. In this scenario, the
view of the message 𝜈1 points to the message 𝜖1 the left thread had previously stored at x. When
the right thread loads 𝜈1 it inherits this view, obscuring the initial message 𝜖0 at x. Therefore, when
it later loads from x, it must load from 𝜖1 the value 1. Similarly, in the case of 𝜈1 dovetailing after
𝜈2 the left thread must load 1 from y. Thus, like in SC, no execution in RA returns 〈0, 0〉.

3 Contribution Summary
We present our main contributions. We start with our notion of a trace, which we adapt to RA
both in the structure of the trace itself, as well as in the closure rules we impose (§3.1). We then
briefly explain the way in which our semantics is standard, and a few beneficial consequences
of this fact (§3.2). Finally, we connect our denotational semantics to the operational semantics of
RA (§3.3), showing both adequacy and sufficient abstraction.

3.1 Traces for Release/Acquire
As in Brookes’s SC-traces, our RA-traces include a sequence of transitions 𝜉 , each transition a pair
of RA memories; and a return value 𝑟 . We impose analogues to the stutter and mumble closure
rules. The operational semantics only adds messages and never modifies them. We consequently
require that everymemory snapshot in the sequence 𝜉 be contained in the subsequent one, whether
it be within or across transitions. A message added within a transition is a local message; otherwise
it is an environment message. We call the first memory in 𝜉 ’s first transition its opening memory,
and the second memory in 𝜉 ’s last transition its closing memory. In addition, RA-traces include an
initial view 𝛼 , declaring which messages they rely on to be revealed in 𝜉 ’s opening memory; and
a final view 𝜔 , declaring the messages they guarantee to not obscure in 𝜉 ’s closing memory. We
write the trace as 𝛼 𝜉 𝜔 6 𝑟 . See Figure 1 (bottom) for an illustrated example.

RA specific closure rules. We close the denotations J−KA for RA under further closure rules to
make the denotational semantics more abstract. For example, to justify the RA-valid (WW-Elim).
The reasoning we have used to justify it under SC, by showing Jx – 𝑣 ; x –𝑤KB ⊇ Jx –𝑤KB in
Brookes’s semantics, will only get us so far in RA without an additional closure rule. Replicating
the process, the trace we have in Jx – 𝑣 ; x –𝑤KA thanks to closure undermumble has two local
messages, whereas traces from Jx –𝑤KA only have a single local message. We did not have this
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problem in SC, where memory is more abstract, satisfying 𝜇 [x – 𝑣] [x – 𝑤] = 𝜇 [x – 𝑤]. We
resolve this by closing under the absorb closure rule, which replaces two dovetailed local messages
with one that carries the second message’s value. To justify (WW-Elim) in RA, we appeal to absorb
closure after appealing to mumble closure.

Internalized operational invariants. The validity of program transformations sometimes depends
on semantic invariants of the operational semantics (§6). For example, consider the transformation
x? ; y? ↠ y?. Consider the state 𝑆 that consists of the memory at Figure 1 (top) and the view that
points to 𝜈3 and 𝜖2. The only step x? ; y? can take from the state 𝑆 is to load 𝜈3, inheriting the view
that 𝜈3 carries, which changes the thread’s view to point to 𝜖3. Only 𝜖3 is available in the following
step, which means the term returns 3. In contrast, starting from 𝑆 , the term y? can load from 𝜖2 to
return 7. This analysis does not invalidate the transformation because the state 𝑆 is unreachable
by an execution starting from an initial state, and should therefore be ignored when determining
observable behaviors.

Just as we restrict our attention to reachable states when analyzing the operational semantics,
we restrict our denotational domain to traces that possess analogous properties (§7.2). This elimi-
nates “junk”: undefinable traces that can differentiate between denotations. By forbidding junk we
increase abstraction, validating more transformations. A restriction on the initial view and open-
ing memory corresponding to the example above implies Jx? ; 〈〉KA ⊇ J〈〉KA , justifying the RA-
valid Irrelevant Read Elimination (R-Elim) x? ; 〈〉 ↠ 〈〉. The transformation x? ; y? ↠ y? follows
structurally, as we explain below.

3.2 Compositionality and the Monadic Presentation
We bridge weak-memory models with Moggi’s monad-based approach to denotational semantics.
This approach has a built-in semantic framework for the effect-free fragment of the language, to
which effect constructs can be modularly added. Reasoning about the effect-free fragment is valid
in all instances. Thanks to our contribution, this is also valid for RA weak memory. For example,J〈〉 ;𝑀KA = J𝑀KA and J(𝑀 ; 𝑁 ) ; 𝐾KA = J𝑀 ; (𝑁 ; 𝐾)KA follow by structural reasoning. That is,
without appealing to the specifics of the RA denotations. These examples justify transformations
that we use, together with (R-Elim), to deduce x? ; y? ↠ y?:

x? ; y? ↠ x? ; (〈〉 ; y?) ↠ (x? ; 〈〉) ; y? ↠ 〈〉 ; y? ↠ y?

As another example, if 𝐾 is effect-free, then:

Jif 𝐾 then𝑀 ; 𝑁 else𝑀 ; 𝑁 ′ KA = J𝑀 ; if 𝐾 then𝑁 else𝑁 ′ KA
So-called structural transformations may otherwise require challenging ad-hoc proofs [e.g. 24, 26].

Higher order. An important aspect of a programming language is its facilitation of abstraction.
Higher-order programming is a flexible instance of this aspect, in which programmable functions
can take functions as input and return functions as output. Moggi’s approach supports higher-
order functions out-of-the-box without complicating the rest of the semantics.

Every value returned by an execution has a semantic presentation which we use as the return
value in traces. The semantic and syntactic values coincide in first-order types, but different syn-
tactic functions may have the same semantics, so the identification does not extend to the entire
higher-order language.

A term is a program when it is closed (every variable occurrence is bound) and of ground type
(resulting value is not a function). Thus a program returns a concrete result that the end-user can
observe. To prove properties about higher-oder programs we use logical relations [45, 49]. Moggi’s
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toolkit provides a standard way to define logical relations, thereby lifting properties to their higher-
order counterparts.

Compositionality. In its most basic form, compositionality means that a term’s denotation is
defined using the denotations of its immediate subterms. In our case denotations are sets, where
each elements represents a possible behavior of the term. We establish a directional generalization
of compositionality:

Compositionality (Thm. 8.11). If J𝑀KA ⊆ J𝑁 KA then JΞ [𝑀]KA ⊆ JΞ [𝑁 ]KA for every program
context Ξ [−].

Compositionality follows from the monadic design of the denotational semantics using mono-
tonic operators, in the same way it does for SC [e.g. 20].

3.3 Relating the Denotational Semantics to the Operational Semantics
Kang et al.’s presentation assumes top-level parallelism, a common practice in studies of weak-
memory models. Restricting parallelism to the top level makes the language non-uniform and
programming in it a non-compositional activity. We extend Kang et al.’s operational semantics to
support first-class parallelism by organizing thread views in an evolving view-tree, a binary tree
with view-labeled leaves, rather than in a fixed flat mapping. Thus, a configuration consists of a
term, a memory, and a view-tree. The latter two are the configuration’s state. In discourse, we do
not distinguish between a view-leaf and its label.

Consider theWrite-Read Reordering transformation (WR-Reord) (x – 𝑣);y? ↠ fst 〈y?, (x – 𝑣)〉
that is a crucial reordering of memory accesses valid under RA but not SC. With first-class paral-
lelism, we decompose (WR-Reord) into a combination of structural transformations, laws of par-
allel programming, and Write-Read Deorder (WR-Deord) 〈(x – 𝑣) , y?〉 ↠ (x – 𝑣) ∥ y?:

(x – 𝑣) ; y?

Structural
↓
↠ snd 〈(x – 𝑣) , y?〉

(WR-Deord)
↓
↠ snd ((x – 𝑣) ∥ y?)

Par. Prog. Law: Symmetry
↓
↠ snd (swap (y? ∥ (x – 𝑣)) )

Structural
↓
↠ fst (y? ∥ (x – 𝑣))

Par. Prog. Law: Sequencing
↓
↠ fst 〈y?, (x – 𝑣)〉

This decomposition separates concerns: we validate each step with our semantics using indepen-
dent arguments. It also highlights (WR-Deord) as the crucial step, as the rest are valid under SC.

Concrete semantics. Our contributions use a simpler semantics J−KC in which the sets of traces
are closed under the concrete rules, such as stutter and mumble, but not under the abstract rules,
such as absorb. This is in contrast to J−KA which are closed under both the concrete and the
abstract rules. The concrete rules saturate the trace-set with traces that account for possible inter-
action with the environment. They make sequential and parallel composition straightforward, a
mere sequencing or interleaving of the transitions from the composed constituents. The abstract
rules make the semantics more abstract, justifying more transformations.

The concrete semantics is saturated enough to include all program evaluations:

Soundness (Thm. 8.12). If a program 𝑀 evaluates, starting in the state 〈𝛼, 𝜇〉, to a value 𝑉 , then
𝛼 〈𝜇, 𝜌〉 𝜔 6𝑉 ∈ J𝑀KC for some state 〈𝜔, 𝜌〉.

A crucial observation in our technical development is that we can percolate the applications of
abstract closure rules “outwards”:
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Rewrite Commutativity (Lem. 8.3). Let 𝜏 and 𝜚 be traces such that from 𝜏 we can obtain 𝜚 using
the concrete and abstract closure rules (denoted 𝜏 𝔠𝔞−→ 𝜚 ). Then there exists a trace 𝜋 , such that from 𝜏

we can obtain 𝜋 using only concrete closure rules (denoted 𝜏 𝔠−→ 𝜋 ), and from 𝜋 we can obtain 𝜚 using
only abstract closure rules (denoted 𝜋 𝔞−→ 𝜚 ).

Thanks to this combinatorial analysis, we prove that the two semantics are compatible:

Retroactive Closure (Lem. 8.7). If 𝑀 is a program, then J𝑀KA is equal to the closure of J𝑀KC
under the abstract closure rules (denoted J𝑀KA = J𝑀K𝔞C).

As an immediate consequence, soundness holds for the abstract semantics as well.

Abstract adequacy. The abstract semantics J𝑀KA includes traces that 𝑀 does not exhibit con-
cretely, but an equivalent program does. For example, Jx – 𝑣 ; x –𝑤KA includes the traces that
x –𝑤 exhibits concretely thanks to absorb-closure, justifying (WW-Elim).

Nevertheless, each trace in the abstract denotation corresponds to an observable behavior:

Evaluation Lemma (Lem. 8.15). For every program 𝑀 and 𝛼 〈𝜇, 𝜌〉 𝜔 6 𝑟 ∈ J𝑀KA there is an
evaluation of𝑀 , starting from the state 〈𝛼, 𝜇〉, to the value 𝑟 .

The lack of correspondence with the final state is an artifact of the concreteness-abstraction di-
vergence between the operational and denotational semantics. Due to this divergence, it is signif-
icantly more challenging to establish this direction of the correspondence than in previous work.

The central result is (directional) adequacy, stating that denotational approximation corresponds
to refinement of observable behaviors:

Adequacy (Thm. 8.13). If J𝑀KA ⊆ J𝑁 KA , then for all program contexts Ξ [−], every observable
behavior of Ξ [𝑀] is an observable behavior of Ξ [𝑁 ]: for every evaluation of Ξ [𝑀] there is an
evaluation of Ξ [𝑁 ] from the same initial state to the same value.

In particular, J𝑀KA ⊆ J𝑁 KA implies that 𝑁 ↠ 𝑀 is valid under RA, because the effect of
applying it is unobservable. Adequacy follows immediately from the above results. Indeed, using
soundness, an observable behavior of Ξ [𝑀] corresponds to a single-transition 𝜏 ∈ JΞ [𝑀]KA ; by
the assumption and compositionality 𝜏 ∈ JΞ [𝑁 ]KA ; and using the evaluation lemma, 𝜏 corre-
sponds to an observable behavior of Ξ [𝑁 ].

Sufficient abstraction. Brookes’s denotational semantics J−KB is fully abstract, meaning that the
converse to adequacy also holds: if 𝑁 ↠ 𝑀 is valid under SC, then J𝑁 KB ⊇ J𝑀KB . However,
Brookes’s proof relies on an artificial program construct, await, that permits waiting for a speci-
fied memory snapshot and then stepping (atomically) to a second specified memory snapshot. In
realistic languages, when this construct is unavailable, Brookes’s full abstraction proof does not
apply and full abstraction fails, as shown by Svyatlovskiy et al. [50].

Nevertheless, even without full abstraction, an adequate semantics can be abstract “enough” by
ensuring that it supports known transformations. To the best of our knowledge, all transformations
𝑁 ↠ 𝑀 proven to be valid under RA in the existing literature are supported by our denotational
semantics, i.e. J𝑁 KA ⊇ J𝑀KA . Structural transformations are supported by virtue of usingMoggi’s
standard semantics. Our semantics also validates “algebraic laws of parallel programming”, such
as sequencing𝑀 ∥ 𝑁 ↠ 〈𝑀, 𝑁 〉 and its generalization that Hoare and van Staden [22] recognized,
(𝑀1 ;𝑀2) ∥ (𝑁1 ; 𝑁2) ↠ (𝑀1 ∥ 𝑁1) ; (𝑀2 ∥ 𝑁2), which in the functional setting can take the more
expressive form in which the values returned are passed on to the following computation. We
present our supported transformations in Figure 3.
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Laws of Parallel Programming
Symmetry ↠𝑀 ∥ 𝑁 swap (𝑁 ∥ 𝑀)
Generalized Sequencing

↠(let𝑎 =𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in 𝑁2) match𝑀1 ∥ 𝑁1 with 〈𝑎, 𝑏〉. 𝑀2 ∥ 𝑁2

Eliminations
Irrelevant Read ↠ℓ? ; 〈〉 〈〉
Write-Write ↠ℓ – 𝑣 ; ℓ –𝑤 ℓ –𝑤

Ab

Write-Read ↠ℓ – 𝑣 ; ℓ? ℓ – 𝑣 ; 𝑣

Write-FAA ↠ℓ – 𝑣 ; FAA (ℓ,𝑤) ℓ – (𝑣 +𝑤) ; 𝑣Ab

Read-Write ↠let𝑎 = ℓ? in ℓ – (𝑎 + 𝑣) ; 𝑎 FAA (ℓ, 𝑣)
Read-Read ↠〈ℓ?, ℓ?〉 let𝑎 = ℓ? in 〈𝑎, 𝑎〉
Read-FAA ↠〈ℓ?, FAA (ℓ, 𝑣)〉 let𝑎 = FAA (ℓ, 𝑣) in 〈𝑎, 𝑎〉
FAA-Read ↠〈FAA (ℓ, 𝑣) , ℓ?〉 let𝑎 = FAA (ℓ, 𝑣) in 〈𝑎, 𝑎 + 𝑣〉
FAA-FAA ↠〈FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)〉 let𝑎 = FAA (ℓ, 𝑣 +𝑤) in 〈𝑎, 𝑎 + 𝑣〉Ab

Others
Irrelevant Read Introduction ↠〈〉 ℓ? ; 〈〉
Read to FAA ↠ℓ? FAA (ℓ, 0)Di

Write-Read Deorder ↠〈(ℓ – 𝑣) , ℓ ′?〉 (ℓ – 𝑣) ∥ ℓ ′?Ti (ℓ ≠ ℓ ′)
Write-Read Reorder ↠(ℓ – 𝑣) ; ℓ ′? fst 〈ℓ ′?, (ℓ – 𝑣)〉Ti (ℓ ≠ ℓ ′)

Fig. 3. A representative list of transformations the denotational semantics J−KA supports. Along with Sym-
metry, the denotational semantics supports all symmetric-monoidal laws with the binary operator (∥) and
the unit 〈〉. The structural transformations supported due to the semantics being monad-based are omitted.
The semantics also supports similar transformations involving RMWs other than FAA. The list mentions the
abstract closure rules that the proofs appeal to.

4 Language and Typing
We consider a standard extension of Moggi’s [40] computational lambda calculus with products
and variants (labeled sums) further extending it with shared-memory constructs. We parameterize
our language, which we call 𝝀RA, by its globally available locations, the values we store in and
retrieve from these locations, and the primitives we use to mutate these values atomically through
a unified read-modify-write construct.

Locations and Storable Values. We fix two finite sets of (shared memory) locations Loc, ranged
over by ℓ, ℓ ′; and (storable) values Val, ranged over by 𝑣,𝑤,𝑢. For example, we may take Loc and
Val to be all 64-bit sequences. In concrete examples, we will use concrete names such as x, y, z
for distinct locations, and numbers for values. For simplicity, we don’t include primitives (such as
addition) explicitly, since they require standard minor changes.

Read-modify-write (RMW). These constructs read a value from memory atomically and possi-
bly modify it to some other computed value. Typical languages include the following constructs,
which are efficiently compiled to hardware: Compare-and-Swap: modify when the stored value
matches the parameter; Fetch-and-Add: increase the stored value by the parameter; and Ex-
change: modify the stored value to the parameter. For convenience, we include a single RMW
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construct that expresses all such operations, as well as standard loads. This generalization, espe-
cially bringing together loads with RMW operations, is non-standard, but makes our development
more uniform.

Formally, a modifier is a partial function Φ : Val ⇀ Val, which represents an RMW operation
that: reads a value 𝑣 from memory; and if Φ is defined on 𝑣 , atomically writes Φ(𝑣) in its stead.
To support parameters, an 𝑛-ary modifier is a partial function 𝜑− : Val𝑛 × Val ⇀ Val. Our lan-
guage requires a family RMW, indexed by the natural numbers, consisting of sets RMW𝑛 of 𝑛-ary
modifiers which we call primitive modifiers. For example, the following primitive modifiers for
common operations, which have efficient implementations on hardware:
Load load(𝑣) – ⊥ Fetch-and-Add faa〈𝑤〉 (𝑣) – 𝑣 +𝑤

Exchange xchg〈𝑤〉 (𝑣) – 𝑤 Compare-and-Swap cas〈𝑤,𝑢 〉 (𝑣) – if 𝑣 =𝑤 then𝑢 else⊥
Here: ⊥ means ‘undefined’; we omit the nullary load’s parameter (〈〉); cas requires a semantic
equality comparison operator on values (=); and faa requires semantic addition of values (+).

Syntax. Given parameters Loc, Val, and RMW, Figure 4 presents 𝝀RA’s syntax, and additional
syntax admitted via syntactic sugar. The types are standard, comprising tuple, sum and function
types. We draw constructor names for variants from a countably infinite set Lab, ranged over by 𝜄.
We assume Lab contains Loc and Val. We identify Loc and Val with sum types Loc and Val whose
constructors are the locations and values, each labeling the empty tuple type.

The core term constructs in 𝝀RA are standard too. We treat program variables 𝑎,𝑏, 𝑐 standardly,
with the usual definitions of capturing and non-capturing substitutions. Function abstraction and
application are standard, andwe annotate the bound variable with its type, omitting the annotation
when we can infer it. Tuple constructors are standard. Variant constructors𝐴.𝜄 𝑀 are standard and
we require the total sum type𝐴 to disambiguate all variant constructors, which we omit when this
type can be inferred.The pattern matching constructs for tuples and variants are standard, binding
(distinct) variables occurrences in each pattern, and scoping over each branch.

We index the RMW construct with a primitive modifier 𝜑 ∈ RMW, and its first argument is a
location from which to read and possibly modify, followed by a tuple supplying the parameters.
The term rmw𝜑 (𝑀 ;𝑁 ) executes by evaluating 𝑀 to a location ℓ , then evaluating 𝑁 to a tuple of
values ®𝑤 =

〈
𝑤1, ... ,𝑤𝜑.ar

〉
. Then, atomically, reading a value 𝑣 from ℓ and overwriting it with 𝜑 ®𝑤𝑣

if it’s defined. Regardless of whether 𝜑 ®𝑤𝑣 is defined, the read value 𝑣 is returned. If 𝜑 ®𝑤𝑣 is defined,
no other RMW can overwrite the same previous write of 𝑣 .

We desugar the typical memory dereferencing primitives using our examplemodifier primitives:
𝑀? – rmwload (𝑀 ; 〈〉) FAA (𝑀, 𝑁 ) – rmwfaa (𝑀 ; 〈𝑁 〉)

XCHG (𝑀, 𝑁 ) – rmwxchg (𝑀 ; 〈𝑁 〉) CAS (𝑀, 𝑁, 𝐾) – rmwcas (𝑀 ; 〈𝑁,𝐾〉)
Assignment𝑀 – 𝑁 is standard, executing by first evaluating𝑀 to a location ℓ ; evaluating 𝑁 to a
value 𝑣 ; storing the value 𝑣 at the location ℓ in memory; and finally returning 〈〉. Assignment does
not block overwriting, so𝑀 – 𝑁 is not equivalent to XCHG (𝑀, 𝑁 ) ; 〈〉.

The operational semantics, defined in §5, follows a call-by-value evaluation strategy, adhering
to a left-to-right convention except for parallel composition 𝑀 ∥ 𝑁 . There, the executions of its
threads𝑀 and 𝑁 interleave, evaluating to the pair of the results of each thread.

The operational semantics hinges on the standard designation of certain terms as values:
𝑉 ,𝑊 F 〈𝑉1, ... ,𝑉𝑛〉 | 𝐴.𝜄 𝑉 | 𝜆𝑎 : 𝐴.𝑀 (Values)

Wewrite𝑀 [𝑎1 ↦→𝑉1, ... , 𝑎𝑛 ↦→𝑉𝑛] for the standard capture-avoiding substitution replacing each vari-
able 𝑎𝑖 with 𝑉𝑖 in𝑀 .
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𝑀, 𝑁 F term
𝑎 variable/identifier
| 𝜆𝑎 : 𝐴.𝑀 function abstraction
| 𝑀𝑁 function application
| 〈𝑀1, ... , 𝑀𝑛〉 tuple constructor
| 𝐴.𝜄 𝑀 variant constructor
| match𝑀 with 𝛱 pattern matching
| rmw𝜑 (𝑀 ;𝑁 ) read-modify-write
| 𝑀 – 𝑁 assignment
| 𝑀 ∥ 𝑁 parallel composition

𝛱 F pattern clause
| 〈𝑎1, ... , 𝑎𝑛〉. 𝑁 tuple
| {𝜄1 𝑎1.𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛} variant

𝑉 ,𝑊 F value
| 〈𝑉1, ... ,𝑉𝑛〉 tuple of values
| 𝐴.𝜄 𝑉 value within variant
| 𝜆𝑎 : 𝐴.𝑀 function abstraction

𝐴, 𝐵 F type
𝐴→ 𝐵 function
| (𝐴1 ∗ · · · ∗𝐴𝑛) tuple/product
| {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} variant/sum

𝐺 F ground type
| (𝐺1 ∗ · · · ∗𝐺𝑛) tuple/product of ground types
| {𝜄1 of 𝐺1 | · · · | 𝜄𝑛 of 𝐺𝑛} variant/sum of ground types

syntactic sugar
1 – () unit

𝐴𝑛 – (𝐴 ∗ · · · ∗𝐴) repeated product
{𝜄1 | · · · | 𝜄𝑛 } – {𝜄1 of 1 | · · · | 𝜄𝑛 of 1} enumeration

𝐴.𝜄 – 𝐴.𝜄 〈〉 label
let𝑎 =𝑀 in 𝑁 – match 〈𝑀〉 with 〈𝑎〉. 𝑁 let binding

𝑀 ; 𝑁 – let _ =𝑀 in 𝑁 sequencing

𝑀? – rmwload (𝑀 ; 〈〉) load
XCHG (𝑀, 𝑁 ) – rmwxchg (𝑀 ; 〈𝑁 〉) exchange
FAA (𝑀, 𝑁 ) – rmwfaa (𝑀 ; 〈𝑁 〉) fetch-and-add

CAS (𝑀, 𝑁, 𝐾) – rmwcas (𝑀 ; 〈𝑁,𝐾〉) compare-and-swap

locations and values
Loc – {l1 | · · · | ln} Loc = {l1, ... , ln}
Val – {v1 | · · · | vm} Val = {v1, ... , vm}

Fig. 4. Syntax of the 𝝀RA-calculus: terms, and their subset of values; and types, and their subset of ground
types. Other terms and types are admitted as syntactic sugar. The shared-state constructs that extend the
core calculus are highlighted .
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𝛤 ` 𝑀 : 𝐴

(𝑎 : 𝐴) ∈ 𝛤
𝛤 ` 𝑎 : 𝐴

𝛤, 𝑎 : 𝐴 ` 𝑀 : 𝐵

𝛤 ` 𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

𝛤 ` 𝑀 : 𝐴 𝛤 ` 𝑁 : 𝐴→ 𝐵

𝛤 ` 𝑁𝑀 : 𝐵

∀𝑖 . 𝛤 ` 𝑀𝑖 : 𝐴𝑖

𝛤 ` 〈𝑀1, ... , 𝑀𝑛〉 : (𝐴1 ∗ · · · ∗𝐴𝑛)
𝛤 ` 𝑀 : 𝐴𝑖 𝐴 = {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}

𝛤 ` 𝐴.𝜄𝑖 𝑀 : 𝐴

𝛤 ` 𝑀 : (𝐴1 ∗ · · · ∗𝐴𝑛)
𝛤, 𝑎1 : 𝐴1, ... , 𝑎𝑛 : 𝐴𝑛 ` 𝑁 : 𝐵

𝛤 ` match𝑀 with 〈𝑎1, ... , 𝑎𝑛〉. 𝑁 : 𝐵

𝛤 ` 𝑀 : {𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}
∀𝑖 . 𝛤 , 𝑎𝑖 : 𝐴𝑖 ` 𝑁𝑖 : 𝐵

𝛤 ` match𝑀 with {𝜄1 𝑎1.𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛} : 𝐵

𝜑 ∈ RMW𝑛 𝛤 ` 𝑀 : Loc 𝛤 ` 𝑁 : Val𝑛

𝛤 ` rmw𝜑 (𝑀 ;𝑁 ) : Val
𝛤 ` 𝑀 : Loc 𝛤 ` 𝑁 : Val

𝛤 ` 𝑀 – 𝑁 : 1

𝛤 ` 𝑀 : 𝐴 𝛤 ` 𝑁 : 𝐵

𝛤 ` 𝑀 ∥ 𝑁 : (𝐴 ∗ 𝐵)

Fig. 5. Typing rules for the 𝝀RA-calculus. Typing rules for the shared-state constructs are highlighted .

Remark. We do not include recursion/loops in this language, which we leave to future work. While
important, recursion in this higher-order setting will muddy the waters substantially, requiring us to
bring into context domain theoretic concepts like least upper-bounds of 𝜔-chains and powerdomain
constructions. Even without recursion, 𝝀RA is expressive enough for us to discuss interesting examples
and transformations.

Type system. We present the type system in Figure 5. Each typing judgment 𝛤 ` 𝑀 : 𝐴 relates
a type 𝐴, a term 𝑀 , and a typing context 𝛤 which associates to each of 𝑀’s unbound variable 𝑎 a
type 𝐵𝑎 , written (𝑎 : 𝐵𝑎) ∈ 𝛤 . We write · for the empty context, and say that 𝑀 is closed when
· ` 𝑀 : 𝐴 for some type 𝐴. The shadowing extension of 𝛤 by 𝑐 : 𝐶 , denoted 𝛤, 𝑐 : 𝐶 , is equal to 𝛤
except for associating𝐶 to 𝑐 . The typing rules for the shared-memory constructs are standard, and
reflect their informal explanation above. In particular, for RMW the arity of the tuple must match
the arity of the modifier. Each term has at most one type in a given typing context, and in that
case the typing derivation is unique. We denote by 𝛤 ` 𝐴 the set of terms {𝑀 | 𝛤 ` 𝑀 : 𝐴}.

A program is a closed term of ground type—iterated sum and product types:

𝐺 F (𝐺1 ∗ · · · ∗𝐺𝑛) | {𝜄1 of 𝐺1 | · · · | 𝜄𝑛 of 𝐺𝑛} (Ground types)

5 Operational Semantics for Release/Acquire Concurrency
We give a precise account of the “view-based” machine (§5.1) presented in §2.3. We observe that
this semantics admits a non-deterministic view-forwarding step (§5.2) which our metatheory uses.

5.1 View-based Semantics
Our formalization of the operational semantics follows Kang et al. [28] and Kaiser et al. [27]. The
account below grounds the explanations we gave in §2.3 more formally.
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16 Yotam Dvir, Ohad Kammar, and Ori Lahav

Timestamps. We maintain a per-location timestamp order, which constrains the memory access
of threads. We use rational numbers Q as timestamps, ordered standardly, ranged over by 𝑡, 𝑞, 𝑝 .

Views. A view is a location-indexed tuple of timestamps, i.e. an element (𝜅ℓ )ℓ∈Loc of the set of
views View – QLoc. We let 𝛼, 𝜅, 𝜎, 𝜔 range over views. In examples with Loc = {x, y}, we denote
by ⟪x@𝑡 ; y@𝑞⟫ the view that has 𝑡 in the x component and 𝑞 in the y component. We order views
location-wise, i.e. 𝛼 ≤ 𝜔 when ∀ ℓ ∈ Loc. 𝛼ℓ ≤ 𝜔ℓ , and in this case say that 𝜔 dominates 𝛼 . We also
employ t and u for pointwise maximum and minimum of views, and denote by 𝜅 [ℓ ↦→𝑡] the view
that is equal to 𝜅 everywhere except ℓ , where it equals 𝑡 .

Messages. A message 𝜈 is a tuple in Msg – Loc × Val × Q × View, written 𝜈 = ℓ :𝑣@(𝑞, 𝜅ℓ ]⟪𝜅⟫,
where 𝑞 < 𝜅ℓ . Here, ℓ is the location of the message, 𝑣 is the value of the message, 𝑞 is the initial
timestamp of the message, and 𝜅 is the view of the message. We repeat the ℓ-timestamp from the
view 𝜅 in the interval (𝑞, 𝜅ℓ ]. We say 𝜈 dovetails after a message at location ℓ with ℓ-timestamp 𝑞.

We use projection-notation for components of 𝜈 : 𝜈.lc – ℓ , 𝜈.vl – 𝑣 , 𝜈.i – 𝑞, and 𝜈.vw – 𝜅.
The (final) timestamp of the message is 𝜈.t – 𝜅ℓ . In concrete examples, we reduce duplication
by eliding the timestamp from the view, e.g. y:0@(0.5, 4.2] ⟪x@1⟫. The message’s two timestamps
delimit the segment of the message: the interval 𝜈.seg – (𝜈.i, 𝜈 .t].

We let 𝜈, 𝜖, 𝛽 range over messages. We extend notation from messages to sets of messages by
direct image: for example, given a set 𝜇 of messages, define 𝜇.seg – {𝜈.seg | 𝜈 ∈ 𝜇}.
Memories. A memory is a finite non-empty set of messages. We let 𝜇, 𝜌, 𝜃 range over memories,

and denote the set of messages in 𝜇 at location ℓ by 𝜇ℓ – {𝜈 ∈ 𝜇 | 𝜈.lc = ℓ}.
Example 5.1. Figure 6 (top) illustrates a memory resulting from a program execution starting

with the memory {𝜈1, 𝜖1}: the program added messages out of the timeline order (𝜖3 before 𝜖2);
dovetailed messages (𝜈2.t = 𝜈3.i); and left gaps between messages (𝜈1 .t < 𝜈2 .i). Message views
need not increase along the timeline (𝜖2 .t ≤ 𝜖3.t yet 𝜖2.vw 6≤ 𝜖3.vw).

View trees. Kang et al.’s [28] original presentation of the view-based semantics studies top-level
parallelism, and thus featured a flat thread-view mappings. Here we allow nesting of parallel com-
position anywhere in the program, so we use a tree of views instead, whose structure changes
along with the execution of the program as threads are activated and synchronize.

Formally, a view-tree is a binary tree with view-labeled leaves. We denote the set of view-trees
by VTree, ranged over by 𝑇, 𝑅, 𝐻 . We denote: by 9𝜅 the leaf with label 𝜅; by 𝑇̂𝑅 the tree whose
immediate left and right subtrees are 𝑇 and 𝑅; and by 𝑇 .lf the set of labels of leaves of 𝑇 . We lift
the order of views leaf-wise: 9𝜅 ≤ 9𝜎 when 𝜅 ≤ 𝜎 , and 𝑇̂𝑅 ≤ 𝑇 ′̂𝑅′ when 𝑇 ≤ 𝑇 ′ and 𝑅 ≤ 𝑅′.
Operational semantics. Figures 7 to 9 present the operational semantics of 𝝀RA. A configuration
〈𝑇, 𝜇〉 , 𝑀 consists of a view-tree𝑇 capturing the views of the active threads; the current memory 𝜇;
and a closed term𝑀 . The state of the configuration is the pair 〈𝑇, 𝜇〉. The relation 𝑒

⇝RA represents
(atomic) steps between configurations. The label 𝑒 , distinguishing the memory-accessing steps (•)
from the rest (◦), is used as a proof tool (§C) and can be otherwise ignored. We denote the step
relation ignoring the label ⇝RA –

•
⇝RA ∪

◦
⇝RA. Let the Kleene star (∗) denote the reflexive-

transitive closure of a relation. For example, ⇝∗
RA is the reflexive-transitive closure of ⇝RA.

Sequential CBV constructs. The semantics adheres to a standard call-by-value (CBV) reduction
strategy. For example, terms do not reduce under function abstractions; and as for function ap-
plication, we have the AppLeft and AppRight congruence steps, and the App 𝛽-reduction step is
restricted to reduce only on value arguments. The 𝛽-reductions use the ◦-label and view-leaves,
and do not change the state; the congruence steps simply carry the label and states over.

, Vol. 1, No. 1, Article . Publication date: December 2024.



A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 17

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@ .5 ⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

y

x
-2
|

-1
|

0
|

1
|

-.5
|

.5
|

1.7
|

x:1@(92, 91] ⟪y@1⟫𝜈1 x:2@(9.5, .5] ⟪y@1⟫𝜈2 x:1@(.5, 1.7] ⟪y@3.5⟫𝜈3

y:1@(0, 1] ⟪x@91⟫𝜖1 y:7@(1, 2] ⟪x@ 1.7 ⟫𝜖2 y:3@(3, 3.5] ⟪x@91⟫𝜖3

0
|

1
|

2
|
3
|

3.5
|

Fig. 6. Two variations on the memory illustrated in Figure 1. Top: This memory is well-formed. It demon-
strates that the views of messages along a timeline do not have to be ordered: 𝜖2 appears earlier than 𝜖3
on y’s timeline but points to a later message on x’s timeline. Bottom: This memory is not well-formed be-
cause it contains an ascending path, in contradiction to Proposition 6.5. Intuitively, no thread could have
written 𝜖2 because the view that 𝜖2 carries indicates that the thread would have already “known” about 𝜈3
and therefore, following the causality chain, about 𝜖3 as well. Thus, the thread would have been forbidden
from picking 𝜖2’s timestamp.

Parallel composition. The PaRInit rule initializes a parallel composition by duplicating its view-
leaf to a new node. The rules PaRLeft and PaRRight non-deterministically interleave the execu-
tion of the left and right threads. After both threads evaluate, PaRFin joins the thread views back
into a single leaf, and returns the pair of results.

Example 5.2. We show an example execution, snipping some intermediate steps:

〈𝜇0, 9𝛼〉 , 𝑀 ; (𝑁1 ∥ 𝑁2) ⇝∗
RA 〈𝜇1, 9𝛼 ′〉 , 𝑁1 ∥ 𝑁2 ⇝RA

〈
𝜇1, 9𝛼 ′̂ 9𝛼 ′

〉
, 𝑁1 ∥ 𝑁2

⇝∗
RA

〈
𝜌, 9𝜔1̂ 9𝜔2

〉
,𝑉1 ∥ 𝑉2 ⇝RA

〈
𝜌, 9𝜔1 t 𝜔2

〉
, 〈𝑉1,𝑉2〉

First, 𝑀 runs until it returns a value, which is discarded by the sequencing construct. Next, the
parallel composition 𝑁1 ∥ 𝑁2 activates. The threads then interleave executions, each with its asso-
ciated side of the view-tree, interacting via the shared memory. Finally, once each thread returns
a value, they synchronize.

Assignment. The StoRe rule for location ℓ picks a free segment (𝑞, 𝑡] for the message it adds,
where 𝑡 is strictly greater than the thread’s view for ℓ . The step updates this thread’s view to 𝜔
by increasing the timestamp for ℓ to 𝑡 ; adds a message to memory with this updated view 𝜔 ; and
returns the unit value.

Read-modify-write. The ReadOnly and RMW rules for the rmw construct both: start by picking
a message to the given location to read from that has the same or a larger timestamp than the
thread’s view; then incorporate the message’s view in the thread’s view; and finally return the
value they read. If the given primitivemodifier is undefined for the given parameters andmessage’s
value, nothing else happens (ReadOnly rule). If the modifier is defined (RMW rule), much like the
StoRe rule, a timestamp strictly greater than the thread’s view for the location is chosen to update
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〈𝑇, 𝜇〉 , 𝑀 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

AppLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

〈𝑇, 𝜇〉 , 𝑀𝑁 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′𝑁

AppRight
〈𝑇, 𝜇〉 , 𝑁 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑁 ′

〈𝑇, 𝜇〉 ,𝑉𝑁 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 ,𝑉𝑁 ′

App

〈 9𝜅, 𝜇〉 , (𝜆𝑎 : 𝐴.𝑀)𝑉 ◦
⇝RA 〈 9𝜅, 𝜇〉 , 𝑀 [𝑎 ↦→𝑉 ]

MatchCong
〈𝑇, 𝜇〉 , 𝑀 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

〈𝑇, 𝜇〉 ,match𝑀 with 𝛱
𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 ,match𝑀 ′ with 𝛱

VaRiantCong
〈𝑇, 𝜇〉 , 𝑀 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀
〈𝑇, 𝜇〉 , 𝐴.𝜄𝑖 𝑀

𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝐴.𝜄𝑖 𝑀 ′

MatchVaRiant

〈 9𝜅, 𝜇〉 ,match𝐴.𝜄𝑖 𝑉 with {𝜄1 𝑎1 .𝑁1 | · · · | 𝜄𝑛 𝑎𝑛 .𝑁𝑛}
◦
⇝RA 〈 9𝜅, 𝜇〉 , 𝑁𝑖 [𝑎𝑖 ↦→𝑉 ]

TupleCong
〈𝑇, 𝜇〉 , 𝑀𝑖

𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′𝑖

〈𝑇, 𝜇〉 , 〈𝑉1, ... ,𝑉𝑖−1, 𝑀𝑖 , 𝑀𝑖+1, ... , 𝑀𝑛〉
𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 ,

〈
𝑉1, ... ,𝑉𝑖−1, 𝑀

′
𝑖 , 𝑀𝑖+1, ... , 𝑀𝑛

〉
MatchTuple

〈 9𝜅, 𝜇〉 ,match 〈𝑉1, ... ,𝑉𝑛〉 with 〈𝑎1, ... , 𝑎𝑛〉. 𝑁
◦
⇝RA 〈 9𝜅, 𝜇〉 , 𝑁 [𝑎1 ↦→𝑉1, ... , 𝑎𝑛 ↦→𝑉𝑛]

Fig. 7. The operational semantics rules of 𝝀RA concerning the core calculus constructs.

PaRInit

〈 9𝜅, 𝜇〉 , 𝑀 ∥ 𝑁 ◦
⇝RA

〈
9𝜅̂ 9𝜅, 𝜇

〉
, 𝑀 ∥ 𝑁

PaRFin
𝜔 = 𝜅 t 𝜎〈

9𝜅̂ 9𝜎, 𝜇
〉
,𝑉 ∥𝑊 ◦

⇝RA 〈 9𝜔, 𝜇〉 , 〈𝑉 ,𝑊 〉
PaRLeft

〈𝑇, 𝜇〉 , 𝑀 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′〈

𝑇̂𝑅, 𝜇
〉
, 𝑀 ∥ 𝑁 𝑒

⇝RA
〈
𝑇 ′̂𝑅, 𝜇′

〉
, 𝑀 ′ ∥ 𝑁

PaRRight
〈𝑅, 𝜇〉 , 𝑁 𝑒

⇝RA 〈𝑅′, 𝜇′〉 , 𝑁 ′〈
𝑇̂𝑅, 𝜇

〉
, 𝑀 ∥ 𝑁 𝑒

⇝RA
〈
𝑇̂𝑅′, 𝜇′

〉
, 𝑀 ∥ 𝑁 ′

Fig. 8. The operational semantics rules of 𝝀RA concerning the parallel composition construct.

the thread’s view, and a message is added with this updated view. In contrast to the StoRe rule,
here the added message’s segment must dovetail after the message fromwhich the RMW read, still
avoiding any existing segment in this location. Dovetailing after a message 𝜈 is only possible if no
existing message dovetails after 𝜈 . In particular, a message can only be picked once to justify the
RMW rule during an execution.

Initial states. An initial memory 𝜇 is a memory in which every location has exactly one message
whose view contains the timestamps of the other messages. An initial state is a state consisting of
an initial memory and a view-leaf that maps each location to the timestamp of the unique message
in memory at that location. An initial configuration is a configuration consisting of an initial state
and a closed term.

Evaluation. We’re interested in the behaviors closed terms exhibit when run to completion. A
configuration 〈𝑇, 𝜇〉 , 𝑀 evaluates to a value 𝑉 , written 〈𝑇, 𝜇〉 , 𝑀 ⇓RA 𝑉 , when 〈𝑇, 𝜇〉 , 𝑀 ⇝∗

RA
〈𝑅, 𝜌〉 ,𝑉 for some state 〈𝑅, 𝜌〉. We write 〈𝑇, 𝜇〉 , 𝑀 6⇓RA 𝑉 when there is no such 〈𝑅, 𝜌〉. In the next

, Vol. 1, No. 1, Article . Publication date: December 2024.



A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 19

StoRe
𝛼ℓ < 𝑡 (𝑞, 𝑡] ∩

⋃
𝜇ℓ .seg = ∅ 𝜔 = 𝛼 [ℓ ↦→𝑡]

〈 9𝛼, 𝜇〉 , ℓ – 𝑣
•
⇝RA 〈 9𝜔, 𝜇 ] {ℓ :𝑣@(𝑞,𝜔ℓ ]⟪𝜔⟫}〉 , 〈〉

ReadOnly
ℓ :𝑣@(𝑞, 𝜅ℓ ]⟪𝜅⟫ ∈ 𝜇 𝛼ℓ ≤ 𝜅ℓ 𝜑 ®𝑤𝑣 = ⊥ 𝜔 = 𝛼 t 𝜅

〈 9𝛼, 𝜇〉 , rmw𝜑 (ℓ ; ®𝑤)
•
⇝RA 〈 9𝜔, 𝜇〉 , 𝑣

RMW
ℓ :𝑣@(𝑞, 𝜅ℓ ]⟪𝜅⟫ ∈ 𝜇 𝛼ℓ ≤ 𝜅ℓ 𝜑 ®𝑤𝑣 ≠ ⊥ (𝜅ℓ , 𝑡] ∩

⋃
𝜇ℓ .seg = ∅ 𝜔 = (𝛼 t 𝜅) [ℓ ↦→𝑡]

〈 9𝛼, 𝜇〉 , rmw𝜑 (ℓ ; ®𝑤)
•
⇝RA 〈 9𝜔, 𝜇 ] {ℓ :𝜑 ®𝑤𝑣@(𝜅ℓ , 𝜔ℓ ]⟪𝜔⟫}〉 , 𝑣

StoReLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

〈𝑇, 𝜇〉 , 𝑀 – 𝑁
𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′ – 𝑁

StoReRight
〈𝑇, 𝜇〉 , 𝑁 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑁 ′

〈𝑇, 𝜇〉 ,𝑉 – 𝑁
𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 ,𝑉 – 𝑁 ′

RMWLeft
〈𝑇, 𝜇〉 , 𝑀 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′

〈𝑇, 𝜇〉 , rmw𝜑 (𝑀 ;𝑁 ) 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , rmw𝜑 (𝑀 ′;𝑁 )

RMWRight
〈𝑇, 𝜇〉 , 𝑁 𝑒

⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑁 ′

〈𝑇, 𝜇〉 , rmw𝜑 (𝑉 ;𝑁 )
𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , rmw𝜑 (𝑉 ;𝑁 ′)

Fig. 9. The operational semantics rules of 𝝀RA concerning the shared-state constructs.

examples, we write 𝑀 ⇓RA 𝑉 when 𝑀 may evaluate to 𝑉 from every initial state, and 𝑀 6⇓RA 𝑉
when it cannot evaluate to 𝑉 from any initial state.

Example 5.3. We can give a more precise account of the litmus tests (SB) and (MP) from §2:

x – 0 ; y – 0 ; ((x – 1 ; y? ) ∥ (y – 1 ; x?)) ⇓RA 〈 0 , 0 〉

x – 0 ; y – 0 ; ((x – 1 ; y – 1) ∥ ( y? ; x?)) 6⇓RA 〈 〈〉 , 〈1, 0〉 〉

5.2 Non-deterministic View Forwarding
Adv

ℓ :𝑣@(𝑞, 𝜅ℓ ]⟪𝜅⟫ ∈ 𝜇
𝛼ℓ ≤ 𝜅ℓ 𝜔 = 𝛼 t 𝜅
〈 9𝛼, 𝜇〉 , 𝑀 ◦

⇝RA≤ 〈 9𝜔, 𝜇〉 , 𝑀

Fig. 10. View advancement rule.

It is technically convenient to extend the operational seman-
tics 𝑒

⇝RA with an additional rule Adv that non-deterministi-
cally advances the view of a thread, presented in Figure 10.
The Adv step advances the thread’s view like the ReadOnly
rule without changing the term component of the configura-
tion. We think of this step as read-independent propagation
of updates to threads. Lahav et al. [32] propose a similar ex-
tension when defining liveness conditions for RA. The effect of this step is to prohibit the thread
from reading certain messages from memory, and propagating this prohibition to other threads
that read values this thread writes.

A-priori, the resulting system may exhibit more behaviors since StoRe and RMW steps follow-
ing Adv steps will append messages with further advanced views. However, advancing views
within messages only further constrains possible behaviors. We formalize this intuition using a
simulation argument. One direction is straightforward: every RA-execution is an RA≤-execution,
so RA≤ exhibits every behavior RA does. For the converse, we define a binary relation between
configuration states Á such that 〈𝑇, 𝜇〉 Á 〈𝑅, 𝜌〉 when the following hold.
• The simulatee’s view-tree dominates the simulator’s view-tree: 𝑇 ≥ 𝑅.
• There are bijections 𝜙ℓ : 𝜇ℓ → 𝜌ℓ for every location ℓ such that if 𝜙ℓ (𝜈) = 𝜖 , then the view of

the simulatee’s message dominates the simulator’s message 𝜈.vw ≥ 𝜖.vw, and the messages’
value and segment agree: 𝜈.vl = 𝜖.vl, 𝜈 .i = 𝜖.i, 𝜈 .t = 𝜖.t.

The relation Á is a weak simulation:
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PRoposition 5.4. If 〈𝑇, 𝜇〉 Á 〈𝑅, 𝜌〉 and 〈𝑇, 𝜇〉 , 𝑀 ⇝RA≤ 〈𝑇 ′, 𝜇′〉 , 𝑀 ′, then there exists a configu-
ration state 〈𝑅′, 𝜌 ′〉 such that 〈𝑅, 𝜌〉 , 𝑀 ⇝∗

RA 〈𝑅′, 𝜌 ′〉 , 𝑀 ′ and 〈𝑇 ′, 𝜇′〉 Á 〈𝑅′, 𝜌 ′〉.

PRoof. By induction on the step. An Adv step preserves Á, so we take no steps in the required
corresponding RA execution. In the StoRe case, we use the timestamp that the simulation re-
quires, and the view that the current view tree determines. In the ReadOnly case, we load the
corresponding message according to the bijection given by Á. The RMW case holds by combining
the arguments above. The PaRInit and PaRFin cases preserve the memory and the order on view
trees. The other base cases are 𝛽-reductions. They retain the state and thus the simulation. The
congruence steps follow by induction as they propagate the state. □

Like ⇝RA, the relation ⇝RA≤ induces an evaluation semantics ⇓RA≤ . By Proposition 5.4, ⇓RA
and ⇓RA≤ coincide:

CoRollaRy 5.5. For a configuration 〈𝑇, 𝜇〉 , 𝑀 and value 𝑉 : 〈𝑇, 𝜇〉 , 𝑀 ⇓RA 𝑉 iff 〈𝑇, 𝜇〉 , 𝑀 ⇓RA≤ 𝑉 .

Thus, we denote both by ⇓.

Remark. Restricting ReadOnly and RMW in RA≤ by an additional assumption 𝛼ℓ = 𝜅ℓ results in
an equivalent evaluation semantics. Instead of loading a message using one of the unrestricted rules,
we can use Adv to “prepare” the view for loading, and then load using the restricted version.

6 Semantic Invariants
We present both known and novel RA≤ invariants: properties that initial configurations satisfy,
and are maintained along RA≤ step. Accounting for these semantic invariants in our denotational
semantics makes it more abstract, eliminating distinctions that would obstruct the justification of
program transformations. During our presentation of the invariants we give intuitive explanations
for why they hold, formally grounded in Theorem 6.10 and Proposition 6.13 below.

6.1 Basic memory invariants
We establish basic properties of timestamps and segments in memories. A memory 𝜇 is scattered
if segments of messages in the same location are pairwise disjoint:

∀ ℓ ∈ Loc∀𝜈, 𝜖 ∈ 𝜇ℓ . 𝜈 .seg ∩ 𝜖.seg ≠ ∅ =⇒ 𝜈 = 𝜖

Initial memories are scattered and execution steps preserve the fact that the memory is scattered
since added messages can only occupy unused segments.

Example 6.1. The memory below (left) is scattered. We can visualize its segments along the
timeline order without overlap (right) thanks to the scattering condition:

y:2@(−1, 0] ⟪x@5⟫, y:4@(0, 7] ⟪x@8⟫

x:1@(−1, 0] ⟪y@0⟫, x:3@(4, 5] ⟪y@7⟫

 x:1@(−1, 0] ⟪y@0⟫𝜈1 x:3@(4, 5] ⟪y@7⟫𝜈2

y:2@(−1, 0] ⟪x@5⟫𝜖1 y:4@(0, 7] ⟪x@8⟫𝜖2

We think of timestamps as names, i.e., abstract pointers. Formally, a view 𝜅 points to a message
𝜖 , denoted by 𝜅 ↣ 𝜖 , when 𝜅 holds 𝜖’s timestamp at 𝜖’s location: 𝜅𝜖.lc = 𝜖.t. A view 𝜅 points
to memory 𝜇, denoted by 𝜅 ↣ 𝜇, when it points to a 𝜇-message in all locations: ∀ ℓ ∈ Loc∃ 𝜖 ∈
𝜇ℓ . 𝜅 ↣ 𝜖 . A message 𝜈 points to another message 𝜖 or memory 𝜇 when its view 𝜈.vw points to that
message or memory, denoted by 𝜈 ↣ 𝜖 and 𝜈 ↣ 𝜇. A memory 𝜇 is connected when it is scattered,
and every message within it points to it: ∀𝜈 ∈ 𝜇. 𝜈 ↣ 𝜇.
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Example 6.2. The memory from Example 6.1 is not connected: 𝜖2 doesn’t point to any message
in x. In contrast, the memory below (left) is connected; we visualize its timestamp orders (middle)
and points-to relations (right) thanks to the connectedness condition:

y:2@(−1, 0] ⟪x@5⟫, y:4@(0, 7] ⟪x@0⟫

x:1@(−1, 0] ⟪y@0⟫, x:3@(4, 5] ⟪y@7⟫

 x: 1
𝜈1 3

𝜈2

y: 2
𝜖1 4

𝜖2 𝜈1 𝜖2

𝜖1 𝜈2

y

x

x

y

Initial memories are connected, and execution steps preserve memory connectedness, assuming
that all thread views point to the currentmemory: when a thread adds amessage tomemory, it uses
its own view with an advanced timestamp for the message’s location, maintaining connectedness.

6.2 Causal memory invariants
The points-to relation tracks some causal dependencies. Intuitively, events should not be caused
by future events, so causal paths, i.e. paths in 𝜇.gph –

〈
𝜇, (↣)\id𝜇

〉
, should not lead to the future

along any timeline. We refine the points-to relation to enforce this.
Formally, we say that a view 𝜅 points downwards to a message 𝜖 , written 𝜅 ã→ 𝜖 when it points

to it, 𝜅 ↣ 𝜖 , and it dominates 𝜖’s view, 𝜅 ≥ 𝜖.vw. A view points downwards into a scattered
memory 𝜇, denoted by 𝜅 ã→ 𝜇, when it points downward to a message in 𝜇 in every location, i.e.:
∀ ℓ ∈ Loc∃ 𝜖 ∈ 𝜇ℓ . 𝜅 ã→ 𝜖 . We say that a message points downward into a memory, writing 𝜈 ã→ 𝜇,
when its view does: 𝜈.vw ã→ 𝜇. We say that a memory 𝜇 is causally connected, when it is connected,
and every message within it points downwards into it: ∀𝜈 ∈ 𝜇. 𝜈 ã→ 𝜇.

To simplify notations in the following examples, we omit locations from messages, instead tag-
ging the row in the set. For example, by 5@(6, 7] ⟪7⟫ in the y row we mean y:5@(6, 7] ⟪x@7⟫.

Example 6.3. The memory from Example 6.2 is not causally connected because 𝜖1 ↣ 𝜈2 while
nonetheless 𝜖1.vwy = 0 ≱ 7 = 𝜈2 .vwy. The following memory is causally connected:

y : 1@(−1, 0] ⟪0⟫, 3@(0, 5] ⟪0⟫, 5@(6, 7] ⟪7⟫

x : 0@(−1, 0] ⟪0⟫, 2@(4, 5] ⟪0⟫, 4@(5, 7] ⟪7⟫

 x: 0
𝜈1 2

𝜈2 4
𝜈3

y: 1
𝜖1 3

𝜖2 5
𝜖3 𝜈1 𝜖2 𝜈3

𝜖1 𝜈2 𝜖3

y

x

yx
y

x

Initial memories are causally connected, and execution steps preserve this property together
with view-trees labeled solely by views that point downwards into the state’s memory. In show-
ing this property, particularly when observing steps that load a message, the following strong
characterization of pointing downwards helps:

Lemma 6.4. Let 𝜇 be a causally connected memory. A view 𝜅 points downwards into 𝜇 iff 𝜅 is the
least view that dominates the views of all of the 𝜇-messages that 𝜅 points to:

𝜅 ã→ 𝜇 ⇐⇒ 𝜅 =
⊔ {𝜖 ∈ 𝜇 | 𝜅 ↣ 𝜖}.vw

PRoof. For the “if” (⇐) direction, remembering that 𝜇 is finite, we have for every ℓ ∈ Loc:

𝜅ℓ = (
⊔ {𝜖 ∈ 𝜇 | 𝜅 ↣ 𝜖}.vw)ℓ =max {𝜖.vwℓ | 𝜅 ↣ 𝜖 ∈ 𝜇}

In particular, 𝜅 ↣ 𝜇. Moreover, 𝜅 ã→ 𝜇 because whenever 𝜅 ↣ 𝜖 ∈ 𝜇, we have 𝜅 ≥ 𝜖.vw.
Conversely (⇒), let ℓ ∈ Loc. Since 𝜅 points to 𝜇 and 𝜇 is scattered, there exists a unique message

𝜈 ∈ 𝜇ℓ that 𝜅 points to 𝜅 ↣ 𝜈 , i.e. 𝜅ℓ = 𝜈.t = 𝜈.vwℓ . Therefore, 𝜅ℓ ≤ (
⊔ {𝜖 ∈ 𝜇 | 𝜅 ↣ 𝜖}.vw)ℓ .

Generalizing, 𝜅 ≤ ⊔ {𝜖 ∈ 𝜇 | 𝜅 ↣ 𝜖}.vw. Since 𝜅 points downwards 𝜅 ã→ 𝜇, any message 𝜖 in 𝜇
that 𝜅 points to 𝜅 ↣ 𝜖 ∈ 𝜇, it also dominates: 𝜅 ≥ 𝜖.vw. Therefore, 𝜅 ≥ ⊔ {𝜖 ∈ 𝜇 | 𝜅 ↣ 𝜖}.vw. □
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Paths in a causally connected memory’s graph descend down its timelines:
PRoposition 6.5. Let 𝜇 be a causally connected memory, with a path 𝜈 ↣∗ 𝜖 in 𝜇.gph.
(1) Views decrease along the path: 𝜈.vw ≥ 𝜖.vw.
(2) If there is also an opposite path 𝜖 ↣∗ 𝜈 , i.e., 𝜈 and 𝜖 are part of a cycle, then 𝜈.vw = 𝜖.vw.
(3) If they share a location, 𝜈.lc = 𝜖.lc, their timestamps decrease along the path: 𝜈.t ≥ 𝜖.t.
PRoof. Item 1 follows from the fact that the memory is causally connected by induction. The

other items are direct consequences of the first. □

If a causally connected memory 𝜇 has a message in location ℓ , then 𝜇 has a timestamp-minimal
message which we denote by min 𝜇ℓ , i.e. (min 𝜇ℓ ).t = min 𝜇ℓ .t. We say that a causally connected
memory 𝜇 iswell-formed when cycles within 𝜇.gph consist solely of minimal messages, i.e. if 𝜈 ∈ 𝜇
is part of a cycle in 𝜇.gph, then 𝜈 =min 𝜇𝜈.lc.
Example 6.6. Thememory from Example 6.3 is not well-formed: 𝜈3 is on a cycle but not minimal.

The following memory is well-formed:
y : 1@(−1, 0] ⟪0⟫, 3@(0, 5] ⟪7⟫, 5@(6, 7] ⟪0⟫

x : 0@(−1, 0] ⟪0⟫, 2@(4, 5] ⟪7⟫, 4@(5, 7] ⟪0⟫

 x: 0
𝜈1 2

𝜈2 4
𝜈3

y: 1
𝜖1 3

𝜖2 5
𝜖3 𝜈1 𝜖3 𝜈2

𝜖1 𝜈3 𝜖2

y

x y

x
y x

Initial memories are well-formed, and being well-formed is an invariant of execution steps. In-
deed, messages are added one-by-one and point to existing messages, so they cannot from a new
cycle; and messages are added with a larger timestamp, so minimal messages remains minimal.

PRoposition 6.7. Let 𝜇 be a well-formed memory, and let ℓ ∈ Loc.
(1) Minimal messages point at minimal messages: if min 𝜇ℓ ã→ 𝜈 , then 𝜈 is a minimal message.
(2) Memory extension preserves minimal messages: if 𝜇 ⊆ 𝜌 is well-formed, then min 𝜇ℓ =min 𝜌ℓ .

PRoof. For (1), since 𝜇 is connected, there exists 𝜖 ∈ 𝜇ℓ such that 𝜈 ↣ 𝜖 . By Proposition 6.5,
(min 𝜇ℓ ).t ≥ 𝜖.t. By minimality (min 𝜇ℓ ).t = 𝜖.t, and since 𝜇 is scattered, 𝜖 =min 𝜇ℓ . Thus 𝜈 is on
a cycle (with 𝜖). Since 𝜇 is well-formed, 𝜈 is minimal.

For (2), since 𝜇 is well-formed, min 𝜇ℓ appears in a cycle in 𝜇.gph, and thus in a cycle of the
supergraph 𝜌.gph. Since 𝜌 is well-formed, min 𝜇ℓ is minimal in 𝜌 . □

We denote the set of well-formed memories by Mem. Figure 6 gives a positive example (top)
and a negative example (bottom).

6.3 View-tree invariants
Like memories, view-trees maintain invariants during execution. In particular, the invariant that
all thread views point downwards into the current memory depends on the invariants of memory,
and vice-versa. Formally, we say that a view-tree𝑇 points to/downward into a memory 𝜇, and write
𝑇 ↣ 𝜇 and 𝑇 ã→ 𝜇, when 𝜅 ↣ 𝜇 and 𝜅 ã→ 𝜇 for every 𝜅 ∈ 𝑇 .lf. We then say that a state 〈𝑇, 𝜇〉 is
well-formed when 𝜇 is well-formed and 𝑇 ã→ 𝜇.

While the labels of the view-tree are related to the memory, its structure is intimately related to
the syntactic structure of the configuration’s term: every inner node relates to an active parallel
composition. Figure 11 defines this property as an inductive relation 𝑇 ⊩ 𝑀 specifying when 𝑇
is well-formed for a term 𝑀 . Every view-leaf is well-formed for any term. An inner node is well-
formed for a parallel composition only when its immediate subtrees are well-formed for each
thread. The rest of the rules reach through the term’s evaluation context until they find a parallel
composition sub-term. These rules follow the congruence rules from the operational semantics.
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𝑇 ⊩ 𝑀

Leaf

9𝜅 ⊩ 𝑀

Node
𝑇 ⊩ 𝑀 𝑅 ⊩ 𝑁

𝑇̂𝑅 ⊩ 𝑀 ∥ 𝑁

App-L
𝑇̂𝑅 ⊩ 𝑀

𝑇̂𝑅 ⊩ 𝑀𝑁

App-R
𝑇̂𝑅 ⊩ 𝑁

𝑇̂𝑅 ⊩ 𝑉𝑁

Match
𝑇̂𝑅 ⊩ 𝑀

𝑇̂𝑅 ⊩ match𝑀 with 𝛱

VaRiant
𝑇̂𝑅 ⊩ 𝑀

𝑇̂𝑅 ⊩ 𝐴.𝜄𝑖 𝑀

Tuple
𝑇̂𝑅 ⊩ 𝑀𝑖

𝑇̂𝑅 ⊩ 〈𝑉1, ... ,𝑉𝑖−1, 𝑀𝑖 , 𝑀𝑖+1, ... , 𝑀𝑛〉

StoRe-L
𝑇̂𝑅 ⊩ 𝑀

𝑇̂𝑅 ⊩ 𝑀 – 𝑁

StoRe-R
𝑇̂𝑅 ⊩ 𝑁

𝑇̂𝑅 ⊩ 𝑉 – 𝑁

RMW-L
𝑇̂𝑅 ⊩ 𝑀

𝑇̂𝑅 ⊩ rmw𝜑 (𝑀 ;𝑁 )

RMW-R
𝑇̂𝑅 ⊩ 𝑁

𝑇̂𝑅 ⊩ rmw𝜑 (𝑉 ;𝑁 )

Fig. 11. The tree well-formedness rules of 𝝀RA.

Example 6.8. For 𝑀 = (𝑀1 ∥ 𝑀2) ; (𝑁1 ∥ 𝑁2), a view leaf 9𝜅 ⊩ 𝑀 and an inner node 9𝜅1̂ 9𝜅2 ⊩ 𝑀
are both well-formed. The evaluation context in𝑀 is [−] ; (𝑁1 ∥ 𝑁2), and the active component—
where reduction takes place—is (𝑀1 ∥ 𝑀2).The execution of𝑁1 ∥ 𝑁2 is suspended, so we associate
no views with its threads. The inner node is well-formed for the active component by Node.

For 𝑁 = 𝑉 ; (𝑁1 ∥ 𝑁2), the inner node is not well-formed: 9𝜅1̂ 9𝜅2 ⊮ 𝑁 . The evaluation context
is empty [−], and the active (single) thread is 𝑉 ; (𝑁1 ∥ 𝑁2): the next execution step has to be
MatchTuple (recall how sequencing desugars), requiring a view-leaf.

By inspecting the inductive definition of (⊩) we find that no two rules can arrive at the same
conclusion. Therefore, all of the rules are invertible: for every instantiation of every rule, if the
conclusion holds, then so do all the premises. Thus when 𝑇 ⊩ 𝑀 we can uniquely associate each
subtree of𝑇 to a subterm of𝑀 . Moreover, the leaves of𝑇 are associated to threads within𝑀 such
that there is no overlap.

Example 6.9. Returning to Example 6.8, by inverting 9𝜅1̂ 9𝜅2 ⊩ 𝑀 we find which leaf associates
to which subterm: 9𝜅𝑖 ⊩ 𝑀𝑖 . Similarly, by inverting 9𝜅 ⊩ 𝑀 we find that 9𝜅 ⊩ 𝑀1 ∥ 𝑀2. Intuitively,
the subthreads in the latter have not yet been activated (using PaRInit).

6.4 Execution invariants
Collecting the invariants, a configuration 〈𝑇, 𝜇〉 , 𝑀 is well-formed of type 𝐴 when: its state 〈𝑇, 𝜇〉
is well-formed; its term is closed of type 𝐴, i.e. · ` 𝑀 : 𝐴; and its view-tree is well-formed for its
term, i.e. 𝑇 ⊩ 𝑀 . We show that RA≤ steps preserve well-formedness:

TheoRem 6.10 (PReseRvation). If 〈𝑇, 𝜇〉 , 𝑀 ⇝RA≤ 〈𝑅, 𝜌〉 , 𝑁 and 〈𝑇, 𝜇〉 , 𝑀 is a well-formed con-
figuration of type 𝐴, then 〈𝑅, 𝜌〉 , 𝑁 is a well-formed configuration of type 𝐴.

PRoof. By induction on the step. Type-preservation is standard, so we focus on showing the
other aspects of well-formedness of the configuration: that the tree is well-formed for the term
and that the tree points downwards into the memory.

We start with the tree being well-formed for the term.The view-tree after the step is well-formed
if it is a leaf by the Leaf rule. This covers Adv, PaRFin, all of the 𝛽-reductions and memory-
accessing steps. For the PaRInit case, we use the Node rule and the Leaf rule for the premises.

Otherwise, we use the well-formedness rule that corresponds to the step. The well-formedness
rules are invertible and derivations of well-formedness are unique, so we can apply the inverse
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rule before the step. For example, consider the AppLeft case (𝑀 =𝑀 ′𝐾 and 𝑁 = 𝑁 ′𝐾 ):
AppLeft
〈𝑇, 𝜇〉 , 𝑀 ′ 𝑒

⇝RA≤ 〈𝑅, 𝜌〉 , 𝑁 ′

〈𝑇, 𝜇〉 , 𝑀 ′𝐾 𝑒
⇝RA≤ 〈𝑅, 𝜌〉 , 𝑁 ′𝐾

By assumption 𝑇 ⊩ 𝑀 ′𝐾 , so 𝑇 ⊩ 𝑀 ′ by inverting the App-L rule. By the induction hypothesis,
𝑅 ⊩ 𝑁 ′. If 𝑁 ′ is a value, then 𝑅 is a view-leaf by inverting the Leaf rule, and therefore 𝑅 ⊩ 𝑁 ′𝐾
by the Leaf rule. Otherwise, 𝑅 ⊩ 𝑁 ′𝐾 by the App-L rule.

The other cases are similar, with the exception of the PaRLeft and PaRRight cases. For both,
we use the Node rule, and there is no need to distinguish the value case and use the Leaf rule.

It remains to show that the tree points downwards into the memory. We use the fact that point-
wise maximum t preserves pointing downwards for the cases of the PaRFin, ReadOnly, and Adv
rules. The view-leaf after the step points downward into the memory since it is the pointwise max-
imum of views that do. In the case of the StoRe rule, only the timestamp changes by increasing it,
therefore preserving pointing downwards with respect to the other locations. With respect to the
location itself, the property holds because the view-leaf points to the added message which has
the same view, and views dominate themselves. For the RMW case we argue by composing the
two arguments above.

For PaRInit and the 𝛽-reductions, the claim is trivial because the set of views does not change.
The remaining steps are congruence rules, where except for PaRLeft and PaRRight, the claim
follows immediately from the inductive hypothesis because the states are the same in the premise.
For PaRLeft and PaRRight, we need to also show that the other side of the view-tree points
downwards into the new memory. Indeed, pointing downwards is stable under adding messages
to memory, which is the only way the memory can change by taking any step. □

All initial configurations are well-formed, so executions only visit well-formed configurations.

Convention. Henceforth we restrict execution steps to be between well-formed configurations.

Execution steps maintain relationships between states beyond well-formdness. To start, we ob-
serve that the timestamp of a new message lies between some thread’s initial and final views:

Lemma 6.11. Assume 〈𝑇, 𝜇〉 , 𝑀 ⇝RA≤ 〈𝑅, 𝜌〉 , 𝑁 changed the memory, i.e. 𝜌 ≠ 𝜇. Then: the trees
have the same shape; 𝑇 ≤ 𝑅; and there is a message 𝜈 such that 𝜌 = 𝜇 ] {𝜈}. Moreover, there are
view-leaves 9𝛼 in 𝑇 and 9𝜔 in 𝑅 in corresponding positions, such that 𝛼 ≤ 𝜈.vw ≤ 𝜔 and 𝛼𝜈.lc < 𝜈.t.

PRoof. By induction on the step. The congruence cases are all immediate from the induction
hypothesis. Of the others, only StoRe and RMW change the memory. They add a message single
message, and the premises ensure the claim holds. □

The view-tree structure changes during PaRInit and PaRFin, so they cannot always be com-
pared leaf-to-leaf as in Lemma 6.11. However, the sets of views that label each tree still maintain
the Egli-Milner order induced by the view order:

Lemma 6.12 (Egli-MilneR foR View-leaves). Assume 〈𝑇, 𝜇〉 , 𝑀 ⇝∗
RA≤
〈𝑅, 𝜌〉 , 𝑁 .

• For every leaf view 𝛼 ∈ 𝑇 .lf, there exists a leaf 𝜔 ∈ 𝑅.lf, such that 𝛼 ≤ 𝜔 .
• For every leaf view 𝜔 ∈ 𝑅.lf, there exists a leaf 𝛼 ∈ 𝑇 .lf, such that 𝛼 ≤ 𝜔 .

PRoof. This property extends from a single step inductively. For a single step, we proceed by
induction. The cases of the Adv rule and the memory-accessing steps the claim follows from their
premises. The congruence cases and those that do not change the view-tree are all immediate
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from the induction hypothesis. The cases that change the tree structure, PaRInit and PaRFin, are
immediate to check. □

We combine Lemmas 6.11 and 6.12 to obtain the following execution invariant:

PRoposition 6.13 (ViewsDelimit Execution). Assume 〈𝑇, 𝜇〉 , 𝑀 ⇝∗
RA≤
〈𝑅, 𝜌〉 , 𝑁 . Assume that

𝛼 is dominated by every view in𝑇 .lf, and that 𝜔 dominates every view in 𝑅.lf. Then 𝛼 ≤ 𝜔 ; and for
every added message 𝜈 ∈ 𝜌 \ 𝜇, both 𝛼 ≤ 𝜈.vw ≤ 𝜔 and 𝛼𝜈.lc < 𝜈.t.

PRoof. That 𝛼 ≤ 𝜔 follows from Lemma 6.12. For the rest, consider an added message 𝜈 ∈ 𝜌 \ 𝜇,
and the decomposition—guaranteed by Lemma 6.11—that singles out the step that added it:

〈𝑇, 𝜇〉 , 𝑀 ⇝∗
RA≤ 〈𝑇

′, 𝜃〉 , 𝑀 ′ ⇝RA≤ 〈𝑅′, 𝜃 ] {𝜈}〉 , 𝑁 ′ ⇝∗
RA≤ 〈𝑅, 𝜌〉 , 𝑁

By Lemma 6.11 and the singled-out step in the middle, there exist 𝛼 ′ ∈ 𝑇 ′ .lf and 𝜔 ′ ∈ 𝑅′ .lf
such that 𝛼 ′ ≤ 𝜈.vw ≤ 𝜔 ′ and 𝛼 ′𝜈.lc < 𝜈.t. By Lemma 6.12 and the surrounding steps, there exist
𝛼 ′′ ∈ 𝑇 .lf and 𝜔 ′′ ∈ 𝑅.lf such that 𝛼 ′′ ≤ 𝛼 ′ and 𝜔 ′ ≤ 𝜔 ′′. By assumption, 𝛼 ≤ 𝛼 ′′ and 𝜔 ′′ ≤ 𝜔 .
Putting it all together, we have 𝛼 ≤ 𝛼 ′ ≤ 𝜈.vw ≤ 𝜔 ′ ≤ 𝜔 and 𝛼𝜈.lc ≤ 𝛼 ′𝜈.lc < 𝜈.t. □

We conjecture that other standard metatheoretic results, such as progress and termination, hold
with standard proofs.

6.5 Interrupted executions
To analyze program behavior under concurrent contexts, we have to take into account all possi-
ble ways in which the environment can interfere during the execution. An interrupted execution
〈𝑇, 𝜇〉 , 𝑀 ⇝∗

RA≤· · ·⇝
∗
RA≤ 〈𝑅, 𝜌〉 ,𝑉 is a sequence of executions of the form

〈𝑇, 𝜇〉 , 𝑀 = 〈𝑇1, 𝜇1〉 , 𝑀1 ⇝∗
RA≤ 〈𝑇2, 𝜌1〉 , 𝑀2

〈𝑇2, 𝜇2〉 , 𝑀2 ⇝∗
RA≤ 〈𝑇3, 𝜌2〉 , 𝑀3

...

〈𝑇𝑛, 𝜇𝑛〉 , 𝑀𝑛 ⇝∗
RA≤ 〈𝑇𝑛+1, 𝜌𝑛〉 , 𝑀𝑛+1 = 〈𝑅, 𝜌〉 ,𝑉

where 𝜌 𝑗 ⊆ 𝜇 𝑗+1 for every 1 ≤ 𝑗 ≤ 𝑛−1. Between the executions in the sequence, the configuration
may only change by adding messages to memory. We call these messages—those in 𝜇 𝑗+1 \ 𝜌 𝑗—
environment messages. Adding messages is the only interference that the environment can cause.
We also have 𝜇𝑖 ⊆ 𝜌𝑖 , and we call the messages in 𝜌 𝑗 \ 𝜇 𝑗 local messages. Proposition 6.13 extends
to interrupted executions in a straightforward manner, replacing ⇝∗

RA≤ with ⇝∗
RA≤· · ·⇝

∗
RA≤ and

replacing added messages with local messages.

7 Denotational Semantics
Taking Moggi’s monadic approach (§7.1) to denotational semantics as a basis, we design a frame-
work for denotational semantics using Brookes-style traces (§7.2) adapted to describe behavior
under RA. We then build upon this framework progressively.

First we define the generating denotational semantics (§7.3). The monad structure underlying
this semantics does not satisfy all monad laws, and so does not fully conform to the monadic
approach. It is a useful base for the next stage, as a metatheoretic tool, and it simplifies calculations.

Next, we define the concrete denotational semantics (§7.4). Here we do have a monad, but the
denotational semantics follows the operational semantics too closely. It is insufficiently abstract,
invalidating some program transformations. This semantics is useful as an intermediate step, and
plays a central role in our proof of the adequacy theorem.
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Finally, we define the abstract denotational semantics (§7.5). This semantics is the semantics we
were aiming for: adequate and abstract enough to justify transformations of interest.

7.1 Monad-based Semantics
We recall Moggi’s [40] approach to interpret a CBV calculus such as 𝝀RA using a monad. Amonad
structure T =

〈
T , returnT, (⟫=T)

〉
consists of three components: a set-level function T ; a set-

indexed function returnT; and a two-argument set-pair-indexed function (⟫=T). The set-level func-
tion assigns to each set 𝑋 , whose elements represent fully-evaluated semantic values, the set T𝑋 ,
whose elements represent unevaluated effectful programs returning values in 𝑋 . The functions
returnTX : 𝑋 → T𝑋 , the unit, represent the program fragment that returns its input without any
observable side-effects.The two-argument functions (⟫=T𝑋,𝑌) : (T𝑋 )×(𝑋 → T𝑌 ) → T𝑌 , themon-
adic bind, represent the sequencing 𝑃 ⟫=T𝑋,𝑌 𝑓 of an 𝑋 -returning program 𝑃 with an 𝑌 -returning
program 𝑓 that depends on the result of the former program 𝑃 . We often omit the monad and the
set-indexing from notations, leaving them implicit.

Moggi’s innovation is to take the traditional type and value semantics, following a long tradi-
tion of denotational semantics, and retain its uniform structure even for effectful computation, by
using a monad structure. Each syntactic construct has a corresponding semantic construct, and
the interpretation proceeds structurally over the structure of types, contexts and terms.

Type semantics. Every type 𝐴 denotes a set, where: product types denote the cartesian prod-
uct; variants denote tagged unions; function types use the monad structure to denote the set of
parameterized computations; and typing environments denote the cartesian product:

J𝛤 KT –
∏
(𝑎:𝐴) ∈𝛤

J𝐴KT J𝐴→ 𝐵KT – J𝐴KT → T J𝐵KT J(𝐴1 ∗ · · · ∗𝐴𝑛)KT – J𝐴1KT × · · · × J𝐴𝑛KT
J{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛}KT – ({𝜄1 } × J𝐴1KT) ∪ · · · ∪ ({𝜄𝑛 } × J𝐴𝑛KT)

In particular, denotations of ground types J𝐺KT do not depend on the monad structure. For exam-
ple, JValKT is in a bijection with the (storable) values Val, and we will identify them.

Value semantics. Every value 𝛤 ` 𝑉 : 𝐴 denotes a function J𝑉 Kv
T : J𝛤 KT → J𝐴KT , taking as

argument a semantic environment 𝛾 ∈ J𝛤 KT supplying a semantic value to each variable in 𝛤 :

J𝑏Kv
T (𝛾𝑎) (𝑎:𝐴) ∈𝛤 – 𝛾𝑏 J𝐴.𝜄 𝑉 Kv

T𝛾 –
〈
𝜄 , J𝑉 Kv

T𝛾
〉 J〈𝑉1, ... ,𝑉𝑛〉Kv

T𝛾 –
〈J𝑉1Kv

T𝛾, ... , J𝑉𝑛Kv
T𝛾

〉
J𝜆𝑏 : 𝐵.𝑀Kv

T (𝛾𝑎) (𝑎:𝐴) ∈𝛤 – 𝜆𝛾𝑏 . J𝑀Kv
T (𝛾𝑎) (𝑎:𝐴) ∈𝛤,𝑏:𝐵

Closed values · ` 𝑉 : 𝐴 denote functions from the singleton J·KT := {()} to J𝐴KT , so we writeJ𝑉 Kv
T for J𝑉 Kv

T (). The semantics of closed ground values do not use the monad structure.

Term semantics. Every term 𝛤 ` 𝑀 : 𝐴 denotes a function J𝑀Kc
T : J𝛤 KT → T J𝐴KT . The monadic

bind expresses left-to-right evaluation order, and the unit expresses pure computation, e.g.:J𝑀𝑁 Kc
T𝛾 – J𝑀Kc

T𝛾 ⟫= 𝜆𝑔. J𝑁 Kc
T𝛾 ⟫= 𝜆𝑟 . 𝑔(𝑟 )J〈𝑀1, ... , 𝑀𝑛〉Kc

T𝛾 – J𝑀1Kc
T𝛾 ⟫= 𝜆𝑟1. · · · J𝑀𝑛Kc

T𝛾 ⟫= 𝜆𝑟𝑛 . return 〈𝑟1, ... , 𝑟𝑛〉

Monad laws. While a monad structure suffices to define these interpretations, it does not suffice
to guarantee they behave as expected. For example, a nested tuple of values 𝑉 – 〈〈1, 2〉 , 3〉 has
the value semantics J𝑉 Kv

T = 〈〈1, 2〉 , 3〉 and the term semantics:J𝑉 Kc
T = (return 1 ⟫= 𝜆𝑟 . (return 2 ⟫= 𝜆𝑠. return 〈𝑟, 𝑠〉)) ⟫= 𝜆𝑟 ′ . (return 3 ⟫= 𝜆𝑠′ . return 〈𝑟 ′, 𝑠′〉)
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We would expect the two semantics to relate via J𝑉 Kc
T = return J𝑉 Kv

T , but a mere monad structure
will not guarantee it. A monad is a monad structure satisfying:

return 𝑟 ⟫= 𝑓 = 𝑓 (𝑟 ) (Left Neutrality)
𝑃 ⟫= return = 𝑃 (Right Neutrality)
(𝑃 ⟫= 𝑓 ) ⟫= 𝑔 = 𝑃 ⟫= 𝜆𝑟 . (𝑓 (𝑟 ) ⟫= 𝑔) (Associativity)

As Moggi shows, a monad does guarantee the value and term semantics agree in this way.
The metatheory also uses the monad laws extensively, such as in the following lemma, which

relates substitutions to standard denotations via typing context extension. Denote by 𝛥 ≤ 𝛤 the
statement that (𝑎 : 𝐴) ∈ 𝛤 whenever (𝑎 : 𝐴) ∈ 𝛥; and define 𝛤 \𝛥 by (𝑎 : 𝐴) ∈ 𝛤 \𝛥 iff (𝑎 : 𝐴) ∈ 𝛤
and (𝑎 : 𝐴) ∉ 𝛥. Let Sub𝛥 –

∏
(𝑎:𝐴) ∈𝛥 {𝑉 | · ` 𝑉 : 𝐴} be the set of variable substitutions for 𝛥.

For Θ ∈ Sub𝛥 , denote by Θ𝑀 the standard simultaneous substitution by Θ in𝑀 .

Lemma 7.1 (Substitution Lemma). Given a monad T , assume 𝛤 ` 𝑀 : 𝐴 and let Θ ∈ Sub𝛥 for
some 𝛥 ≤ 𝛤 . For all 𝛾 ∈ J𝛤 KT , if ∀(𝑏 : 𝐵) ∈ 𝛥.𝛾𝑏 = JΘ𝑏Kv

T , then J𝑀Kc
T𝛾 = JΘ𝑀Kc

T (𝛾𝑏) (𝑏:𝐵) ∈𝛤\𝛥 .

Structural transformations. Using the monad we can justify a wide class of simple transforma-
tions called structural transformations. For example, given ` 𝑉 : {true | false} and 𝛤 ` 𝑀 : 𝐴:Jmatch𝑉 with {true.𝑀 | false.𝑀}Kc

T = J𝑀Kc
T

Even though 𝑀 may use program effects, we can prove the equality by reasoning synthetically
with the monad and the semantic constructs, keeping J𝑀Kc

T indeterminate.

Adding the effects. An advantage of Moggi’s approach is its compatibility with effects. To de-
fine the denotations of shared-memory constructs (right), we equip T with more structure, one
component per construct (left):Jstoreℓ,𝑣KT ∈ T1 J𝑀 – 𝑁 Kc

T𝛾 – J𝑀Kc
T𝛾 ⟫= 𝜆ℓ. J𝑁 Kc

T𝛾 ⟫= 𝜆𝑣. Jstoreℓ,𝑣KTJrmwℓ,ΦKT ∈ TVal
q
rmw𝜑 (𝑀 ;𝑁 )

yc
T𝛾 – J𝑀Kc

T𝛾 ⟫= 𝜆ℓ. J𝑁 Kc
T𝛾 ⟫= 𝜆®𝑣 .

q
rmwℓ,𝜑 ®𝑣

y
T

( | | |T𝑋,𝑌) : T𝑋 × T𝑌 → T (𝑋 × 𝑌 ) J𝑀 ∥ 𝑁 Kc
T𝛾 – J𝑀Kc

T𝛾 | | | J𝑁 Kc
T𝛾

7.2 Trace-based Semantics
We instantiate the monad-based semantics to our case using traces, the semantic counterpart to
interrupted executions. Their core component is a sequence of memory-transitions, summarizing
which messages the behavior they describe relies on and guarantees. A (memory)-transition is pair
〈𝜇, 𝜌〉 of memories, such that 𝜇 ⊆ 𝜌 .

We capture the evolving reliances and guarantees about memory messages with a chronicle: a
possibly empty finite sequence of transitions 𝜉 = 〈𝜇1, 𝜌1〉 ... 〈𝜇𝑛, 𝜌𝑛〉 where 𝜌 𝑗 ⊆ 𝜇 𝑗+1 for every 𝑗 .
When 𝜉 is non-empty, we denote its opening and closing memories by 𝜉 .o – 𝜇1 and 𝜉 .c – 𝜌𝑛 . Its
local messages are the ones added within transitions: 𝜉 .own –

⋃𝑛
𝑖=1 (𝜌𝑖 \ 𝜇𝑖 ). The other messages

𝜌𝑛 \ 𝜉 .own are its environment messages. Let Chro be the set of chronicles, ranged over by 𝜉, 𝜂.
In the operational semantics, a thread’s view may obscure some messages. The trace captures

only an initial view that declares which messages may be relied on to be available at the beginning,
and a final view that declares which messages are guaranteed to be available at the end. Together,
these are the delimiting views.

Finally, a trace includes a semantic representation of the returned value. Given a set 𝑋 repre-
senting semantic return values, an 𝑋 -pre-trace is an element 𝜏 ∈ View ×Chro ×View ×𝑋 , written
𝜏 = 𝛼 𝜉 𝜔 6 𝑟 , whose chronicle 𝜉 is non-empty. We retrieve the components of the pre-trace 𝜏
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using 𝜏 .ivw – 𝛼 (initial view), 𝜏 .ch – 𝜉 (chronicle), 𝜏 .fvw – 𝜔 (final view), and 𝜏 .ret – 𝑟
(returned value). Let 𝜏, 𝜋, 𝜚 range over pre-traces.

An 𝑋 -pre-trace 𝜏 = 𝛼 𝜉 𝜔 6 𝑟 is an 𝑋 -trace when:
• each transition in 𝜉 consists of well-formed memories;
• the initial view is dominated by the final view, and these views points downwards into the

opening and closing memories respectively: 𝜉 .o←â 𝛼 ≤ 𝜔 ã→ 𝜉 .c; and
• the view and the segment of every local message are both bound by the delimiting views,

i.e.: ∀𝜈 ∈ 𝜉 .own. 𝛼 ≤ 𝜈.vw ≤ 𝜔 ∧ 𝛼𝜈.lc < 𝜈.t.
These conditions reflect the execution invariants of Theorem 6.10 and Proposition 6.13. We denote
the set of 𝑋 -traces by Trace𝑋 .

Example 7.2. We present a trace 𝛼 〈𝜇1, 𝜌1〉 〈𝜇2, 𝜌2〉 𝜔 6 5, also depicted in Figure 1 (bottom):〈
x: 1
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1
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𝛼
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〉
6 5

The trace’s closing memory 𝜌2 holds six messages. The arrows pointing between messages illus-
trate the graph structure that the views impose. Messages are spatially parted iff they are apart, e.g.
𝜈3 dovetails after 𝜈2, which is apart from 𝜈1. We highlight messages that are not part of a previous
memory. The local messages are 𝜈2 and 𝜈3; the rest are environment messages.

Closure rules. Semantics of terms 𝑃 ∈ T𝑋 in trace semantics are sets of traces, representing the
possible behaviors, including possible environment interference. As subsets, they carry a natural
inclusion order. We write J𝑀Kc

T ⊆ J𝑁 Kc
T for containment in any context: ∀𝛾 ∈ J𝛤 KT . J𝑀Kc

T𝛾 ⊆J𝑁 Kc
T𝛾 . Intuitively, this property means that every behavior of𝑀 is a behavior of 𝑁 .

Wewill be looking at sets of traces closed under certain closure rules reflecting the way in which
traces represent possible behaviors. A closure/rewrite rule x is a binary relation between pre-traces.
When the relation holds, written 𝜏 x−→ 𝜋 , we say that the source 𝜏 x-rewrites to the target 𝜋 . Let
★ be a set of closure rules. We write 𝜏 ★−→ 𝜋 when 𝜏 x−→ 𝜋 for some x ∈ ★. A set 𝑈 ⊆ Trace𝑋 is
★-closed when 𝜏 ∈ 𝑈 and 𝜏 ★−→ 𝜋 ∈ Trace𝑋 implies 𝜋 ∈ 𝑈 . The ★-closure of a set 𝑈 ⊆ Trace𝑋 ,
denoted 𝑈★, is the least ★-closed superset of 𝑈 . Thus 𝑈 is ★-closed iff 𝑈 = 𝑈★. We denote the set
of countable★-closed subsets of 𝐸 by P★

ctbl (𝐸) –
{
𝑈 ∈ Pctbl (𝐸)

�� 𝑈 =𝑈★
}
. We★-close a function

𝜙 that returns sets of traces by composition with the closure: 𝜙★ – −★ ◦𝜙 . We say that a function
𝜙 is pointwise ★-closed when 𝜙 = 𝜙★. We say that a function 𝜙 between sets of traces is ★-closed
when its restriction to ★-closed subsets is pointwise ★-closed.

Monad structure. Given a choice of closure rules★, we define the★-monad structure T as follows.
The set-level function of T ’s monad structure sends every set 𝑋 to the set of countable ★-closed
sets of 𝑋 -traces: T𝑋 – P★

ctbl (Trace𝑋 ). The unit ★-closes over all single-transition traces that
maintain the view and the memory. The bind appends traces with compatible intermediate views:

returnTX 𝑟 –
{
𝜅 〈𝜇, 𝜇〉 𝜅 6 𝑟 ∈ Trace𝑋 | 𝜅 ∈ View, 𝜇 ∈ Mem

}★
𝑃 ⟫=T𝑋,𝑌 𝑓 –

{
𝛼 𝜉𝜂 𝜔 6 𝑠 ∈ Trace𝑌 | 𝛼 𝜉 𝜅 6 𝑟 ∈ 𝑃 , 𝜅 ≤ 𝜎 , 𝜎 𝜂 𝜔 6 𝑠 ∈ 𝑓 𝑟

}★
Parallel composition. (| | |T) interleaves chronicles and pairs the returned values. The delimiting

views must bound the views of the resulting traces, so we take the greatest lower bound of the
initial views, and the least upper bound of the final views. To define these bounds, denote the set
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Table 1. Summary of the ★-monad structures T that we define.

Model T ★ Monad? Noteworthy properties Section
Null N ∅ No Straightforward denotations §7.2
Generating G 𝔤 No Simple to calculate (Proposition 7.5)

and allows deferring closure (Lemma 8.5)
§7.3

Concrete C 𝔤𝔠 Yes Strongly corresponds to RA≤ operational semantics
(Theorem 8.12 and Lemma 8.14)

§7.4

Abstract A 𝔤𝔠𝔞 Yes Adequate (Theorem 8.13) and abstract (Table 3) §7.5

of views pointing downward into a well-formed memory 𝜇 by − ã→ 𝜇 – {𝜅 ∈ View | 𝜅 ã→ 𝜇}.
This set is finite since Loc and 𝜇 are finite, and each 𝜅 mentions only timestamps that appear in 𝜇;
and it has a minimum: the view that points to all the initial messages 𝜆ℓ.min 𝜇ℓ .t. Consider a non-
empty subset of views 𝑈 ⊆ − ã→ 𝜇. Since − ã→ 𝜇 is finite and closed under t, the subset 𝑈 has a
least upper bound sup𝜇 𝑈 –

⊔
𝑈 . Since − ã→ 𝜇 has a minimal element—the view pointing to the

minimal messages—𝑈 also has a greatest lower bound inf𝜇 𝑈 –
⊔ {𝜅 ∈ View |

d
𝑈 ≥ 𝜅 ã→ 𝜇}.

Though
d
𝑈 bounds𝑈 below, it may not be in − ã→ 𝜇.

Example 7.3. For 𝜇 the memory from Example 6.6, 𝛼1 – ⟪x@5 ; y@7⟫ and 𝛼2 – ⟪x@7 ; y@5⟫,
we have 𝛼1 ã→ 𝜇 and 𝛼2 ã→ 𝜇, but 𝛼1 u 𝛼2 = ⟪x@5 ; y@5⟫ 6ã→ 𝜇. Here, inf𝜇 {𝛼1, 𝛼2} = ⟪x@0 ; y@0⟫.

Denote by 𝜉1 ‖ 𝜉2 the set of all the interleavings of 𝜉1 and 𝜉2 that form chronicles. We define:

𝑃1 | | |T𝑋1,𝑋2
𝑃2 –

{
inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} 6 〈𝑟1, 𝑟2〉 ∈ Trace (𝑋1 × 𝑋2)
| 𝜉 ∈ (𝜉1 ‖ 𝜉2) ∧ ∀ 𝑖 ∈ {1, 2} . 𝛼𝑖 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 ∈ 𝑃𝑖

}★
Memory access. Mirroring the operational semantics, we interpret:Jstoreℓ,𝑣KT –

{
𝜅 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] 6 〈〉 ∈ Trace1

�� 𝑡, 𝑞 ∈ Q}★Jrmwℓ,ΦKT –
q
rmwRO

ℓ,Φ

y
T ∪

q
rmwRMW

ℓ,Φ

y
T where:q

rmwRO
ℓ,Φ

y
T –

{
𝜅 〈𝜇, 𝜇〉 𝜅 6 𝜈.vl ∈ TraceVal

�� 𝜅 ↣ 𝜈 ∈ 𝜇ℓ , Φ (𝜈.vl) = ⊥
}★

q
rmwRMW

ℓ,Φ

y
T –

{
𝜅 〈𝜇, 𝜇 ] {𝜖}〉 𝜅 [ℓ ↦→𝑡] 6 𝜈.vl ∈ TraceVal
| 𝜅 ↣ 𝜈 ∈ 𝜇ℓ , 𝜖 = ℓ :Φ (𝜈.vl) @(𝜈.t, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫

}★
Requiring the resulting pre-traces to form traces ensures the constraints on their timestamps

and segment hold. Assignment stores a new message. The RMW interpretation loads a message,
and stores a new message depending on the modifier’s result.

This semantics restricts loading to messages that the initial view already points to. This restric-
tion will make the denotations from §7.3 more convenient to use.The semantics in §7.4 will include
traces that load messages with later timestamps, thanks to closure under the rewind closure rule.

Monotonicity. To accommodate reasoning about refinement, we establish that the trace monad
operators are monotonic with respect to set inclusion:

PRoposition 7.4. Let 𝑃𝑖 , 𝑄𝑖 ∈ T𝑋𝑖 and 𝑓 , 𝑔 : 𝑋1 → T𝑋2. If 𝑃𝑖 ⊆ 𝑄𝑖 and ∀𝑟 ∈ 𝑋1. 𝑓 𝑟 ⊆ 𝑔𝑟 , then:
𝑃1 ⟫=T 𝑓 ⊆ 𝑄1 ⟫=T 𝑔 𝑃1 | | |T𝑃2 ⊆ 𝑄1 | | |T𝑄2

PRoof. The (−)★ operator is monotonic by virtue of being a closure operator. Thus, it suffices
to show inclusion for the underlying sets (as if ★ = ∅). This proof is straightforward from the set-
definitions, where traces are suitable combinations of traces in the operands. □
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Table 2. Summary of all closure rules: generating (𝔤), concrete (𝔠), and abstract (𝔞).

Name Source Trace Closure Relation Target Trace Condition Figure(s)
𝔤 Loosen 𝛼 𝜉

(
𝜂 ] {𝜖}

)
𝜔

Ls−→ 𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜔 𝜈 ≤vw 𝜖 12l

Expel 𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

Ex−→ 𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔 𝜈 ←⊂ 𝜖 13l

Condense 𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Cn−→
(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖] 𝜈 ←⊂= 𝜖 14l, 15l

𝔠 Stutter 𝛼 𝜉𝜂 𝜔
St−→ 𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 𝜔

Mumble 𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 𝜔 Mu−→ 𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 𝜔
Forward 𝛼 𝜉 𝜅

Fw−→ 𝛼 𝜉 𝜔 𝜅 ≤ 𝜔 16l
Rewind 𝜅 𝜉 𝜔

Rw−→ 𝛼 𝜉 𝜔 𝛼 ≤ 𝜅 16R
𝔞 Tighten 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔 Ti−→ 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖} 𝜔 𝜈 ≤vw 𝜖 12R, 17

Absorb 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔 Ab−→ 𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖𝜈.ii

}
𝜔 𝜈 ←⊂ 𝜖 13R, 18

Dilute
(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔

)
[↑𝜖] Di−→ 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔 𝜈 ←⊂= 𝜖 14R, 15R, 19

Our monad structures. In the degenerate case of taking no closure rules ★ – ∅, we call the
resulting★-monad structure the null modelN .This model invalidates both identity axioms. Indeed,
(returnN𝑟 ⟫= returnN) ≠ returnN𝑟 , because only the traces from the left side of the inequation
have two transitions. The induced denotational semantics is insufficiently abstract. For example,
the inequation above implies that J〈〉 ; 〈〉Kc

N ≠ J〈〉Kc
N , showing that this model fails to satisfy even

the most basic semantic equivalences. Still, we will find that less abstract models provide stepping
stones to more abstract ones.

Each following subsection (§7.3-7.5) defines an additional monad structure, summarized in Ta-
ble 1. Each structure builds on the previous one by adding closure rules, summarized in Table 2.
This compact table packs many side conditions and new notation, which we explain as we present
the rules. In presenting these closure rules we omit the return value, because they all maintain it.

7.3 Generating Denotations
We identify a set of closure rules 𝔤 – {Ls,Ex,Cn} under which the operations of the null model
are closed: returnN is pointwise closed under 𝔤; if 𝑓 is pointwise 𝔤-closed, then ⟫=N 𝑓 is 𝔤-closed;
and similarly for the effect operations. Let the generating model G be the 𝔤-monad structure.

PRoposition 7.5. For all 𝑃𝑖 ∈ G𝑋𝑖 and 𝑓 : 𝑋1 → G𝑋2:

𝑃1 ⟫=N 𝑓 = 𝑃1 ⟫=G 𝑓 𝑃1 | | |N𝑃2 = 𝑃1 | | |G𝑃2
Moreover, returnN = returnG, Jstoreℓ,𝑣KN = Jstoreℓ,𝑣KG , and Jrmwℓ,ΦKN = Jrmwℓ,ΦKG .

This proposition means that we can calculate in G as concretely as in N ; we need not worry
about traces obtained from the set-definitions by applying some arbitrarily long chain of closures.

The difference between denotations in G and inN lies in the higher-order fragment. For exam-
ple, traces in J𝜆𝑓 : 1→ 1 . 𝑓 〈〉Kc

T have return value 𝜆𝑓 ∈ J1K→ T J1K. 𝑓 〈〉. For T =N the return
value is defined on functions 𝑓 ∈ J1K→ N J1K, which may not be pointwise 𝔤-closed. In contrast,
for T = G the return value is only defined on 𝑓 ∈ J1K→ G J1K.

We provide operational intuition for each 𝔤-closure rule by drawing explicit connections with
interrupted executions.This intuition should be taken with a grain of salt: the abstract model (§7.5)
uses these rules as well, but its traces do not correspond to interrupted executions as they do here.
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x: 𝜖· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
. Ls−→

x: 𝜈· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
.

x: 𝜈· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
. Ti−→

x: 𝜖· · · · · ·

y𝑘 : 𝜖𝑘 · · ·· · · 𝛽𝑘 · · ·

y1: 𝜖1 · · ·· · · 𝛽1 · · ·
.
.
.

Fig. 12. Schematic depictions of the loosen (left) and tighten (right) closure rules, focusing on a particular
memory in the trace. For every 𝑖 , the messages 𝛽𝑖 and 𝜖𝑖 may coincide, dovetail, or be apart on y𝑖 ’s timeline.
Left: The environment message 𝜖 is “loosened” to 𝜈 . Right: The local message 𝜈 is “tightened” to 𝜖 .

Loosen. When a program relies on a message 𝜖 from the environment, it relies on the message’s
view being small enough to allow the behavior that follows. For example, allowing threads that
read from 𝜖 to still read and write certain messages in certain positions on the timeline. In addition,
the program relies on the message’s timestamp—which is part of the view—to be big enough for it
not to be obscured when needed. Figure 12 (left) depicts this rule.

Define the loosen (Ls) closure rule:
Assuming 𝜈 ≤vw 𝜖, 𝛼 𝜉

(
𝜂 ] {𝜖}

)
𝜔

Ls−→ 𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜔 (Loosen)

Here, we use the partial order on messages 𝜈 ≤vw 𝜖 defined by requiring that they may only differ
in their timestamps for other memory locations for which 𝜈 ’s timestamps must precede 𝜖’s:

𝜈 ≤vw 𝜖 ⇐⇒ 𝜈.lc = 𝜖.lc ∧ 𝜈.vl = 𝜖.vl ∧ 𝜈.seg = 𝜖.seg ∧ 𝜈.vw ≤ 𝜖.vw

If the source in (Loosen) is a trace, then the target is a trace iff either 𝜂 is empty or 𝜈 ã→
(
𝜂 ] {𝜈}

)
.o.

Intuitively, the source behavior can only use the view in 𝜖 by incorporating it into its view and
the view of its local messages using the max (t) operation on views. Since allowing threads to
silently increase their own view does not change the observed behavior, we would still be able
to guarantee the same local messages if the environment message has a smaller view. To make
this intuition more precise, we outline a simulation argument in the case the program exhibits the
source behavior through an interrupted execution that matches the trace exactly. We do not turn
it into a formal proof, since the abstract model §7.5 violates this simplifying assumption anyway.

Given an interrupted execution, we can replace an environment message 𝜖 with a message
𝜈 ≤vw 𝜖 and obtain an interrupted execution of the same program. Whenever a thread with view 𝛼
loads 𝜖 via the ReadOnly step in the original interrupted execution, its view becomes𝜔 – 𝛼t𝜖.vw.
In the new interrupted execution, we instead use the Adv rule to compensate for the earlier view in
𝜈 , once for every other location ℓ , and forward the view to themessage at location ℓ with timestamp
𝜔ℓ . Then we are able to load 𝜖 via ReadOnly, since the message has the same timestamp and the
thread’s view at the location 𝜖.lc = 𝜈.lc hasn’t changed during the Adv steps.The RMW-modifier
still fails in the new execution because 𝜈 and 𝜖 hold the same value and the decision whether to
modify it depends only on the value and the parameters, not the view. Loading via the RMW
rule is similar, where the modifier still succeeds with the same modification. We choose the same
timestamp for the newmessage we dovetail to 𝜈 , and it inherits the current view:𝜔 . Steps via other
rules remain the same.

The operations ofN are {Ls}-closed since the inclusion of a trace never relies on the view of an
environment message other than it being dominated 𝜖.vw ≤ 𝜅 by another view 𝜅. Since 𝜈 ≤vw 𝜖 ,
we have 𝜈.vw ≤ 𝜖.vw ≤ 𝜅 and 𝜈 and 𝜖 are otherwise identical, so the trace will be included in the
result of the operation.

Expel. The expel (Ex) closure rule replaces an environment message 𝜖′ with two dovetailing
messages 𝜈 and 𝜖 that, together, occupy the same segment. Moreover, 𝜖′ and 𝜖 have the same
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𝑤
𝜖 ′ – 𝜖 [i ↦→𝜈.i]

Ex−−→
𝑣

𝜈
𝑤

𝜖
𝑣

𝜈
𝑤

𝜖

Ab−−→
𝑤

𝜖 ′ – 𝜖 [i ↦→𝜈.i]

Fig. 13. Schematic depictions of the expel (left) and absorb (right) closure rules, that focus on the segment
of the dovetailed messages together with all pointers into and out of them, within a particular memory
snapshot. The left cloud represents the subset of the memory that the messages in focus are pointing to,
showing their views are the same. The right cloud represents views that point to each of the dovetailing
messages, possibly including the initial and final view, as well as other messages. Thus, no view may point to
𝜈 . A condition that is not depicted is that all the messages must appear in the same places in the chronicle.
Left: The environment message 𝜈 is “expelled” from the message 𝜖′, which becomes 𝜖 . Right: The local
message 𝜈 is “absorbed” into the message 𝜖 , which becomes 𝜖′.

view and value, so we can obtain 𝜖′ from 𝜖 by modifying its initial timestamp, 𝜖′ = 𝜖 [i↦→𝜈.i], as
Figure 13 (left) depicts. This rule ensures that the value 𝑣 is available at the same timestamp with
the same carried view, and that no more of the timeline is occupied. Formally:
Assuming 𝜈 ←⊂ 𝜖, 𝛼 𝜉

(
𝜂 ] {𝜖 [i ↦→𝜈.i]}

)
𝜔

Ex−−→ 𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔 (Expel)

Here, 𝜈 ←⊂ 𝜖 is the monotone dovetailing relation, defined to hold when 𝜖 dovetails after 𝜈 and 𝜖’s
view dominates 𝜈 ’s view:

𝜈 ←⊂ 𝜖 ⇐⇒ 𝜈.lc = 𝜖.lc ∧ 𝜈.t = 𝜖.i ∧ 𝜈.vw ≤ 𝜖.vw

The final condition means the rule is more relaxed than Figure 13 depicts, where 𝜈.vw = 𝜖.vw. This
difference is immaterial to the model, because we can recover the relaxed version by applying
loosen after the strict version.

As was the case for loosen, if the source in (Expel) is a trace, then the target is a trace iff either
𝜂 is empty or 𝜈 ã→

(
𝜂 ] {𝜈}

)
.o.

To justify the rule for interrupted executions, suppose 𝜖′ is an environment message in an inter-
rupted execution. By replacing 𝜖′ with 𝜈 and 𝜖 , we obtain another interrupted execution, in which
the environment added these two messages. Throughout the interrupted execution, no view ever
points to 𝜈 , as if 𝜈 was not there other than making its segment unavailable.

The operations of N are {Ex}-closed since they never rely on the absence of messages except
for the availability of segments, which this rule preserves.

Condense. In the condense (Cn) closure rule, the source behavior may include an environment
message 𝜖 dovetailing after a message 𝜈 that carries the same value and view. The target behavior
removes 𝜖 , and modifies 𝜈 to a message 𝜈 ′ that occupies the same segment as the two messages
combined, as Figure 14 (left) depicts.

To formally capture how the views in the trace change in this rule, we define pulling a view 𝜅
along a message 𝜖 in location ℓ to be the view 𝜅 [↑𝜖], which is equal to 𝜅 unless the timestamp 𝜅ℓ
is 𝜖’s initial timestamp, in which case it becomes 𝜖’s final timestamp (depicted on the right):

ℓ – 𝜖.lc
𝑖 – 𝜖.i
𝑡 – 𝜖.t

𝜅 [↑𝜖] –

{
𝜅ℓ = 𝑖 : 𝜅 [ℓ ↦→𝑡]
otherwise: 𝜅

𝜅ℓ

↓
(𝑖, 𝑡

𝜅 [↑𝜖 ]ℓ
↓
]

We extend the pulling operation to messages, memories, chronicles, (pre-)traces, and view trees,
by pulling the view associated with these objects. In particular, if 𝜖 dovetails after 𝜈 , then pulling 𝜈
along 𝜖 merges them into one contiguous message 𝜈 [↑𝜖] which has 𝜈 ’s view and value; and 𝜅 [↑𝜖]
points to 𝜖 iff 𝜅 points to 𝜈 or 𝜖 .
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𝑤
𝜈

𝑤
𝜖

Cn−−→

𝑤
𝜈 ′– 𝜈 [↑𝜖 ]

𝑤
𝜈 ′– 𝜈 [↑𝜖 ]

Di−−→

𝑤
𝜈

𝑤
𝜖

Fig. 14. Schematic depictions of the condense (left) and dilute (right) closure rules, in the style of Figure 13.
A condition that is not depicted is that 𝜈 and 𝜈 ′ must appear in the same places in the chronicle, and 𝜖 may
not appear before them. The views that point to 𝜈 ′ in the source can point either to 𝜈 or to 𝜖 in the target.
Left: The message 𝜈 turns into 𝜈 ′ by “condensing” the environment message 𝜖 . Right: The message 𝜈 ′ turns
into 𝜈 by “diluting” out the local message 𝜖 .

𝑤
𝜈

Cn−−→

𝑤
𝜈 ′– 𝜈 [↑𝜖 ]

𝑤
𝜈 ′– 𝜈 [↑𝜖 ]

Di−−→

𝑤
𝜈

Fig. 15. Schematic depictions of the condense (left) and dilute (right) closure rules as in Figure 14, focusing
this time on a memory without 𝜖 . Left: Since 𝜖 is to appear as an environment message in the chronicle, it
can appear since the opening memory, not appear even in the closing memory, or somewhere in between.
Right: Since 𝜖 is to appear as a local message, it cannot appear in the opening memory, and must appear in
the closing memory.

The closure rule, formally:
Assuming 𝜈 ←⊂= 𝜖, 𝛼 𝜉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Cn−−→
(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖] (Condense)

Here, 𝜈 ←⊂= 𝜖 is the monotone repetitive dovetailing relation, defined to hold when 𝜖 dovetails
monotonically after 𝜈 and the messages have the same value:

𝜈 ←⊂= 𝜖 ⇐⇒ 𝜈 ←⊂ 𝜖 ∧ 𝜈.vl = 𝜖.vl

As was the case for expel, relaxing the condition that the views must be equal-up-to-timestamp,
as Figure 14 (left) depicts, is admissible; this time by applying loosen before the strict version.

The decomposition of the chronicle in the rule determines where 𝜖 first appears (if at all), but 𝜈
can first appear earlier. This situation is depicted in Figure 15 (left).

When 𝜂 is empty the target differs from the source iff there is a message at 𝜖.i = 𝜈.t. In this case,
assuming the source is a trace, for the target to be a trace 𝜖.seg must be available, otherwise there
will be a memory that is not scattered. If 𝜖.seg is available, then the target will be a trace, because
pulling along a free segment retains the well-formed memory properties. For example, pointing
downwards is preserved due to the following lemma:

Lemma 7.6. ∀𝜖 ∈ Msg∀𝜅, 𝜎 ∈ View. 𝜅𝜖.lc, 𝜎𝜖.lc ∉ 𝜖.seg \ {𝜖.t} =⇒ 𝜅 ≤𝜎 =⇒ 𝜅 [↑𝜖] ≤𝜎 [↑𝜖].

To summarize, if the source in (Condense) is a trace, then the target is a trace iff either 𝜉 is empty,
𝜖.i ∉ 𝜉 .c.t, or 𝜖.seg ∩⋃ 𝜉 .c.seg = ∅.

If we have an interrupted execution with two messages 𝜈 and 𝜖 as in condense, we will also
have an interrupted execution without the environment message 𝜖 , and with 𝜈 ′ instead of 𝜈 . The
new interrupted execution uses 𝜈 ′ whenever the original uses either 𝜈 or 𝜖 .

The operations of N are {Cn}-closed. This fact is harder to demonstrate compared to the previ-
ous rules. Considerations involving the value available to load, and the segment available to store,
are similar. If a message dovetailed after 𝜖 in the source, it dovetails after 𝜈 ′ in the target. Thus,
if a message was added due to an RMW in the source, the condition to dovetail after a message
that holds the loaded value is still met in the target. There are also new considerations due to the
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closure rule affecting the entire trace rather than just one or two messages. For instance, to show
that bind (⟫=N) preserves the rule, we replace an application of condense after binding the traces
with applications of condense (with the same messages) on each of the traces before binding. This
replacement is subtle because the delimiting views change, and thus the condition 𝜅 ≤ 𝜎 imposed
on binding the traces changes to 𝜅 [↑𝜖] ≤ 𝜎 [↑𝜖]. The condition still holds due to Lemma 7.6 since
neither 𝜅 nor 𝜎 point into the interior of 𝜖.seg, because no message has a timestamp there. This
insight resolves similar subtleties for the other N -constructs.

7.4 Concrete Denotations
Brookes [13] pioneered two closure rules to make denotations abstract and support desired pro-
gram transformations: stuttering and mumbling. To define our next model, we adapt these closure
rules to our setting, as well as add two additional ones: 𝔠 – {St,Mu, Fw,Rw}. We denote the union
of closure-rule sets by juxtaposition, e.g. 𝔤𝔠 – 𝔤 ∪ 𝔠. We denote by C the 𝔤𝔠-monad structure, and
call this model the concrete model. Like the generating model, C still maintains a close correspon-
dence to the operational semantics RA≤ . However, C is a monad, a crucial element in the proof of
the adequacy theorem.

PRoposition 7.7. C is a monad.

Wedescribe each of the 𝔠-closure rules below, providing justifications from two viewpoints: rely/
guarantee intuitions, and correspondence to interrupted executions. The rely/guarantee intuitions
will serve us better in the abstract model (§7.5), which also uses these rules, because its traces do
not correspond to interrupted executions as they do here.

We motivate each closure rule x ∈ 𝔠 with an example of a transformation 𝑀 ↠ 𝑁 supported
thanks to that rule. For simplicity and emphasis, we demonstrate this with J𝑀Kc

G
★ ⊇ J𝑁 Kc

G where
x ∈ ★ ⊆ 𝔠, rather than J𝑀Kc

C ⊇ J𝑁 Kc
C (which will also hold).

Stutter. A program can always make the same memory guarantees on which it relies. This is
captured by stutter (St), which inserts a transition with equal components somewhere:

𝛼 𝜉𝜂 𝜔
St−→ 𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 𝜔 (Stutter)

If the source of (Stutter) is a trace, then the target is a trace iff 𝜇 is well-formed and the initial view
points to the opening memory: 𝛼 ↣ 𝜇 (this may fail to hold if 𝜉 is empty).

We can also understand stutter using interrupted executions. Given an interrupted execution,
a sequence of 0 steps 〈𝑇, 𝜇〉 , 𝑀 ⇝∗ 〈𝑇, 𝜇〉 , 𝑀 can be inserted anywhere as long as 〈𝑇, 𝜇〉 is well-
formed and 𝜇 contains the previous memory if there is one, and is contained in the subsequent
memory if there is one.

As a concrete (contrived) example, consider the transformation 〈〉 ; 〈〉 ↠ 〈〉 ; 〈〉 ; 〈〉. We can use
stutter to validate it. Indeed, J〈〉 ; 〈〉Kc

G
{St} ⊇ J〈〉 ; 〈〉 ; 〈〉Kc

G , even though J〈〉 ; 〈〉Kc
G ⊉ J〈〉 ; 〈〉 ; 〈〉Kc

G .

Mumble. A program can omit a guarantee and rely on that guarantee internally.This is captured
by mumble (Mu), which combines transitions with the same memory at their common edge:

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 𝜔 Mu−−→ 𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 𝜔 (Mumble)

If the source in (Mumble) is a trace then so is its target.
We can also understand mumble using interrupted executions. If we have an interrupted exe-

cution of the form ... 〈𝑇, 𝜇〉 , 𝑀 ⇝∗
RA≤ 〈𝑅, 𝜌〉 , 𝑁 〈𝑅, 𝜌〉 , 𝑁 ⇝∗

RA≤ 〈𝐻, 𝜃〉 , 𝐾 ... that is compatible
with the source trace, then the shorter interrupted execution ... 〈𝑇, 𝜇〉 , 𝑀 ⇝∗

RA≤ 〈𝐻, 𝜃〉 , 𝐾 ... is
compatible with the target trace.
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𝜈· · · · · · 𝜖 · · · 𝜔
Fw−−→ 𝜈 𝜖· · · · · · 𝜖 · · · 𝜔 ′ 𝜖· · · · · · 𝜈 · · ·𝛼

Rw−−→ 𝜖 𝜈· · · · · · 𝜈 · · ·𝛼 ′

Fig. 16. Schematic depictions of the rewind and forward closure rules, focusing on a single location, where
the initial/final view points to 𝜈 before and points to 𝜖 after. The messages 𝜈 and 𝜖 may coincide, dovetail, or
be apart. Left: The final view 𝜔 is “forwarded” to 𝜔 ′. Right: The initial view 𝛼 is “rewound” to 𝛼 ′.

As a concrete example, we use mumble to validate the transformation ℓ? ;𝑀 ↠ 𝑀 , which also
demonstrates the importance of the internalized invariants from §6, i.e. the use of traces rather
than pre-traces. Indeed, 𝛼 〈𝜇, 𝜌〉 𝜉 𝜔 6 𝑟 ∈ J𝑀Kc

G is a trace, so 𝛼 ↣ 𝜇. Therefore, there is some
𝛼 〈𝜇, 𝜇〉 𝛼6𝑣 ∈ Jℓ?Kc

G . So 𝛼 〈𝜇, 𝜇〉 〈𝜇, 𝜌〉 𝜉 𝜔6𝑟 ∈ Jℓ? ;𝑀Kc
G . Thus 𝛼 〈𝜇, 𝜌〉 𝜉 𝜔6𝑟 ∈ Jℓ? ;𝑀Kc

G
{Mu} .

Forward. If a program fragment can operate and guarantee a certain set of messages remain
visible, it can operate in the same way and guarantee a subset of these messages remain visible.
The final view serves to guarantee revealed messages to subsequent computation, so we reflect
this fact by forward (Fw), which increases the final view:

Assuming 𝜅 ≤ 𝜔, 𝛼 𝜉 𝜅 Fw−−→ 𝛼 𝜉 𝜔 (Forward)
Figure 16 (left) depicts the rule. If the source of (Forward) is a trace, then the target is a trace iff
the final view points downwards into the closing memory: 𝜔 ã→ 𝜉 .c.

We can also understand forward using interrupted executions. If we have an interrupted execu-
tion of the form ... 〈𝑇, 𝜇〉 , 𝑀 ⇝∗

RA≤ 〈𝑅, 𝜌〉 , 𝑁 , we can append Adv steps to the final sequence of
steps to obtain ... 〈𝑇, 𝜇〉 , 𝑀 ⇝∗

RA≤ 〈𝑅
′, 𝜌〉 , 𝑁 , where 𝑅 ≤ 𝑅′ ã→ 𝜌 .

As a concrete example, we use stutter and forward to validate the transformation 〈〉 ↠ ℓ?; 〈〉. To
show that J〈〉Kc

G
{St,Fw} ⊇ Jℓ? ; 〈〉Kc

G , we first use stutter to compensate for the additional transition
and then use forward to compensate for the difference between the initial and final views.

Rewind. If a program fragment can operate by relying on a certain set of visible messages, it
can operate in the same way by relying on a superset of these messages being visible. The initial
view serves to guarantee revealed messages from previous computation, so we reflect this fact by
rewind (Rw), which decreases the initial view:

Assuming 𝛼 ≤ 𝜅, 𝜅 𝜉 𝜔 Rw−−→ 𝛼 𝜉 𝜔 (Rewind)
Figure 16 (right) depicts this rule. If the source of (Rewind) is a trace, then the target is a trace iff
the initial view points downwards into the opening memory: 𝛼 ã→ 𝜉 .o.

We can also understand rewind using interrupted executions, as we did for forward. Instead of
appending Adv steps to the final sequence, we prepend Adv steps to the initial sequence.

As a concrete example, we use rewind and stutter to validate the transformation𝑀 ↠ 〈〉 ;𝑀 .

7.5 Abstract Denotations
Finally, we define the abstract model, A as the 𝔤𝔠𝔞-monad structure, where 𝔞 – {Ti,Ab,Di} are
closure rules presented below. This model fulfills the basic requirement of a monadic model:

PRoposition 7.8. A is a monad.

By including the additional closure rules of 𝔞 we depart from the operational interpretations
that we have used for the previous rules. This departure allows us to obtain the abstraction that
the concrete model lacks. We took a parsimonious approach, only proposing rules that we need to
justify program transformations that the RA model is expected to validate. With each closure rule,
we present a program transformations whose validation uses that particular rule, though other 𝔤𝔠-
closures are often required as well.
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Fig. 17. A possible result from rewriting the trace from Figure 1 using tighten. Since 𝜈2 is local in the trace
from Figure 1, tighten can advance its view to point to 𝜖3 instead of 𝜖1. The same replacement is applied
throughout the trace’s sequence, not just the closing memory.

Tighten. The role of the view that a message carries, other than providing the timestamp, is to
constrain the loading thread by increasing its view when it loads the message. Considering a local
message 𝜈 , its view serves to guarantee that loading it would not obscure any message within
a certain portion of the memory. Therefore, replacing 𝜈 by 𝜖 that only differs in its view, where
𝜈 ≤vw 𝜖 , as Figure 12 (right) depicts, means that only a sub-portion of the memory is guaranteed not
to become obscured by loading the message, and keeps everything else the same.This replacement
of the carried view is the effect of the tighten (Ti) closure rule. Formally:

Assuming 𝜈 ≤vw 𝜖, 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔 Ti−→ 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖} 𝜔 (Tighten)

See Figure 17 for a concrete example.
As a concrete benefit of tighten, consider the write-read-reordering transformation:

ℓ – 𝑣 ; let𝑎 = 〈ℓ ′?, ℓ ′?〉 in 𝑎︸                              ︷︷                              ︸
𝑀

↠ let𝑎 = 〈ℓ ′?, ℓ ′?〉 in ℓ – 𝑣 ; 𝑎︸                              ︷︷                              ︸
𝑁

where ℓ ≠ ℓ ′

This transformation is not valid under SC, but it is valid under RA.The reason it is valid is non-triv-
ial. For example, consider an execution of𝑀 that loads two different values from distinct messages
𝜈 and 𝜖 , which are the only messages at ℓ ′. The message 𝑀 stores afterwards must carry a view 𝜅
with the increased ℓ ′-timestamp: 𝜅ℓ ′ = 𝜖.t > 𝜈.t. The term 𝑁 cannot simulate this exactly: even if
𝑁 advances the view, with the RA≤-rule Adv, to store the same view 𝜅 as 𝑀 , the first message 𝑁
needs to load 𝜈 will be obscured.

We validate this transformation using the denotational semantics: J𝑀Kc
C
{Ti} ⊇ J𝑁 Kc

C .

Absorb. Applying absorb (Ab) removes a local message 𝜈 and decreases the initial timestamp
of a local message 𝜖 dovetailing after 𝜈 with the same view, such that the resulting 𝜖′ covers the
segment of 𝜈 . Figure 13 (right) depicts this. In this way, the rule weakens its memory guarantee
to the environment because it has less messages available to load from, without strengthening
the guarantee by way of making any more of the location’s timeline available. No view can point
to 𝜈 before applying this rule, otherwise the resulting pre-trace would not be a trace. The rule is
formally specified as follows, where we abbreviate by denoting 𝜖𝑡i – 𝜖 [i↦→𝑡]:

Assuming 𝜈 ←⊂ 𝜖, 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔 Ab−−→ 𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖𝜈.ii

}
𝜔 (Absorb)
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Fig. 18. A trace resulting from absorb-rewriting the trace from Figure 17. The dovetailed messages 𝜈2 and
𝜈3 are local in the trace from Figure 1, added within the same transition, so by absorb-rewriting they can be
replaced by 𝜈 ′3 obtained by stretching 𝜈3’s segment to cover 𝜈2’s segment.

See Figure 18 for a concrete example. As in expel, we relax the condition of equal views, admissible
due to tighten.

The transformation ℓ–𝑤 ;ℓ–𝑣 ↠ ℓ–𝑣 is a concrete example where this rule is useful, in which
we use absorb to compensate for the extra message on the left: Jℓ –𝑤 ; ℓ – 𝑣Kc

C
{Ab} ⊇ Jℓ – 𝑣Kc

C .
In more detail, consider a trace on the right 𝜏 ∈ Jℓ – 𝑣Kc

C with local message 𝛽 . Pick: a timestamp
𝑡 from the interior of 𝛽.seg, a trace 𝜋 ∈ Jℓ –𝑤Kc

C with local message that has the segment (𝛽.i, 𝑡]
and a trace 𝜚 ∈ Jℓ – 𝑣Kc

C with local message that has the segment (𝑡, 𝛽 .t]. After binding to obtain
the sequencing of 𝜏 with𝜋 in Jℓ –𝑤 ; ℓ – 𝑣Kc

C , usemumble to combine the transitions, then absorb
to replace these two messages with 𝛽 , resulting in 𝜏 .

Dilute. Formally, the dilute (Di) rule is specified as follows:

Assuming 𝜈 ←⊂= 𝜖,
(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔

)
[↑𝜖] Di−−→ 𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔 (Dilute)

See Figure 19 for a concrete example.
We restrict to the case that 𝜈.vw = 𝜖.vw when explaining the rule. The rest can be seen as a

formal extension which is admissible in the presence of tighten, as with condense and loosen.
Figure 14 (right) depicts how, in memories with 𝜖 , views that point to 𝜈 [↑𝜖] in the source point

to either 𝜈 or 𝜖 in the target. Without 𝜖 , the views all point to 𝜈 , as Figure 15 (right) depicts.
In the source behavior of this closure rule the program relies on and guarantees 𝜈 [↑𝜖] whenever

it appears in the first or second component of a transition, respectively. In the target behavior the
program relies on and guarantees 𝜈 at the same stages, and the program relies on the segment of
𝜖 to be unoccupied until the program guarantees 𝜖 itself. When the segment of 𝜖 is unoccupied,
the difference in timestamp is inconsequential because both messages are ordered the same with
respect to the other messages on the timeline.The addition of 𝜖 to the segment is also inconsequen-
tial, insofar as offering the same value and view; and it fills up the remaining unoccupied portion
of the segment of 𝜈 [↑𝜖], ensuring it is unavailable in the target behavior as well.

As a concrete example of this rule in use, consider the transformation ℓ? ↠ FAA (ℓ, 0). A trace
from the target 𝜏 ∈ JFAA (ℓ, 0)Kc

C has a local message 𝜖 that dovetails after an existing environment
message 𝜈 .There is a matching trace 𝜋 ∈ Jℓ?Kc

C in the source without that local message. By closure
under 𝔤, we can apply the condense closure rule on 𝜋 , pulling 𝜈 along 𝜖 , to obtain a trace 𝜚 ∈ Jℓ?Kc

C
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Fig. 19. A possible result from rewriting of the trace from Figure 1 using dilute. Themessage 𝜖1 from Figure 1
was replaced with 𝜖′1, with the same value 1. The local message 𝛽—which takes up the rest of the missing
space left behind by 𝜖1—always appears with 𝜖′1, dovetailing after it and carrying the same value. Themessage
𝜖2, that used to dovetail after 𝜖1, now dovetails after 𝛽 .

with the environment message 𝜈 [↑𝜖] (condense applies even when pulling along a message 𝜖 that
is not in the trace). Then, we can apply dilute to 𝜚 to add the local 𝜖 , resulting in 𝜏 .

8 Metatheory
The difference between the different monad structures from §7 are due to the abstraction afforded
to them by the closure rules. Ultimately, it is the monad A that we are interested in, as it is the
one over which we define satisfactory denotational semantics. To prove the results that justify this,
we first relate the different monad structures using properties of the closure rules and their inter-
actions (§8.1). Then, focusing on A, we prove (directional) compositionality (§8.2) and soundness
(§8.3). These results facilitate the main result: (directional) adequacy (§8.4). Finally, we exhibit the
abstraction of the denotational semantics with various transformations it supports (§8.5).

8.1 Rewrite Castling
A complicating aspect of these trace models is how intricately rewrites between traces interact.
For example, an application of forwardmay only be possible after using stutter to add a transition
to the end of the chronicle with stutter, in which the messages that the final view is intended to
point to exist. So given a sequence of rewrites between traces 𝜏 St−→ 𝜋

Fw−−→ 𝜚 , there may be no trace
𝜋 ′ such that 𝜏 Fw−−→ 𝜋 ′

St−→ 𝜚 .

Example 8.1. Let 𝛼 – ⟪x@0 ; y@0⟫ and 𝜔 – ⟪x@3 ; y@3⟫ be views. Using the simplified nota-
tion for memories from §6, let:

𝜇 –

{
y : 5@(−1, 0] ⟪0⟫, 7@(1, 3] ⟪0⟫
x : 6@(−1, 0] ⟪0⟫

}
𝜌 –

{
y : 5@(−1, 0] ⟪0⟫, 7@(1, 3] ⟪0⟫
x : 6@(−1, 0] ⟪0⟫, 8@(1, 3] ⟪3⟫

}
= 𝜇 ]

{
x:8@(1, 3] ⟪y@3⟫

}
, Vol. 1, No. 1, Article . Publication date: December 2024.



A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 39

Consider the following sequence of trace rewrites:

𝛼 〈𝜇, 𝜇〉 𝛼 6 9︸           ︷︷           ︸
𝜏

St−→ 𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝛼 6 9︸                    ︷︷                    ︸
𝜋

Fw−−→ 𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 6 9︸                    ︷︷                    ︸
𝜚

We also have the sequence:

𝛼 〈𝜇, 𝜇〉 𝛼 6 9︸           ︷︷           ︸
𝜏

Fw−−→ 𝛼 〈𝜇, 𝜇〉 𝜔 6 9︸            ︷︷            ︸
𝜋 ′

St−→ 𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 6 9︸                    ︷︷                    ︸
𝜚

but 𝜋 ′ is not a trace because 𝜔 6ã→ 𝜇, so this is not a sequence of trace rewrites.

Other closure-rule pairs permit this kind of rearrangement. For example, loosen and stutter: if
𝜏

Ls−→ 𝜋
St−→ 𝜚 is a sequence of trace rewrites, then there exists a trace 𝜋 ′ such that 𝜏 St−→ 𝜋 ′

Ls−→ 𝜚 .

Example 8.2. Keeping 𝛼 , 𝜔 , 𝜇, and 𝜌 from Example 8.1, let:

𝜃 –

{
y : 5@(−1, 0] ⟪0⟫, 7@(1, 3] ⟪0⟫
x : 6@(−1, 0] ⟪0⟫, 8@(1, 3] ⟪0⟫

}
= 𝜇 ]

{
x:8@(1, 3] ⟪y@0⟫

}
Consider the following sequence of trace rewrites:

𝛼 〈𝜌, 𝜌〉 𝜔 6 9︸            ︷︷            ︸
𝜏

Ls−→ 𝛼 〈𝜃, 𝜃〉 𝜔 6 9︸            ︷︷            ︸
𝜋

St−→ 𝛼 〈𝜃, 𝜃〉 〈𝜃, 𝜃〉 𝜔 6 9︸                    ︷︷                    ︸
𝜚

We also have the sequence:

𝛼 〈𝜌, 𝜌〉 𝜔 6 9︸            ︷︷            ︸
𝜏

St−→ 𝛼 〈𝜌, 𝜌〉 〈𝜌, 𝜌〉 𝜔 6 9︸                     ︷︷                     ︸
𝜋 ′

Ls−→ 𝛼 〈𝜃, 𝜃〉 〈𝜃, 𝜃〉 𝜔 6 9︸                    ︷︷                    ︸
𝜚

where 𝜋 ′ is a trace, so this is a sequence of trace rewrites.

More generally, every sequence of rewrites can be rearranged such that 𝔤-rewrites appear first,
then 𝔠-rewrites, and finally 𝔞-rewrites. This property will play a pivotal rule in our development
of the metatheory. It is an immediate consequence of the following lemma. We write x ñ← y when
x−→ y−→⊆ y−→ x−→, where the rewrites x−→ and y−→ are restricted to traces.

Lemma 8.3 (RewRite Castling). If x ∈ 𝔞 and y ∈ 𝔤𝔠, or x ∈ 𝔠𝔞 and y ∈ 𝔤, then x ñ← y.

PRoof. The proof proceeds by case analysis on x and y, each encapsulated in diagram(s) such
as the two in Figure 20. The detailed proof, including all of the diagrams, is in §F. Specifically, see
diagrams 31 and 42 for larger and more detailed versions of those in Figure 20.

Each diagram shows the assumed rewrite sequence 𝜏 x−→ 𝜋
y−→ 𝜚 on the left, with the conditions

that are known because theywere required for the rewrites to be applicable. For example, Figure 20
(left) shows that 𝜈 ←⊂ 𝜖 holds due to the assumed x=Ab-rewrite, and 𝜖𝜈.ii ←⊂= 𝜖 holds due to the
assumed y=Cn-rewrite. The deduced sequence 𝜏 y−→ 𝜋 ′

x−→ 𝜚 on the right, with the conditions that
need to hold for the rewrites to be applicable. For example, Figure 20 (left) shows that 𝜖 ←⊂= 𝜖 needs
to hold to apply the y=Cn-rewrite, and 𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖] needs to hold to apply the x=Ab-rewrite.

The conditions are enough to show that the closure rules apply for pre-traces, but for the se-
quence to be valid, we must verify that 𝜋 ′ is a trace. This is done by inferring from the fact that it
was x-rewritten from the trace 𝜏 , and y-rewritten to the trace 𝜋 , using the conditions we have col-
lected as we presented the closure rules in §7.3-7.5. For example, in Figure 20 (left), we need to show
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𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜖 ←⊂= 𝜖

Cn

𝜖𝜈.ii ←⊂= 𝜖

𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]
Ab

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜖, 𝜈}〉 𝜂 ] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜖 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Cn

𝜈 ←⊂= 𝜖

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

Fig. 20. Two cases from the proof of Rewrite Castling in which “active” messages overlap.

that the pre-trace
(
𝛼 𝜉1

(
𝜂′ ] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖] is a trace, where 𝜉1 – 𝜉

〈
𝜇, 𝜌 ] {𝜈, 𝜖}

〉 (
𝜂 ] {𝜈, 𝜖}

)
.

Since it is the target of an application of a Cn-rewrite, by the condition for condense from §7.3 (also
summarized in Lemma F.1), it is a trace iff either 𝜉1 is empty, 𝜖.i ∉ 𝜉1 .c.t, or 𝜖.seg∩⋃ 𝜉1 .c.seg = ∅.
We show the final one of these criteria. We use the fact that

(
𝛼 𝜉2

(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖], where

𝜉2 – 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
, is by assumption a trace and the target of a Cn-rewrite. There-

fore, either 𝜉2 is empty, 𝜖.i ∉ 𝜉2 .c.t, or 𝜖.seg ∩⋃
𝜉2 .c.seg = ∅. By the transition

〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉
appears in 𝜉2, it is non-empty, and 𝜖𝜈.ii ∈ 𝜉2.c. Therefore, 𝜖.seg∩⋃ 𝜉2.c.seg = ∅. Since 𝜉2.c differs
from 𝜉1.c by messages that occupy the same total segment,

⋃
𝜉2.c.seg =

⋃
𝜉1.c.seg, and we are

done: 𝜖.seg ∩⋃ 𝜉1.c.seg = ∅.
The cases in Figure 20 are among the more interesting cases in which the activities of x and

y overlap. The left diagram shows a sub-case of Ab ñ← Cn in which the absorbing message (𝜖)
also serves as the condensing message. On the right, a sub-case of Di ñ← Cn in which the diluted
message (𝜖) is also the message that is being condensed. This case is particularly tricky because
the pulls need to be commuted, as in (− [↑𝜖]) [↑𝜖 [↑𝜖]] = (− [↑𝜖]) [↑𝜖 [↑𝜖]]. □

When defining the closure rules, we could have restricted 𝜈 ←⊂ 𝜖 (and similarly 𝜈 ←⊂= 𝜖) to mes-
sages with equal views: 𝜈.vw = 𝜖.vw, resulting in the same semantics. For example, to apply the
restricted version of absorb, one first applies tighten, which is also an 𝔞-rewrite, to make the views
equal. In fact, we used this slightly simpler presentation in the abridged version of this paper [21].

Using the simpler presentation would require a less tidy statement of Rewrite Castling. For
example, we would not have Di ñ← Ls, because it may be that we “dilute” an environment message
and then “loosen” it. After castling, using the restricted version of dilute, we would need to then
“tighten” the new local message to recover the resulting trace from the original rewrite sequence.

Example 8.4. Keeping 𝛼 , 𝜔 , and 𝜇 from Example 8.1, let:

𝜌𝑞 –

{
y : 5@(−1, 0] ⟪0⟫, 7@(1, 3] ⟪0⟫
x : 6@(−1, 0] ⟪0⟫, 8@(1, 3] ⟪𝑞⟫

}
= 𝜇 ]

{
x:8@(1, 3] ⟪y@𝑞⟫

}
𝜃𝑞,𝑡 –

{
y : 5@(−1, 0] ⟪0⟫, 7@(1, 3] ⟪0⟫
x : 6@(−1, 0] ⟪0⟫, 8@(1, 2] ⟪𝑞⟫, 8@(2, 3] ⟪𝑡⟫

}
= 𝜇 ]

{
x:8@(1, 2] ⟪y@𝑞⟫ , x:8@(2, 3] ⟪y@𝑡⟫

}
Consider the following sequence of trace rewrites, where Di= is the restricted version of dilute:

𝛼 〈𝜌3, 𝜌3〉 𝛼 6 9︸              ︷︷              ︸
𝜏

Di=−−→ 𝛼
〈
𝜌3, 𝜃3,3

〉
𝛼 6 9︸                ︷︷                ︸

𝜋

Ls−→ 𝛼
〈
𝜌0, 𝜃0,3

〉
𝛼 6 9︸                ︷︷                ︸

𝜚

We also have the sequence:

𝛼 〈𝜌3, 𝜌3〉 𝛼 6 9︸              ︷︷              ︸
𝜏

Ls−→ 𝛼 〈𝜌0, 𝜌0〉 𝛼 6 9︸              ︷︷              ︸
𝜋 ′

Di=−−→ 𝛼
〈
𝜌0, 𝜃0,0

〉
𝛼 6 9︸                ︷︷                ︸

𝜋 ′′

Ti−→ 𝛼
〈
𝜌0, 𝜃0,3

〉
𝛼 6 9︸                ︷︷                ︸

𝜚
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which recovers 𝜚 only after an application of tighten.

As a corollary to Rewrite Castling, we can castle 𝔠𝔞-rewrites out of the G-operators:

Lemma 8.5 (DefeRRal of ClosuRe). Let 𝔠 ⊆ ★ ⊆ 𝔠𝔞. For all 𝑃𝑖 ∈ G𝑋𝑖 and 𝑓 : 𝑋1 → G𝑋2:(
𝑃★1 ⟫=

G 𝑓 ★
)★

=
(
𝑃1 ⟫=G 𝑓

)★ (
𝑃★1 | | |G𝑃★2

)★
=
(
𝑃1 | | |G𝑃2

)★
PRoof. In the proof we rely on the fact that 𝔤 has a counterpart for every closure rule in 𝔞:

Ls ↔ Ti; Ex ↔ Ab; Cn ↔ Di. Figures 12 to 15 depict this correspondence when comparing the
left and right sides of the figure: the messages that need to be local to apply an 𝔞-closure need to be
environment messages in their 𝔤-counterpart, and the rewrite goes in the opposite direction. For
example, instead of Ab-rewriting some trace 𝜏 ∈ 𝑃1 and then “binding” it with a trace 𝜋 ∈ 𝑓 (𝜏 .vl),
we can instead mirror its effect by Ex-rewriting 𝜋 to make its messages match 𝜏 ’s, bind those
together, and then Ab-rewrite after the bind.

The detailed proof is in §A. □

Deferral of Closure also applies to C and A instead of G, since G𝑋 ⊇ C𝑋 ⊇ A𝑋 . Since calcu-
lations in G are relatively simple, this lemma is quite convenient to have.

Example 8.6. Deferral of Closure helps show the associativity law holds for both C andA. The
associativity law for N is easy to verify directly. It implies the associativity law for G by Proposi-
tion 7.5. To show the associativity law for C, we specialize Deferral of Closure to★ = 𝔠, and restrict
to 𝑃 ∈ C𝑋 , 𝑓 : 𝑋 → C𝑌 , and 𝑔 : 𝑌 → C𝑍 , obtaining:(

𝑃 ⟫=C 𝑓
)
⟫=C𝑔 =

((
𝑃 ⟫=G 𝑓

)𝔠
⟫=G𝑔

)𝔠
=

((
𝑃 ⟫=G 𝑓

)
⟫=G𝑔

)𝔠
𝑃 ⟫=C

(
𝜆𝑟 . 𝑓 (𝑟 ) ⟫=C𝑔

)
=

(
𝑃 ⟫=G

(
𝜆𝑟 . 𝑓 (𝑟 ) ⟫=G𝑔

)𝔠)𝔠
=

(
𝑃 ⟫=G

(
𝜆𝑟 . 𝑓 (𝑟 ) ⟫=G𝑔

))𝔠
The associativity law for A follows from the same argument, by specializing to ★ = 𝔠𝔞.

When calculating denotations of terms, we can use Deferral of Closure to similarly delay taking
the closure. Specifically, for programs (closed terms of ground type), we can delay all the way
through to the top level. Relating C to A in this way is a key step in our proof of adequacy.

Lemma 8.7 (RetRoactive ClosuRe). If𝑀 is a program, then J𝑀Kc
A = J𝑀Kc

C
𝔞 .

The proof, using Rewrite Castling and Deferral of Closure, is in §A. It follows a standard logical-
relation argument to account for higher-order terms that may appear as subterms of the program.

The rest of §8 focuses mainly on the model A. To emphasize this fact, and to avoid clutter, we
henceforth omit A from its semantic notations. In particular, we write J𝑀Kc rather than J𝑀Kc

A .

8.2 Compositionality
To state compositionality, and later adequacy, we need a few technical concepts involving captur-
ing and capture-avoiding substitution in 𝝀RA and its semantics. We extend 𝝀RA with well-typed
metavariables: these are binding-aware identifiers 𝛤 ` M : 𝐴. Metavariables represent “holes” into
which we can slot well-typed terms 𝛤 ` 𝑀 : 𝐴, in an operation called metavariable substitution.
When such a metavariable appears in a term, it is accompanied by an explicit value substitution
governing which values to substitute when we slot a term into it. Metavariable substitution cap-
tures the variables of which the metavariables are aware.
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Example 8.8. Consider the following metavariable that is aware of a context with two variables:
𝑎 : Loc, 𝑏 : Val ` M : 1. The term ` M[𝑎 ↦→ x, 𝑏 ↦→ 42] : 1 contains this metavariable and no other
variables. Metasubstituting the open term 𝑎 : Loc, 𝑏 : Val ` 𝑎 – 𝑏 for M yields ` x – 42 : 1.

This treatment of metavariables and their substitution is tedious but standard given the binding
structure in the syntax. A (term) context 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵 is a term of type 𝐵 with variables
from 𝛥 and one meta-variable 𝛤 ` − : 𝐴 of type𝐴 that assumes a binding context 𝛤 . It is a program
context when 𝛥 is empty and 𝐵 =𝐺 is ground.

The recursive definition of a term’s denotation only uses the denotations of its subterms, so the
semantics is automatically compositional. Abbreviating 𝛤 ` 𝑀 : 𝐴 and 𝛤 ` 𝑁 : 𝐴 into 𝛤 ` 𝑀, 𝑁 : 𝐴:

PRoposition 8.9 (Compositionality). Let 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵 be a term context and assume
𝛤 ` 𝑀, 𝑁 : 𝐴. If J𝑀Kc = J𝑁 Kc then JΞ [𝑀]Kc = JΞ [𝑁 ]Kc.

However, we are interested in a directional version of this, dealing not only with set equality
but also with set inclusion. Simply replacing = with ⊆ in Proposition 8.9 results in a false claim.
This is because the language is higher-order, so only a “nested” form of containment holds.

Example 8.10. We have Jℓ – 2Kc ⊆ Jℓ – 1 ; ℓ – 2Kc, yet J𝜆ℓ. ℓ – 2Kc ⊈ J𝜆ℓ. ℓ – 1 ; ℓ – 2Kc. So
Proposition 8.9 with ⊆ instead of = is indeed false. These latter sets are in fact disjoint, their traces
having different return values: 𝜆ℓ. Jℓ – 2Kc versus 𝜆ℓ. Jℓ – 1 ; ℓ – 2Kc. These values are related by
pointwise containment.

We therefore restrict the directional version of compositionality to programs:

TheoRem 8.11 (DiRectionalCompositionality). Let · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 be a program context
and assume 𝛤 ` 𝑀, 𝑁 : 𝐴. If J𝑀Kc ⊆ J𝑁 Kc then JΞ [𝑀]Kc ⊆ JΞ [𝑁 ]Kc.

The proof is in §B. It uses a logical relation to account for higher-order terms. On ground types,
the logical relation simplifies to set containment.

8.3 Soundness
A basic part of the correspondence between the denotational and the operational semantics is its
soundness, in the sense that the denotation of a program has traces corresponding to evaluations.
More specifically, program evaluation is reflected in the denotation of the program by a single-
transition trace, using the greatest lower bound of the initial view tree as the initial view:

TheoRem 8.12 (Soundness). For a program 𝑀 , if 〈𝑇, 𝜇〉 , 𝑀 ⇓ 𝑉 , then there exist 𝜇′ and 𝜔 such
that inf𝜇 𝑇 〈𝜇, 𝜇′〉 𝜔 6𝑉 ∈ J𝑀Kc

C .

The proof is in §C. It first shows soundness by straightforward induction for a model with a
different model, which uses a more intensional notion of a trace. These traces keep track of the
initial view tree, and their transitions correspond to memory-accessing steps (•-labeled steps) in
the operational semantics. This different model is then related to C by a logical relation.

By Retroactive Closure, J𝑀Kc
C ⊆ J𝑀Kc. So, though stated only for C, Soundness holds forA too.

Impossible outcomes. The contrapositive presentation of Soundness states that certain evalua-
tions of a program can be ruled out by inspecting its denotation. For example, the impossible
evaluations of (MP) from Example 5.3 can be shown indirectly by calculating its denotation.

8.4 Adequacy
Adequacy uses contextual refinements to formalize how denotations capture behavior within any
context. For 𝛤 ` 𝑀, 𝑁 : 𝐴, we say that 𝑀 contextually refines 𝑁 , denoted by 𝛤 ` 𝑀 Ď 𝑁 : 𝐴, or
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by 𝑀 Ď 𝑁 for short, when 〈 9𝛼, 𝜇〉 ,Ξ [𝑀] ⇓ 𝑉 implies that 〈 9𝛼, 𝜇〉 ,Ξ [𝑁 ] ⇓ 𝑉 for every program
context · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 , initial configuration state 〈 9𝛼, 𝜇〉, and value 𝑉 .

TheoRem 8.13 (DiRectional Adeacy). If J𝑀Kc ⊆ J𝑁 Kc then𝑀 Ď 𝑁 .

The proof begins by examining the tight correspondence between traces in denotations over C
and interrupted executions. Formally, we say that 𝑀 executes through 𝜏 to 𝑉 , written 𝑀 :: 𝜏 :: 𝑉 ,
when there is an interrupted execution from𝑀 to 𝑉 such that 𝜏 .vl = J𝑉 Kv

C , which starts with the
view-leaf 𝜏 .ivw, passes exactly through the memory transitions of 𝜏 .ch, and ends with the view-
leaf 𝜏 .fvw. By the Fundamental Lemma, the precise statement and proof of which we relegate to
§D: for every 𝜏 ∈ J𝑀Kc

C there exists an appropriate value 𝑉 such that𝑀 :: 𝜏 :: 𝑉 . In particular:

Lemma 8.14 (ConcRete TRaces Lemma). For a program𝑀 , if 𝜏 ∈ J𝑀Kc
C then𝑀 :: 𝜏 :: 𝜏 .vl.

Traces in denotations overA do not enjoy this correspondence, due to the model’s abstraction.
However, a looser correspondence holds, between denotations of programs to their evaluations:

Lemma 8.15 (Evaluation Lemma). For a program𝑀 , if 𝛼 〈𝜇, 𝜌〉 𝜔6𝑟 ∈ J𝑀Kc then 〈 9𝛼, 𝜇〉 , 𝑀 ⇓ 𝑟 .

PRoof. By Retroactive Closure the trace is obtained by 𝔞-rewriting a trace in J𝑀Kc
C . We proceed

by induction on the length of this rewrite sequence. In the base case, we use the Concrete Traces
Lemma, which for a single-transition trace degenerates to an uninterrupted execution. For the
inductive step, we observe that 𝔞-rewrites preserve evaluation. We leave the details to §D. □

We are finally prepared to prove the Directional Adequacy theorem:

PRoof of DiRectional Adeacy. Assume J𝑀Kc ⊆ J𝑁 Kc. Let · ` Ξ [𝛤 ` − : 𝐴] : 𝐺 be a
program context and assume 〈 9𝛼, 𝜇〉 ,Ξ [𝑀] ⇓ 𝑉 . By Soundness followed by Retroactive Closure,
𝜏 ∈ JΞ [𝑀]Kc

C ⊆ JΞ [𝑀]Kc for some 𝜏 of the form 𝛼 〈𝜇,−〉 −6𝑉 . By Directional Compositionality
and the assumption, 𝜏 ∈ JΞ [𝑁 ]Kc. By the Evaluation Lemma, 〈 9𝛼, 𝜇〉 ,Ξ [𝑁 ] ⇓ 𝑉 . □

8.5 Validating Transformations
Using Directional Adequacy, we can validate𝑀 ↠ 𝑁 in our model by showing that J𝑀Kc ⊇ J𝑁 Kc.
As mentioned in §7.1, we validate the structural transformations by virtue of using standard deno-
tational semantics. For others, thanks to Deferral of Closure and closure preserving containment,
we can use the G operators instead of the A operators, simplifying calculations.

Figure 3 lists various transformations that we support in this way. Table 3 includes a more
general collection, with accompanying proofs in §E. The table is organized such that the general
pattern appears first, followed by specific instantiations and corollaries.

For handling the RMW modifiers, we use additional notations. For modifiers Φ,Ψ ∈ Val ⇀ Val:
• The domain of definition of Φ is domΦ – {𝑣 ∈ Val | Φ𝑣 ≠ ⊥}.
• We say that Ψ is an expansion of Φ, denoted by Φ ≤ Ψ, if Φ𝑣 ≠ Ψ𝑣 occurs only when Φ𝑣 = ⊥

and Ψ𝑣 = 𝑣 . Intuitively, this means that Φ and Ψ are the same, except that in some cases in
which Φ reads and does not write, Ψ overwrites the read value with itself.
• We denote by Φid the unique expansion of Φ that is total: Φid𝑣 – if Φ𝑣=⊥ then 𝑣 elseΦ𝑣 .

Intuitively, Φid overwrites the read value with itself whenever Φ reads but does not write.
• We let

(
Ψ ◦id Φ

)
𝑣 – if Φ𝑣=⊥ thenΨ𝑣 elseΨid (Φ𝑣). Intuitively, Ψ ◦id Φ composes the modi-

fication of Φ followed by the modification of Ψ, only failing if both do.
Some optimizations involving modifiers assume the language can express corresponding con-
structs. For example, the Write-RMW Elimination instantiated with 𝜑 = faa requires addition (+),
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Table 3. Transformations that A validates. The list mentions the 𝔞-closures that the proofs appeal to.

Generalized Sequencing (E.1)
(let𝑎 =𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in 𝑁2) ↠

match𝑀1 ∥ 𝑁1 with 〈𝑎,𝑏〉. 𝑀2 ∥ 𝑁2

Sequencing 𝑀 ∥ 𝑁 ↠ 〈𝑀, 𝑁 〉
Irrelevant Read Introduction (E.2) 〈〉 ↠ ℓ? ; 〈〉
Irrelevant Read Elimination (E.3) ℓ? ; 〈〉 ↠ 〈〉
Write-Write Elimination (E.10)
ℓ –𝑤 ; ℓ – 𝑣

Ab
↠ ℓ – 𝑣

Write-Read Deorder (E.5) (ℓ ≠ ℓ ′)
〈ℓ – 𝑣, ℓ ′?〉 Ti

↠ ℓ – 𝑣 ∥ ℓ ′?
RMW Expansion (E.6) (𝜑®𝑣 ≤ 𝜓 ®𝑤)

rmw𝜑 (ℓ ; ®𝑣)
Di
↠ rmw𝜓 (ℓ ; ®𝑤)

ℓ?
Di
↠ CAS (ℓ, 𝑣, 𝑣)

CAS (ℓ, 𝑣, 𝑣) Di
↠ FAA (ℓ, 0)

Atomic Store (E.4)
ℓ – 𝑣 ↠ XCHG (ℓ, 𝑣) ; 〈〉

Symmetric-Monoidal Laws, e.g.
𝑀 ∥ 𝑁 ↠ match𝑁 ∥ 𝑀 with 〈𝑏, 𝑎〉. 〈𝑎, 𝑏〉

Write-RMW Elimination (E.9)
ℓ – 𝑣 ; rmw𝜑 (ℓ ; ®𝑤)

Ab
↠ ℓ – 𝜑 id

®𝑤𝑣 ; 𝑣
ℓ – 𝑣 ; ℓ? ↠ ℓ – 𝑣 ; 𝑣

ℓ – 𝑣 ; CAS (ℓ, 𝑣,𝑢) Ab
↠ ℓ – 𝑢 ; 𝑣

ℓ – 𝑣 ; CAS (ℓ,𝑤,𝑢) ↠ ℓ – 𝑣 ; 𝑣 (𝑣 ≠ 𝑤 )
ℓ – 𝑣 ; FAA (ℓ,𝑤) Ab

↠ ℓ – 𝑣 +𝑤 ; 𝑣

ℓ – 𝑣 ; XCHG (ℓ,𝑤) Ab
↠ ℓ –𝑤 ; 𝑣

RMW-Write Elimination (E.11) (dom𝜓 ®𝑤 ⊇ dom𝜑 ®𝑢 )
let𝑎 = rmw𝜑 (ℓ ; ®𝑢) in

match (𝜓 ®𝑤) 𝑎with
{𝜄⊥ _.𝑎 | 𝜄> 𝑣 .ℓ – 𝑣 ; 𝑎} Ab

↠ rmw𝜓 (ℓ ; ®𝑤)
let𝑎 = ℓ? in (if 𝑎 = 𝑣
then ℓ –𝑤 else 〈〉 ) ; 𝑎 ↠ CAS (ℓ, 𝑣,𝑤)

let𝑎 = ℓ? in ℓ – 𝑎 + 𝑣 ; 𝑎 ↠ FAA (ℓ, 𝑣)
let𝑎 = ℓ? in ℓ – 𝑣 ; 𝑎 ↠ XCHG (ℓ, 𝑣)

RMW-RMW Elimination (E.8)
〈
rmw𝜑 (ℓ ; ®𝑣) , rmw𝜓 (ℓ ; ®𝑤)

〉 Ab
↠ let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉
(𝜁 ®𝑢 =𝜓 ®𝑤 ◦id 𝜑®𝑣)

〈ℓ?, ℓ?〉 ↠ let𝑎 = ℓ? in 〈𝑎, 𝑎〉 〈FAA (ℓ, 𝑣) , FAA (ℓ,𝑤)〉 ↠ let𝑎 = FAA (ℓ, 𝑣 +𝑤) in 〈𝑎, 𝑎 + 𝑣〉
〈ℓ?,CAS (ℓ, 𝑣,𝑤)〉 ↠ let𝑎 = CAS (ℓ, 𝑣,𝑤) in 〈𝑎, 𝑎〉 〈XCHG (ℓ,𝑤) , ℓ?〉 ↠ let𝑎 = XCHG (ℓ,𝑤) in 〈𝑎,𝑤〉

and the RMW-Write Elimination instantiated with 𝜑 = cas requires branching on value compari-
son (if − = − then− else− ). Under this assumption, for every modifier Φ both Φ and Φid are repre-
sented by closed, pure (effect-free) terms, of type Val→ {𝜄⊥ of 1 | 𝜄> of Val} and Val→ Val respec-
tively.These are used implicitly in Table 3 when modifiers appear in syntax positions. For example,
cas〈3,2〉 is represented by 𝜆𝑎. if 𝑎 = 3 then 𝜄>2 else 𝜄⊥ ; and casid〈3,2〉 by 𝜆𝑎. if 𝑎 = 3 then 2 else𝑎 .

The listed memory-access transformations are stated in ground terms, but imply more general
variants. For example, we state Write-Write Elimination as ℓ –𝑤 ; ℓ – 𝑣 ↠ ℓ – 𝑣 , from which we
can deduce e.g., 𝜆𝑎 : Loc . 𝑎 –𝑤 ; 𝑎 – 𝑣 ↠ 𝜆𝑎 : Loc . 𝑎 – 𝑣 . The proof uses the standard semantics:
structural transformations include any pure computations that result in the same value, and in
particular, we can replace the locations and (storable) values with pure computations that result
in them, or program variables of the same type.

All told, we claim that our adequate denotational semantics is sufficiently abstract. This claim
supports the case that Moggi’s semantic toolkit can successfully scale to handle the intricacies of
RA concurrency by adapting Brookes’s traces.

9 Related Work and Concluding Remarks
Our work follows the approach of Brookes [13] and its extension to higher-order functions us-
ing monads by Benton et al. [6]. Brookes developed a denotational semantics for shared memory
concurrency under standard sequentially consistency [35], and established full abstraction w.r.t. a
language that has a global atomic await instruction that locks the entire memory. The concepts
behind this approach had been used in multiple related developments [e.g. 12, 36, 37, 51]. We hope
that our work that targets RA will pave the way for similar extensions.
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Jagadeesan et al. [25] adapted Brookes’s semantics to the x86-TSO memory model [42]. They
showed that for x86-TSO it suffices to include the final store buffer at the end of the trace and add
two additional simple closure rules that emulate non-deterministic propagation of writes from
store buffers to memory, and identify observably equivalent store buffers. The x86-TSO model,
however, is much closer to sequential consistency than RA, which we study in this paper. In partic-
ular, unlike RA, x86-TSO is “multi-copy-atomic” (writes by one thread are made globally visible to
all other threads at the same time) and successful RMWoperations are immediately globally visible.
Additionally, the parallel composition construct in Jagadeesan et al. [25] is rather strong: threads
are forked and joined only when the store buffers are empty. Being non-multi-copy-atomic, RA
requires a more delicate notion of traces and closure rules, but it has more natural meta-theoretic
properties, which one would expect from a programming language concurrency model: sequenc-
ing, a.k.a. thread-inlining, is unsound under x86-TSO [see 25, 33] but sound under RA (see Figure 3).

Burckhardt et al. [14] developed a denotational semantics for hardware weak memory models,
including x86-TSO, following an alternative approach. They represent sequential code blocks by
sequences of operations that the code performs, and close them under reorderings and eliminations
that characterize the memory model. This approach does not validates important optimizations,
such as Read-Read Elimination. Moreover, RA is not characterizable in this way [33].

Dodds et al. [19] developed a fully abstract denotational semantics for RA, extended with fences
and non-atomic accesses. Their semantics is based on RA’s declarative (a.k.a. axiomatic) formula-
tion as acyclicity criteria on execution graphs. Roughly speaking, their denotation of code blocks
(that they assume to be sequential) quantifies over all possible context execution graphs and calcu-
lates for each context the “happens-before” relation between context actions that is induced by the
block. They further use a finite approximation of these histories to atomically validate refinement
in a model checker. While we target RA as well, there are two crucial differences between Dodds
et al.’s work and ours. First, we employ Brookes-style totally ordered traces and use interleaving-
based operational presentation of RA. Second, and more importantly, we strive for a compositional
semantics where denotations of compound programs are defined as functions of denotations of
their constituents, which is not the case for Dodds et al.’s definitions. Their model can nonetheless
validate transformations by checking them locally without access to the full program.

Others present non-compositional techniques and tools to check refinement under weak mem-
ory models between whole-thread sequential programs that apply for any concurrent context.
Poetzl and Kroening [46] considered the SC-for-DRF model, using locks to avoid races. Their ap-
proach matches source to target by checking that they perform the same state transitions from
lock to subsequent unlock operations and that the source does not allow more data-races. Moris-
set et al. [41] and Chakraborty and Vafeiadis [16] addressed this problem for the C/C++11 model,
of which RA is a central fragment, by implementing matching algorithms between source and
target that validate that all transformations between them have been independently proven to be
safe under C/C++11.

Cho et al. [18] introduced a specialized semantics for sequential programs that can be used for
justifying compiler optimizations under weak memory concurrency. They showed that behavior
refinement under their sequential semantics implies refinement under any (sequential or parallel)
context in the Promising Semantics 2.1 [17]. Their work focuses on optimizations of race-free
accesses that are similar to C11’s “non-atomics” [4, 34]. It cannot be used to establish the soundness
of program transformations that we study in this paper. Adding non-atomics to our model is an
important future work.

Denotational approaches were developed for models much weaker than RA [15, 24, 26, 29, 43]
that allow the infamous Read-Write Reorder and thus, for a high-level programming language, re-
quire addressing the challenge of detecting semantic dependencies between instructions [3].These
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approaches are based on summarizingmultiple partial orders between actions that may arise when
a given program is executed under some context. In contrast, we use totally ordered traces by re-
lating to RA’s interleaving operational semantics. In particular, Kavanagh and Brookes [29] use
partial orders, Castellan, Paviotti et al. [15, 43] use event structures, and Jagadeesan et al., Jeffrey
et al. [24, 26] employ “Pomsets with Preconditions” which trades compositionality for supporting
non-multi-copy-atomicity, as in RA. These approaches do not validate certain access eliminations,
nor Irrelevant Load Introduction, which our model validates.

An exciting aspect of our work is the connection between memory models to Moggi’s monadic
approach [40]. For SC, Abadi and Plotkin, Dvir et al. [1, 20] have made an even stronger connection
via algebraic theories [44]. These allow to modularly combine shared memory concurrency with
other computational effects. Birkedal et al. [11] develop semantics for a type-and-effect system
for SC memory which they use to enhance compiler optimizations based on assumptions on the
context that come from the type system.We hope to the current work can serve as a basis to extend
such accounts to weaker models.
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A Proofs of Deferral of Closure and Retroactive Closure
The proof of Rewrite Castling is in §F. Below are proofs of other claims from §8.1.

PRoof of DefeRRal of ClosuRe. Since (−)★ is a closure operator, it is monotonic, so the ⊇
containment follows from the monotonicity of

(
⟫=G

)
and

(
| | |G

)
(Proposition 7.4). Moreover, for

the ⊆ containment, suffice it we show that 𝑃★1 ⟫=
G 𝑓 ★ ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃★1 | | |

G𝑃★2 ⊆
(
𝑃1 | | |G𝑃2

)★
.

Denote by 𝑃𝑛 the set of traces obtained by ★-rewriting 𝑛 times a trace from 𝑃 , and similarly for
𝑓 𝑛 . So it is sufficient to show that for all 𝑛1, 𝑛2 ∈ N, 𝑃𝑛1

1 ⟫=
G 𝑓 𝑛2 ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃𝑛1

1 | | |
G𝑃𝑛2

2 ⊆(
𝑃1 | | |G𝑃2

)★
. We show this by induction on 𝑛1 + 𝑛2, where the base case 𝑃1 ⟫=G 𝑓 ⊆

(
𝑃1 ⟫=G 𝑓

)★
and 𝑃1 | | |G𝑃2 ⊆

(
𝑃1 | | |G𝑃2

)★
holds since (−)★ is a closure operator.

For the induction step, the induction hypothesis is that the claim holds for 𝑛1 + 𝑛2 ≤𝑚, and we
must show it holds for 𝑛1 +𝑛2 =𝑚 + 1. So either 𝑛1 = 𝑛′1 + 1 or 𝑛2 = 𝑛′2 + 1. We focus on the claim
for

(
| | |G

)
, since we find that proving the claim for

(
⟫=G

)
to be similar and somewhat easier.

Let 𝜏 ∈ 𝑃𝑛1
1 | | |

G𝑃𝑛2
2 . So 𝜏 = inf𝜉 .o {𝛼1, 𝛼2} 𝜉 𝜔1 t𝜔2 6 〈𝑟1, 𝑟2〉 where 𝜏𝑖 – 𝛼𝑖 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 ∈ 𝑃𝑛𝑖𝑖 and

𝜉 ∈ 𝜉1 ‖ 𝜉2. Assume w.l.o.g. that 𝑛1 = 𝑛′1 + 1. So there is some 𝜏 ′1 ∈ 𝑃
𝑛′1
1 and x ∈ ★ such that 𝜏 ′1

x−→ 𝜏1.
By case analysis on x, we show that there exists 𝜏 ′ ∈ 𝑃𝑛

′
1

1 | | |
G𝑃𝑛2

2 such that 𝜏 ′ ★-rewrites to 𝜏 . By
the induction hypothesis 𝜏 ′ ∈

(
𝑃1 | | |G𝑃2

)★
, and so 𝜏 ∈

(
𝑃1 | | |G𝑃2

)★
.

For the x ∈ ★∩ 𝔠 cases, we construct 𝜏 ′ from 𝜏 ′1 and 𝜏2. The procedure depends on x:
Rw. So 𝜏 ′1 = 𝛼 ′1 𝜉1 𝜔1 6 𝑟1 where 𝛼1 ≤ 𝛼 ′1. We take

𝜏 ′ – inf𝜉 .o
{
𝛼 ′1, 𝛼2

}
𝜉 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉
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Since inf𝜉 .o {𝛼1, 𝛼2} ≤ inf𝜉 .o
{
𝛼 ′1, 𝛼2

}
, we have 𝜏 ′ Rw−−→ 𝜏 .

Fw. Similar to Rw.
St. So 𝜏 ′1 = 𝛼1 𝜂1𝜂

′
1 𝜔1 6 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜇〉 𝜂′1. Since 𝜉 ∈ 𝜉1 ‖ 𝜉2, there exist 𝜂, 𝜂′ such that

𝜉 = 𝜂 〈𝜇, 𝜇〉 𝜂′, where 𝜂 includes the transitions from 𝜂1 and 𝜂′ includes the transitions from
𝜂′1. Formally, there exist 𝜂2, 𝜂′2 such that 𝜉2 = 𝜂2𝜂′2, 𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ∈ 𝜂′1 ‖ 𝜂′2. In particular,
𝜂𝜂′ ∈ 𝜂1𝜂′1 ‖ 𝜂2𝜂′2 = 𝜂1𝜂′1 ‖ 𝜉2. Denoting 𝜉 ′ – 𝜂𝜂′, we take

𝜏 ′ – inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉

We have 𝜉 .o ⊆ 𝜉 ′ .o, so inf𝜉 .o {𝛼1, 𝛼2} ≤ inf𝜉 ′ .o {𝛼1, 𝛼2}. So 𝜏 ′ Rw−−→ 𝜏 ′′, where

𝜏 ′′ – inf𝜉 .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉

Since 𝜉 = 𝜂 〈𝜇, 𝜇〉 𝜂′, we have 𝜏 ′′ St−→ 𝜏 .
Mu. So 𝜏 ′1 = 𝛼1 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 𝜔1 6 𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜃〉 𝜂′1. Since 𝜉 ∈ 𝜉1 ‖ 𝜉2, there exist

𝜂, 𝜂′ such that 𝜉 = 𝜂 〈𝜇, 𝜃〉 𝜂′, where 𝜂 includes the transitions from 𝜂1 and 𝜂′ includes the
transitions from 𝜂′1. Formally, there exist 𝜂2, 𝜂′2 such that 𝜉2 = 𝜂2𝜂

′
2, 𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ∈

𝜂′1 ‖ 𝜂′2. In particular, 𝜂 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′ ∈ 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 ‖ 𝜂2𝜂′2 = 𝜂1 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′1 ‖ 𝜉2.
Denoting 𝜉 ′ – 𝜂 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂′, we take

𝜏 ′ – inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉

Since 𝜉 = 𝜂 〈𝜇, 𝜃〉 𝜂′, and 𝜉 ′ .o = 𝜉 .o and 𝜂′ .o = 𝜂.o, we have 𝜏 ′ Mu−−→ 𝜏 .
For the x ∈ ★ ∩ 𝔞 cases, we construct 𝜏 ′ from 𝜏 ′1 and a 𝜏 ′2 defined such that 𝜏2

y−→ 𝜏 ′2 for some
y ∈ 𝔤. By iterating Rewrite Castling 𝑛2 times to percolate y−→ through the ★-rewrite sequence that
resulted in 𝜏2, we find that 𝜏 ′2 ∈ 𝑃

𝑛2
2 . This is because 𝑃2 ∈ G𝑋2. The procedure depends on x:

Ti. So 𝜏 ′1 = 𝛼1 𝜂1 〈𝜇, 𝜌 ] {𝜈}〉 𝜂′1 ] {𝜈} 𝜔16𝑟1 where 𝜉1 = 𝜂1 〈𝜇, 𝜌 ] {𝜖}〉 𝜂′1]{𝜖} and 𝜈 ≤vw 𝜖 . Since
𝜉 ∈ 𝜉1 ‖ 𝜉2, there are 𝜂, 𝜂′, 𝜂2, 𝜂′2 such that 𝜉 = 𝜂 〈𝜇, 𝜌 ] {𝜖}〉 (𝜂′ ] {𝜖}), 𝜉2 = 𝜂2 (𝜂′2 ] {𝜖}),
𝜂 ∈ 𝜂1 ‖ 𝜂2 and 𝜂′ ] {𝜖} ∈ 𝜂′1 ] {𝜖} ‖ 𝜂′2 ] {𝜖}. Taking the same order of interleaving,
𝜂′ ] {𝜈} ∈ 𝜂′1 ] {𝜈} ‖ 𝜂′2 ] {𝜈}. Therefore, we have 𝜉 ′ ∈ 𝜉 ′1 ‖ 𝜉 ′2, where

𝜉 ′ – 𝜂 〈𝜇, 𝜌 ] {𝜈}〉 (𝜂′ ] {𝜈}), 𝜉 ′1 – 𝜂1 〈𝜇, 𝜌 ] {𝜈}〉 𝜂′1 ] {𝜈} , and 𝜉 ′2 – 𝜂2 (𝜂′2 ] {𝜈})

Define 𝜏 ′2 – 𝛼2 𝜉
′
2 𝜔2 6 𝑟2. Since 𝜏2

Ls−→ 𝜏 ′2, indeed 𝜏 ′2 ∈ 𝑃
𝑛2
2 . We take

𝜏 ′ – inf𝜉 ′ .o {𝛼1, 𝛼2} 𝜉 ′ 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉

Since 𝜉 .o = 𝜉 ′ .o, we have 𝜏 ′ Ti−→ 𝜏 .
Ab. Similar to Ti, using 𝜏2

Ex−−→ 𝜏 ′2.
Di. So 𝜏 ′1 =

(
𝛼1 𝜂1 〈𝜇, 𝜌 ] {𝜈}〉 𝜂′1 ] {𝜈} 𝜔1 6 𝑟

)
[↑𝜖], where 𝜉 = 𝜂1 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂′1 ] {𝜈, 𝜖}. The

reasoning in this case proceeds similarly, using 𝜏2
Cn−−→ 𝜏 ′2 and interleaving 𝜏 ′1 with 𝜏 ′2 to take

𝜏 ′ – inf𝜉 ′ .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]} 𝜉 ′ 𝜔1 [↑𝜖] t 𝜔2 [↑𝜖] 6 〈𝑟1, 𝑟2〉
We have 𝜉 .o = 𝜉 ′ .o again too. Moreover, 𝜉 is the chronicle of a trace, and 𝜖 appears in it. So
no view that appears in the trace can point into the interior of 𝜖’s segment. Otherwise, since
view must point to timestamps of messages, we would have a memory that is not scattered.
We show inf𝜉 .o {𝛼1, 𝛼2} [↑𝜖] ≤ inf𝜉 .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]}. Indeed, for 𝜅 ã→ 𝜉 .o, assume 𝜅 ≤ 𝛼𝑖 .
Therefore, 𝜅 [↑𝜖] ≤ 𝛼𝑖 [↑𝜖], and so 𝜅 [↑𝜖] ≤ inf𝜉 .o {𝛼1 [↑𝜖] , 𝛼2 [↑𝜖]}. Thus in particular for
𝜅 = inf𝜉 .o {𝛼1, 𝛼2}.
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By order-comparing (𝜔𝑖 )𝜖.lc to 𝜖.i, one also finds that (𝜔1 t 𝜔2) [↑𝜖] = 𝜔1 [↑𝜖] t 𝜔2 [↑𝜖].
And so we obtain 𝜏 ′ Rw−−→ Di−−→ 𝜏 . □

From here on we work to prove Retroactive Closure via a logical relation. To compensate for
closures nested within higher-order constructions, we use a refined notion of equality.

Egli-Milner lifting. The trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ Trace𝑋 × Trace𝑌
defined 𝜏 ∼ 𝜏 ′ – 𝜏 .st = 𝜏 ′ .st ∧ 𝜏 .vl ∼ 𝜏 ′ .vl. This in turn lifts to the Egli-Milner relation
∼ ⊆ P (Trace𝑋 ) × P (Trace𝑌 ) where 𝑈 ∼ 𝐸 – ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈ 𝐸. 𝜏 ∼ 𝜏 ′ ∧ ∀𝜏 ′ ∈ 𝐸 ∃ 𝜏 ∈ 𝑈 . 𝜏 ∼ 𝜏 ′.
We call this last relation the EM-trace lifting of ∼ ⊆ 𝑋 × 𝑌 .

Logical relation. For every type𝐴 we defineV†{|𝐴|} ⊆ J𝐴K×J𝐴KC and E†{|𝐴|} ⊆ A J𝐴K×CJ𝐴KC
by mutual recursion. We defineV†{|𝐴|} standardly, reciting “related-inputs to related-outputs”:

V†{|𝐴→ 𝐵 |} –
{
〈𝑓 , 𝑔〉

�� ∀ 〈𝑟, 𝑠〉 ∈ V†{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ E†{|𝐵 |}}
V†{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} –

{
〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉

�� ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V†{|𝐴𝑖 |}
}

V†{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} –
⋃

𝑖

{
〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉

�� 〈𝑟, 𝑠〉 ∈ V†{|𝐴𝑖 |}
}

The relation trivializes on ground types: V†{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if〈J𝑉 Kv, J𝑊 Kv
C
〉
∈ V†{|𝐺 |}, then 𝑉 =𝑊 because as program values, J𝑉 Kv =𝑉 and J𝑊 Kv

C =𝑊 .
The bespoke E†{|𝐴|} –

{
〈𝑃,𝑄〉

�� 〈𝑃,𝑄𝔞〉 ∈ V†{|𝐴|}
}
uses the EM-trace lifting ofV†{|𝐴|} to relate

abstract denotations to generating denotations by nesting 𝔞-closures.
In regards to open terms, for every typing context 𝛤 we define X†{|𝛤 |} ⊆ J𝛤 K × J𝛤 KC by:

X†{|𝛤 |} –
{
〈𝛾, 𝛿〉

�� ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V†{|𝐴|}
}

and define 𝛤 ⊨† 𝑀 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |} .
〈J𝑀Kc 𝛾, J𝑀Kc

C𝛿
〉
∈ E†{|𝐴|}. We show this

semantic judgment is soundwith respect to the typing relation, following some supportive lemmas.

Lemma A.1. If 〈𝑟, 𝑠〉 ∈ V†{|𝐴|} then
〈
return 𝑟, returnC𝑠

〉
∈ E†{|𝐴|}.

PRoof. For the first half of the EM-trace lifting, let 𝜏 ∈ return 𝑟 =
(
returnC𝑟

)𝔞 , where we used
Rewrite Castling to reorder the rewrites. So there exists 𝜋 ∈ returnC𝑟 such that 𝜋 𝔞−→ 𝜏 . Obtain 𝜏 ′, 𝜋 ′
from 𝜏, 𝜋 respectively by replacing their return value 𝑟 with 𝑠 . By construction, 〈𝜏, 𝜏 ′〉 ∈ V†{|𝐴|}.
Moreover, 𝜋 ′ ∈ returnC𝑠 . By reusing the rewrite sequence, 𝜋 ′ 𝔞−→ 𝜏 ′. Therefore, 𝜏 ′ ∈

(
returnC𝑠

)𝔞 is
a witness as required.

The same idea in reverse shows the second half of the EM-trace lifting. □

Lemma A.2. If 〈𝑃,𝑄〉 ∈ E†{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V†{|𝐴→ 𝐵 |} then
〈
𝑃 ⟫= 𝑓 ,𝑄 ⟫=C𝑔

〉
∈ E†{|𝐵 |}.

PRoof. For the first half of the EM-trace lifting, let 𝜏 ∈ 𝑃 ⟫= 𝑓 =
(
𝑃 ⟫=C 𝑓

)𝔞
, where we used

Lemma 8.3 to reorder the rewrites. So there exists 𝜋 ∈ 𝑃 ⟫=C 𝑓 such that 𝜋 𝔞−→ 𝜏 . So there exist
𝛼 𝜉 𝜅 6 𝑟 ∈ 𝑃 and 𝜎 𝜂 𝜔 6 𝑠 ∈ 𝑓 𝑟 where 𝜅 ≤ 𝜎 such that 𝜋 = 𝛼 𝜉𝜂 𝜔 6 𝑠 .
• By the first assumption, there exists 𝑟 ′ such that 〈𝑟, 𝑟 ′〉 ∈ V†{|𝐴|} and 𝛼 𝜉 𝜅 6 𝑟 ′ ∈ 𝑄𝔞 .
• By the second assumption, there exists 𝑠′ such that 〈𝑠, 𝑠′〉 ∈ V†{|𝐵 |} and 𝜎 𝜂 𝜔 6 𝑠′ ∈ (𝑔𝑟 ′)𝔞 .

So 𝜋 ′ – 𝛼 𝜉𝜂 𝜔6𝑠′ ∈ 𝑄𝔞 ⟫=C𝑔𝔞 . Obtain 𝜏 ′ from 𝜏 by replacing its return value 𝑠 by 𝑠′. By reusing
the rewrite sequence, 𝜋 ′ 𝔞−→ 𝜏 ′. By Deferral of Closure, 𝜏 ′ ∈

(
𝑄𝔞 ⟫=C𝑔𝔞

)𝔞
=
(
𝑄 ⟫=C𝑔

)𝔞
.

The same idea in reverse shows the second half of the EM-trace lifting. □

, Vol. 1, No. 1, Article . Publication date: December 2024.



A Brookes-Style Denotational Semantics for Release/Acquire Concurrency 51

Lemma A.3.
〈Jstoreℓ,𝑣K, Jstoreℓ,𝑣KC〉 ∈ E†{|1|} and 〈Jrmwℓ,ΦK, Jrmwℓ,ΦKC〉 ∈ E†{|Val|}.

PRoof. Since 1 and Val are ground types, the sets are equal by Deferral of Closure, reasoning
as in Lemma A.1. □

Lemma A.4. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ E†{|𝐴𝑖 |} then
〈
𝑃1 | | | 𝑃2, 𝑄1 | | |C𝑄2

〉
∈ E†{|(𝐴1 ∗𝐴2) |}.

PRoof. Similar to Lemma A.2. □

PRoposition A.5. If 𝛤 ` 𝑀 : 𝐴 then 𝛤 ⊨†𝑀 : 𝐴.

PRoof. By induction on the derivation of 𝛤 ` 𝑀 : 𝐴. We detail some paradigmatic examples:
Let 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |}. If 〈𝑟, 𝑠〉 ∈ V†{|𝐴|}, then 〈𝛾 [𝑎 ↦→𝑟 ], 𝛿 [𝑎 ↦→𝑠]〉 ∈
X†{|𝛤, 𝑎 : 𝐴|}. By assumption,

〈J𝑀Kc 𝛾 [𝑎 ↦→𝑟 ], J𝑀Kc
C𝛿 [𝑎 ↦→𝑠]

〉
∈ E†{|𝐵 |}.

Therefore,
〈
𝜆𝑟 . J𝑀Kc 𝛾 [𝑎 ↦→𝑟 ], 𝜆𝑠. J𝑀Kc

C𝛿 [𝑎 ↦→𝑠]
〉
∈ V†{|𝐴→ 𝐵 |}. Apply-

𝛤, 𝑎 : 𝐴 ⊨†𝑀 : 𝐵

𝛤 ⊨†𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

ing Lemma A.1,
〈J𝜆𝑎. 𝑀Kc 𝛾, J𝜆𝑎.𝑀Kc

C𝛿
〉
∈ E†{|𝐴→ 𝐵 |}.

Let 〈𝛾, 𝛿〉 ∈ X†{|𝛤 |}. If 〈𝑓 , 𝑔〉 ∈ V†{|𝐴→ 𝐵 |}, then by Lemma A.2
with the first assumption,

〈J𝑀Kc 𝛾 ⟫= 𝑓 , J𝑀Kc
C𝛿 ⟫=

C𝑔
〉
∈ E†{|𝐵 |}.

Thus
〈
𝜆𝑓 . J𝑀Kc 𝛾 ⟫= 𝑓 , 𝜆𝑔. J𝑀Kc

C𝛿 ⟫=
C𝑔

〉
∈ V†{|(𝐴→ 𝐵) → 𝐵 |}.

𝛤 ⊨†𝑀 : 𝐴 𝛤 ⊨†𝑁 : 𝐴→ 𝐵

𝛤 ⊨†𝑁𝑀 : 𝐵

So by Lemma A.2 with the second assumption,
〈J𝑁𝑀Kc 𝛾, J𝑁𝑀Kc

C𝛿
〉
∈ E†{|𝐵 |}.

The other cases follow by similar reasoning with Lemmas A.1 and A.2, where in the cases of the
effects we also use the respective Lemmas A.3 and A.4. □

PRoof of RetRoactive ClosuRe. Since𝑀 is a program, by Proposition A.5, · ⊨𝑀 : 𝐺 for some
ground type𝐺 . That is,

〈J𝑀Kc, J𝑀Kc
C
〉
∈ E†{|𝐴|}. Since the EM-trace lifting degenerates to equality

on ground types, J𝑀Kc = J𝑀Kc
C
𝔞 . □

B Proof of Directional Compositionality
We prove Directional Compositionality via logical relation. For this, we use a refinement of the
notion of set-containment.

Hoare lifting. The trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ Trace𝑋 × Trace𝑌
defined 𝜏 ∼ 𝜏 ′ – 𝜏 .st = 𝜏 ′ .st ∧ 𝜏 .vl ∼ 𝜏 ′ .vl. This in turn lifts to the Hoare relation ∼ ⊆
P (Trace𝑋 ) × P (Trace𝑌 ) where𝑈 ∼ 𝐸 – ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈ 𝐸. 𝜏 ∼ 𝜏 ′. We call this last relation the H-
trace lifting of the first relation.

Logical relation. For every type 𝐴 we defineV◦{|𝐴|} ⊆ J𝐴K × J𝐴K and E◦{|𝐴|} ⊆ A J𝐴K × A J𝐴K
by mutual recursion. We defineV◦{|𝐴|} standardly, reciting “related-inputs to related-outputs”:

V◦{|𝐴→ 𝐵 |} – {〈𝑓 , 𝑔〉 | ∀ 〈𝑟, 𝑠〉 ∈ V◦{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ E◦{|𝐵 |}}
V◦{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} – {〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉 | ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V◦{|𝐴𝑖 |}}

V◦{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} –
⋃

𝑖 {〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉 | 〈𝑟, 𝑠〉 ∈ V◦{|𝐴𝑖 |}}
The relation trivializes on ground types: V◦{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if〈J𝑉 Kv, J𝑊 Kv〉 ∈ V◦{|𝐺 |}, then 𝑉 =𝑊 because as program values, J𝑉 Kv = 𝑉 and J𝑊 Kv =𝑊 . We
H-trace liftV◦{|𝐴|} to obtain E◦{|𝐴|}. It too trivializes on ground types: E◦{|𝐺 |} is containment. In
regards to open terms, for every typing context 𝛤 we define X◦{|𝛤 |} ⊆ J𝛤 K × J𝛤 K by:

X◦{|𝛤 |} – {〈𝛾, 𝛿〉 | ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V◦{|𝐴|}}
and define 𝛤 ⊨◦𝑀 ≲ 𝑁 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X◦{|𝛤 |} .

〈J𝑀Kc 𝛾, J𝑁 Kc 𝛿
〉
∈ E◦{|𝐴|}.
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As in §A, we have the same supportive lemmas for this logical relation. The proofs are similar,
though slightly simpler because there is no need for Lemma 8.5.

Lemma B.1. If 〈𝑟, 𝑠〉 ∈ V◦{|𝐴|} then 〈return 𝑟, return 𝑠〉 ∈ E◦{|𝐴|}.

Lemma B.2. If 〈𝑃,𝑄〉 ∈ E◦{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V◦{|𝐴→ 𝐵 |} then 〈𝑃 ⟫= 𝑓 ,𝑄 ⟫= 𝑔〉 ∈ E◦{|𝐵 |}.

Lemma B.3.
〈Jstoreℓ,𝑣K, Jstoreℓ,𝑣K〉 ∈ E◦{|1|} and 〈Jrmwℓ,ΦK, Jrmwℓ,ΦK〉 ∈ E◦{|Val|}.

Lemma B.4. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ E◦{|𝐴𝑖 |} then 〈𝑃1 | | | 𝑃2, 𝑄1 | | | 𝑄2〉 ∈ E◦{|(𝐴1 ∗𝐴2) |}.

The judgment is closed under term contexts:

Lemma B.5. For 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵, if 𝛤 ⊨◦𝑀 ≲ 𝑁 : 𝐴, then 𝛥 ⊨◦Ξ [𝑀] ≲ Ξ [𝑁 ] : 𝐵.

PRoof. By induction on the derivation of 𝛥 ` Ξ [𝛤 ` − : 𝐴] : 𝐵. The metavariable case holds
by assumption. The rest uses the supportive lemmas Lemmas B.1 to B.4 as in the proof of Proposi-
tion A.5. □

PRoposition B.6. If A J𝐴K 3 𝑃 ′ ⊆ 𝑃 and 〈𝑃,𝑄〉 ∈ E◦{|𝐴|} then 〈𝑃 ′, 𝑄〉 ∈ E◦{|𝐴|}.

PRoof. Assuming a statement about all elements of 𝑃 we deduce the same statement about all
elements of 𝑃 ′. □

Lemma B.7. For 𝛤 ` 𝑀, 𝑁 : 𝐴, if J𝑀Kc ⊆ J𝑁 Kc then 𝛤 ⊨◦𝑀 ≲ 𝑁 : 𝐴.

PRoof. Let 〈𝛾, 𝛿〉 ∈ X◦{|𝛤 |}. By Lemma B.5 with 𝑁 itself as the context (the degenerate case with
no metavariable appearance),

〈J𝑁 Kc 𝛾, J𝑁 Kc 𝛿
〉
∈ E◦{|𝐴|}. By assumption, J𝑀Kc 𝛾 ⊆ J𝑁 Kc 𝛾 . So by

Proposition B.6,
〈J𝑀Kc 𝛾, J𝑁 Kc 𝛿

〉
∈ E◦{|𝐴|}. □

PRoof of TheoRem 8.11. By Lemma B.7, we have 𝛤 ⊨◦ 𝑀 ≲ 𝑁 : 𝐴. Thanks to Lemma B.5, we
have · ⊨◦ Ξ [𝑀] ≲ Ξ [𝑁 ] : 𝐺 . That is,

〈JΞ [𝑀]Kc, JΞ [𝑁 ]Kc〉 ∈ E◦{|𝐺 |}. Since 𝐺 is ground, this
degenerates to JΞ [𝑀]Kc ⊆ JΞ [𝑁 ]Kc. □

C Proof of Soundness
To enable optimizations, the abstract model decouples traces far enough from the operational
semantics to make it non-trivial to prove Soundness. To overcome this challenge we use a logical
relation to relate the abstract model to a model which corresponds tightly to the execution steps of
the operational semantics, by tracking the initial view-tree and the memory accesses individually.
Formally, for a set 𝑋 , an 𝑋 -run-trace is an element of VTree ×Mem × Chro × View × 𝑋 , written
𝜏 = 〈𝑇, 𝜇〉 𝜉 𝜔 6 𝑟 . We denote the set of 𝑋 -run-traces by OpTrace𝑋 .

As in traces, the run-trace’smain component is its chronicle 𝜏 .ch = 𝜉 , with transitions consisting
of well-formed memories. Here, each transition represents a single memory-accessing step during
the interrupted execution; i.e. those labeled by •. We call such steps loud, and the other step silent;
i.e. those labeled by ◦. Respectively, the run-trace is silent if 𝜉 is empty, otherwise it is loud.

The run-trace’s initial state is 〈𝑇, 𝜇〉. This represents the state from the execution’s initial config-
uration, so we require that𝑇 ã→ 𝜇. However, the environment may add messages before the term
starts running, so in the loud case we only require 𝜇 ⊆ 𝜉 .o.

The run-trace’s final view is 𝜏 .fvw = 𝜔 . The corresponding interrupted execution ends with 9𝜔 .
In the silent case we require 𝑇 = 9𝜔 since silent steps do not change the state. As a derived notion,
the run-trace’s final state is 〈 9𝜔, (〈𝜇, 𝜇〉 𝜉).c〉, so we require 𝜔 ã→ 〈𝜇, 𝜇〉 𝜉 .c.

In light of Lemma 6.12, we require moreover that 𝜅 ≤ 𝜔 for every 𝜅 ∈ 𝑇 .lf, denote by 𝑇 ≤ 𝜔 .
Moreover, considering Lemma 6.11, we require ∀𝜈 ∈ 𝜉 .own∃𝛼 ∈ 𝑇 .lf. 𝛼 ≤ 𝜈.vw ≤ 𝜔 ∧𝛼𝜈.lc < 𝜈.t.
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Finally, the run-trace’s return value is 𝜏 .ret = 𝑟 . This corresponds to the program value the
interrupted execution returns.

We define a monad structure R𝑋 –

〈
R𝑋, returnR, ⟫=R

〉
:

R𝑋 – P (OpTrace𝑋 ) returnR𝑟 – {〈 9𝜅, 𝜇〉 · 𝜅 6 𝑟 }
𝑃 ⟫=R 𝑓 –

{
〈𝑇, 𝜇〉 𝜉𝜂 𝜔 6 𝑠 ∈ R𝑌

�� ∃ 𝑟, 𝜅. 〈𝑇, 𝜇〉 𝜉 𝜅 6 𝑟 ∈ 𝑃 ∧ 〈 9𝜅, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 6 𝑠 ∈ 𝑓 𝑟
}

In the return operator, we make sure that the initial and final states are equal. In the bind operator,
we make sure that the final state of the first run-trace is the initial state of the second run-trace.

PRoposition C.1. R is a monad.

Next we extend R with shared-memory constructs.

Concurrent execution. Consider a program 𝑀 ∥ 𝑁 . Either the state has a leaf 9𝜅 as its view-tree,
in which case the first step it takes has to be PaRInit, or it has a node as its view tree 𝑇̂𝑅, in
which case the first step it takes cannot be PaRInit. Either way, it then takes some steps due to
steps of𝑀 and 𝑁 (with PaRLeft and PaRRight), then finally it steps with PaRFin to synchronize.

𝑃1 | | |R𝑃2 –

{
〈𝑇, 𝜇〉 𝜉 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉 ∈ R (𝑋1 × 𝑋2) | ∃ 𝜉1, 𝜉2. 𝜉 ∈ 𝜉1 ‖ 𝜉2 ∧ ∃𝑇1,𝑇2.(
∀𝑖 ∈ {1, 2} . 〈𝑇𝑖 , 𝜇〉 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 ∈ 𝑃𝑖

)
∧
(
𝑇 =𝑇1̂𝑇2 ∨ ∃𝜅.𝑇 =𝑇1 =𝑇2 = 9𝜅

)}
Memory access. The definitions follow the StoRe, ReadOnly, and RMW rules:Jstoreℓ,𝑣KR –

{
〈 9𝛼, 𝜇〉 〈𝜌, 𝜌 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}〉 𝛼 [ℓ ↦→𝑡] 6 〈〉 ∈ R1

}q
rmwRO

ℓ,Φ

y
R –

{
〈 9𝛼, 𝜇〉 〈𝜌, 𝜌〉 𝛼 t 𝜅 6 𝑣 ∈ RVal

�� Φ𝑣 = ⊥, ℓ :𝑣@(−, 𝜅ℓ ]⟪𝜅⟫ ∈ 𝜌, 𝛼ℓ ≤ 𝜅ℓ
}

q
rmwRMW

ℓ,Φ

y
R –

{
〈 9𝛼, 𝜇〉 〈𝜌, 𝜌 ] {ℓ :Φ𝑣@(𝜅ℓ , 𝑡]⟪𝜔⟫}〉 𝜔 6 𝑣 ∈ RVal
| 𝜔 = (𝛼 t 𝜅) [ℓ ↦→𝑡], ℓ :𝑣@(−, 𝑡]⟪𝜅⟫ ∈ 𝜌

}
Jrmwℓ,ΦKR –

q
rmwRO

ℓ,Φ

y
R ∪

q
rmwRMW

ℓ,Φ

y
R

Some of the premises of the corresponding rules appear as conditions in the set notations, while
other do not appear because they hold implicitly due to the requirements on run-traces.

The importance of a run-trace’s initial memory is in making sense of the initial view-tree, even
if the chronicle is empty. In particular, messages unseen by the initial view-tree are redundant:

Lemma C.2. If 〈𝑇, 𝜇′〉 𝜉 𝜔 6 𝑟 ∈ J𝑀Kc
R and 𝑇 ã→ 𝜇 ⊆ 𝜇′ then 〈𝑇, 𝜇〉 𝜉 𝜔 6 𝑟 ∈ J𝑀Kc

R .

Single-step soundness. To make the relationship between these denotations and the operational
semantics precise, we can follow an execution backwards, adding a transition for every •-step:

Lemma C.3. Assume 〈𝑇, 𝜇〉 , 𝑀 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′ and 〈𝑇 ′, 𝜇′〉 𝜉 𝜔 6 𝑟 ∈ J𝑀 ′Kc

R .

• If 𝑒 = ◦, then 〈𝑇, 𝜇〉 𝜉 𝜔 6 𝑟 ∈ J𝑀Kc
R .

• If 𝑒 = •, then 〈𝑇, 𝜇〉 〈𝜇, 𝜇′〉 𝜉 𝜔 6 𝑟 ∈ J𝑀Kc
R .

PRoof. By induction on the derivation of 〈𝑇, 𝜇〉 , 𝑀 𝑒
⇝RA 〈𝑇 ′, 𝜇′〉 , 𝑀 ′. Paradigmatic examples:

App Assume 〈 9𝜅, 𝜇〉 , (𝜆𝑎.𝑀)𝑉 ◦
⇝RA 〈 9𝜅, 𝜇〉 , 𝑀 [𝑎 ↦→𝑉 ] and 𝜏 – 〈 9𝜅, 𝜇〉 𝜉 𝜔 6 𝑟 ∈ J𝑀 [𝑎 ↦→𝑉 ]Kc

R . By
the Substitution Lemma, J𝑀 [𝑎 ↦→𝑉 ]Kc

R = J(𝜆𝑎. 𝑀)𝑉 Kc
R . So indeed 𝜏 ∈ J(𝜆𝑎.𝑀)𝑉 Kc

R .
PaRLeft Assume

〈
𝑇̂𝑅, 𝜇

〉
, 𝑀 ∥ 𝑁 •

⇝RA
〈
𝑇 ′̂𝑅, 𝜇′

〉
, 𝑀 ′ ∥ 𝑁 and

〈
𝑇 ′̂𝑅, 𝜇′

〉
𝜉 𝜔 6 〈𝑟, 𝑠〉 ∈J𝑀 ′ ∥ 𝑁 Kc

R . So there exist 𝜉1, 𝜉2 such that 𝜉 ∈ 𝜉1 ‖ 𝜉2, and there exist 𝜔1, 𝜔2 where 𝜔 =
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𝜔1 t 𝜔2 such that 〈𝑇 ′, 𝜇′〉 𝜉1 𝜔1 6 𝑟 ∈ J𝑀 ′Kc
R and 〈𝑅, 𝜇′〉 𝜉2 𝜔2 6 𝑠 ∈ J𝑁 Kc

R . In that lat-
ter we can replace 𝜇′ with 𝜇 using Lemma C.2. By the induction hypothesis and the former,
〈𝑇, 𝜇〉 〈𝜇, 𝜇′〉 𝜉1 𝜔16𝑟 ∈ J𝑀Kc

R . Since 〈𝜇, 𝜇′〉 𝜉 ∈ 〈𝜇, 𝜇′〉 𝜉1 ‖ 𝜉2, we have
〈
𝑇̂𝑅, 𝜇

〉
〈𝜇, 𝜇′〉 𝜉 𝜔6

〈𝑟, 𝑠〉 ∈ J𝑀 ∥ 𝑁 Kc
R . □

We say a chronicle 𝜉 is gapless if 𝜌 = 𝜌 ′ whenever 〈𝜇, 𝜌〉 is followed by 〈𝜌 ′, 𝜃〉 in 𝜉 . Traces that
feature gapless chronicles can be mumble-rewritten to obtain single-transition traces.

PRoposition C.4. Assume 〈𝑇, 𝜇〉 , 𝑀 ⇝∗
RA 〈 9𝜔, 𝜇′〉 ,𝑉 . Let 𝜂 – 〈𝜇, 𝜇〉 𝜉 . Assume 𝜂 is gapless and

𝜂.c = 𝜇′. In other words, either (i) 𝜉 is empty and 𝜇 = 𝜇′; or (ii) 𝜉 .o = 𝜇, 𝜉 .c = 𝜇′, and 𝜉 is gapless.
Then 〈𝑇, 𝜇〉 𝜉 𝜔 6 J𝑉 Kv

R ∈ J𝑀Kc
R .

PRoof. By induction on the number of small-steps. Case (i) applies so long as all the steps so
far are silent. Case (ii) applies otherwise. □

Hoare run-lifting. The run-trace lifting of a relation ∼ ⊆ 𝑋 × 𝑌 is a relation ∼ ⊆ OpTrace𝑋 ×
Trace𝑌 defined 𝜏 ∼ 𝜏 ′ – ∃𝑇, 𝜇, 𝜉, 𝜔, 𝑟, 𝑠 . 𝜏 = 〈𝑇, 𝜇〉 𝜉 𝜔6𝑟 ∧𝜏 ′ = inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜔6𝑠 ∧𝑟 ∼ 𝑠 . This
in turn lifts to the Hoare relation ∼ ⊆ P (OpTrace𝑋 ) × P (Trace𝑌 ) where𝑈 ∼ 𝐸 – ∀𝜏 ∈ 𝑈 ∃ 𝜏 ′ ∈
𝐸. 𝜏 ∼ 𝜏 ′. We call this last relation the H-run-trace lifting of the first relation.

Logical relation. For every type𝐴, defineV∗{|𝐴|} ⊆ J𝐴KR × J𝐴KC and E∗{|𝐴|} ⊆ RJ𝐴KR ×CJ𝐴KC
by mutual recursion. The definition ofV∗{|𝐴|} follows the standard “related-inputs to related-out-
puts” mantra, while the bespoke E∗{|𝐴|} part transforms the view tree to its greatest lower bound
using the notation inf𝜇 𝑇 – inf𝜇 𝑇 .lf, and adds a transition for the first memory:

V∗{|𝐴→ 𝐵 |} – {〈𝑓 , 𝑔〉 | ∀ 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} . 〈𝑓 𝑟, 𝑔𝑠〉 ∈ E∗{|𝐵 |}}
V∗{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} – {〈〈𝑟1, ... , 𝑟𝑛〉, 〈𝑠1, ... , 𝑠𝑛〉〉 | ∀ 𝑖 . 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}}

V∗{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} –
⋃

𝑖 {〈𝜄𝑖 𝑟, 𝜄𝑖 𝑠〉 | 〈𝑟, 𝑠〉 ∈ V∗{|𝐴𝑖 |}}

The relation trivializes on ground types: V∗{|𝐺 |} is equality. In particular for 𝑉 ,𝑊 ∈ · ` 𝐺 , if
〈𝑉 ,𝑊 〉 ∈ V∗{|𝐺 |}, then 𝑉 =𝑊 because as ground-typed values, J𝑉 Kv

R = 𝑉 and J𝑊 Kv
C =𝑊 . We H-

trace liftV∗{|𝐴|} to obtain E∗{|𝐴|}.
In regards to open terms, for every typing context 𝛤 we define X∗{|𝛤 |} ⊆ J𝛤 KR × J𝛤 KC by:

X∗{|𝛤 |} – {〈𝛾, 𝛿〉 | ∀(𝑎 : 𝐴) ∈ 𝛤 . 〈𝛾𝑎, 𝛿𝑎〉 ∈ V∗{|𝐴|}}

and define 𝛤 ⊨∗ 𝑀 : 𝐴 as follows: ∀ 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |} .
〈J𝑀Kc

R𝛾, J𝑀Kc
C𝛿

〉
∈ E∗{|𝐴|}. We show this

semantic judgment is soundwith respect to the typing relation, following some supportive lemmas.

Lemma C.5. If 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} then
〈
returnR𝑟, return 𝑠

〉
∈ E∗{|𝐴|}.

PRoof. Assume 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|}. W.l.o.g., let 〈 9𝜅, 𝜇〉 · 𝜅 6 𝑟 ∈ returnR𝑟 , where 𝜅 ã→ 𝜇. Note that
𝜅 〈𝜇, 𝜇〉 𝜅6𝑠 ∈ return 𝑠 . Trivially, 〈𝜇, 𝜇〉 · = 〈𝜇, 𝜇〉 and inf𝜇 9𝜅 = 𝜅. Substituting these, together with
our assumption, we obtain the required precisely:

∀ 〈 9𝜅, 𝜇〉 · 𝜅 6 𝑟 ∈ returnR𝑟 ∃ 𝑠 . inf𝜇 9𝜅 〈𝜇, 𝜇〉 · 𝜅 6 𝑠 ∈ return 𝑠 ∧ 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|} □

Lemma C.6. If 〈𝑃,𝑄〉 ∈ E∗{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |} then
〈
𝑃 ⟫=R 𝑓 ,𝑄 ⟫= 𝑔

〉
∈ E∗{|𝐵 |}.

PRoof. Assume 〈𝑃,𝑄〉 ∈ E∗{|𝐴|} and 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |}. Let 〈𝑇, 𝜇〉 𝜉𝜂 𝜔 6 𝑟 ′ ∈ 𝑃 ⟫=R 𝑓 . So
there exist 𝑟 and 𝜅 such that 〈𝑇, 𝜇〉 𝜉 𝜅 6 𝑟 ∈ 𝑃 and 〈 9𝜅, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 6 𝑟 ′ ∈ 𝑓 𝑟 .
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By the first assumption there exists an 𝑠 such that inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜅 6 𝑠 ∈ 𝑄 and 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|}.
Using the second assumption we find that 〈𝑓 𝑟, 𝑔𝑠〉 ∈ E∗{|𝐵 |}. In particular, there exists an 𝑠′ such
that 𝜅 〈(〈𝜇, 𝜇〉 𝜉).c, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 6 𝑠′ ∈ 𝑔𝑠 and 〈𝑟 ′, 𝑠′〉 ∈ V∗{|𝐵 |}. So we have

inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 〈(〈𝜇, 𝜇〉 𝜉).c, (〈𝜇, 𝜇〉 𝜉).c〉 𝜂 𝜔 6 𝑠′ ∈ 𝑄 ⟫= 𝑔
By using mumble, we have the required inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉𝜂 𝜔 6 𝑠′ ∈ 𝑄 ⟫= 𝑔. □

Lemma C.7.
〈Jstoreℓ,𝑣KR, Jstoreℓ,𝑣KC〉 ∈ E∗{|1|} and 〈Jrmwℓ,ΦKR, Jrmwℓ,ΦKC〉 ∈ E∗{|Val|}.

PRoof. Using stutter to compensate for the additional transition from the initial memory, and
rewind to compensate for the view not necessarily already pointing to the loaded message. □

Lemma C.8. If 〈𝑃𝑖 , 𝑄𝑖〉 ∈ E∗{|𝐴𝑖 |} then 〈𝑃1 | | | 𝑃2, 𝑄1 | | | 𝑄2〉 ∈ E∗{|(𝐴1 ∗𝐴2) |}.

PRoof. Assume 〈𝑃𝑖 , 𝑄𝑖〉 ∈ E∗{|𝐴𝑖 |}, and let 𝜏 ∈ 𝑃1 | | | 𝑃2. We proceed by case analysis depending
on whether the initial view tree is a leaf:
Leaf. W.l.o.g., 𝜏 = 〈 9𝜅, 𝜇〉 𝜉 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉, where 〈 9𝜅, 𝜇〉 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 ∈ 𝑃𝑖 and 𝜉 ∈ 𝜉1 ‖ 𝜉2.

So there exist 𝑠𝑖 such that 𝜅 〈𝜇, 𝜇〉 𝜉𝑖 𝜔𝑖 6 𝑠𝑖 ∈ 𝑄𝑖 and 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}. By definition,
𝜅 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 6 〈𝑠1, 𝑠2〉 ∈ 𝑄1 | | |G𝑄2. Using mumble we have 𝜅 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 6

〈𝑠1, 𝑠2〉 ∈ 𝑄1 | | | 𝑄2. Since 〈〈𝑟1, 𝑟2〉, 〈𝑠1, 𝑠2〉〉 ∈ V∗{|(𝐴1 ∗𝐴2) |}, we are done.
Node. W.l.o.g., 𝜏 =

〈
𝑇1̂𝑇2, 𝜇〉 𝜉 𝜔1 t 𝜔2 6 〈𝑟1, 𝑟2〉, where 〈𝑇𝑖 , 𝜇〉 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 ∈ 𝑃𝑖 and 𝜉 ∈ 𝜉1 ‖ 𝜉2.

So there exist 𝑠𝑖 such that inf𝜇 𝑇𝑖 〈𝜇, 𝜇〉 𝜉𝑖 𝜔𝑖 6 𝑠𝑖 ∈ 𝑄𝑖 and 〈𝑟𝑖 , 𝑠𝑖〉 ∈ V∗{|𝐴𝑖 |}. Rudimentarily,
inf𝜇

{
inf𝜇 𝑇1, inf𝜇 𝑇2

}
= inf𝜇

(
𝑇1̂𝑇2) , so inf𝜇

(
𝑇1̂𝑇2) 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜉 𝜔1 t 𝜔2 6 〈𝑠1, 𝑠2〉 ∈

𝑄1 | | |G𝑄2. The rest is like before. □

PRoposition C.9. If 𝛤 ` 𝑀 : 𝐴 then 𝛤 ⊨∗𝑀 : 𝐴.

PRoof. By induction on the derivation of 𝛤 ` 𝑀 : 𝐴. We detail some paradigmatic examples:
Let 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |}. We have J𝜆𝑎. 𝑀Kc

R𝛾 = returnR𝜆𝑟 . J𝑀Kc
R𝛾 [𝑎 ↦→𝑟 ] andJ𝜆𝑎. 𝑀Kc

C𝛿 = return 𝜆𝑠. J𝑀Kc
C𝛿 [𝑎 ↦→𝑠] by definition. By Lemma C.5 and

the definition ofV∗{|𝐴→ 𝐵 |}, it suffices to show that if 〈𝑟, 𝑠〉 ∈ V∗{|𝐴|},

𝛤, 𝑎 : 𝐴 ⊨∗𝑀 : 𝐵

𝛤 ⊨∗𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

then
〈J𝑀Kc

R𝛾 [𝑎 ↦→𝑟 ], J𝑀Kc
C𝛿 [𝑎 ↦→𝑠]

〉
∈ E∗{|𝐵 |}, which is implied by the induction hypothesis.

Let 〈𝛾, 𝛿〉 ∈ X∗{|𝛤 |}. By definition, J𝑁𝑀Kc
R𝛾 = J𝑁 Kc

R𝛾 ⟫=
R

𝜆𝑓 . J𝑀Kc
R𝛾 ⟫=

R 𝑓 , and J𝑁𝑀Kc
C𝛿 = J𝑁 Kc

C𝛿 ⟫= 𝜆𝑔. J𝑀Kc
C𝛿 ⟫= 𝑔.

By the first induction hypothesis,
〈J𝑀Kc

R𝛾, J𝑀Kc
C𝛿

〉
∈ E∗{|𝐴|}. So

𝛤 ⊨∗𝑀 : 𝐴 𝛤 ⊨∗𝑁 : 𝐴→ 𝐵

𝛤 ⊨∗𝑁𝑀 : 𝐵

by Lemma C.6, if 〈𝑓 , 𝑔〉 ∈ V∗{|𝐴→ 𝐵 |} then
〈J𝑀Kc

R𝛾 ⟫=
R 𝑓 , J𝑀Kc

C𝛿 ⟫= 𝑔
〉
∈ E∗{|𝐵 |}. But this is

exactly the definition of
〈
𝜆𝑓 . J𝑀Kc

R𝛾 ⟫=
R 𝑓 , 𝜆𝑔. J𝑀Kc

C𝛿 ⟫= 𝑔
〉
∈ V∗{|(𝐴→ 𝐵) → 𝐵 |}.

By the second induction hypothesis,
〈J𝑁 Kc

R𝛾, J𝑁 Kc
C𝛿

〉
∈ E∗{|𝐴→ 𝐵 |}. Using Lemma C.6 again,

we have
〈J𝑁 Kc

R𝛾 ⟫=
R 𝜆𝑓 . J𝑀Kc

R𝛾 ⟫=
R 𝑓 , J𝑁 Kc

C𝛿 ⟫= 𝜆𝑔. J𝑀Kc
C𝛿 ⟫= 𝑔

〉
∈ E∗{|𝐵 |}, as required.

The other cases follow by similar reasoning with Lemmas C.5 and C.6, where in the cases of the
effects we also use the respective Lemmas C.7 and C.8. □

The proof of soundness concludes by using Propositions C.4 and C.9:

PRoof of Soundness. We have 〈𝑇, 𝜇〉 𝜉 𝜔6𝑉 ∈ J𝑀Kc
R by Proposition C.4 since𝑀 is of ground

type. Therefore, Proposition C.9 implies that inf𝜇 𝑇 〈𝜇, 𝜇〉 𝜉 𝜔 6 𝑉 ∈ J𝑀Kc
C . Thanks to the extra

conclusions of Proposition C.4, inf𝜇 𝑇 〈𝜇, 𝜇′〉 𝜔 6𝑉 ∈ J𝑀Kc
C by iterativelymumble-rewriting. □
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D Proof of Adequacy
The proof of adequacy starts with the Fundamental Lemma, stating that C-traces correspond to
interrupted executions, generalizing the Concrete Traces Lemma.Themain reason behind this fact
is simple: 𝔠-rewrites preserve this correspondence. That is:

Lemma D.1. If𝑀 :: 𝜏 :: 𝑉 and 𝜏 x−→ 𝜋 for x ∈ 𝔠, then𝑀 :: 𝜋 :: 𝑉 .

PRoof. We split to the different x ∈ 𝔠 cases:
St Add a transition that doesn’t change the configuration.
Mu Meld adjacent transitions with equal configurations at the boundary.
Fw Append an Adv step to the final transition.
Rw Prepend an Adv step to the initial transition. □

Logical relation. We mutually define, indexed over type 𝐴, sets V{|𝐴|} of closed values of type
𝐴 and sets E{|𝐴|} of closed terms of type 𝐴:

V{|𝐴→ 𝐵 |} – {𝜆𝑎.𝑀 | ∀𝑉 ∈ V{|𝐴|} . 𝑀 [𝑎 ↦→𝑉 ] ∈ E{|𝐵 |}}
V{|(𝐴1 ∗ · · · ∗𝐴𝑛) |} – {〈𝑉1, ... ,𝑉𝑛〉 | ∀𝑖 .𝑉𝑖 ∈ V{|𝐴𝑖 |}}

V{|{𝜄1 of 𝐴1 | · · · | 𝜄𝑛 of 𝐴𝑛} |} –
⋃

𝑖 {𝜄𝑖 𝑉 | 𝑉 ∈ V{|𝐴𝑖 |}}

E{|𝐴|} –
{
𝑀 ∈ · ` 𝐴

�� ∀𝜏 ∈ J𝑀Kc
C∃𝑉 ∈ V{|𝐴|} . 𝑀 :: 𝜏 :: 𝑉

}
In regards to open terms, for every typing context 𝛤 we define

X{|𝛤 |} – {Θ ∈ Sub𝛤 | ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}}
and define 𝛤 ⊨𝑀 : 𝐴 for 𝛤 ` 𝑀 : 𝐴 as ∀Θ ∈ X{|𝛤 |} .Θ𝑀 ∈ E{|𝐴|}.

TheoRem D.2 (Fundamental Lemma). If 𝛤 ` 𝑀 : 𝐴, then 𝛤 ⊨𝑀 : 𝐴.

We devote lemmas to inductive cases of the Fundamental Lemma’s proof.

Lemma D.3. If 𝜏 – 𝛼 𝜉 𝜔 6 〈〉 ∈ Jstoreℓ,𝑣KC , then ℓ – 𝑣 :: 𝜏 :: 〈〉.

PRoof. W.l.o.g. 𝜏 ∈ Jstoreℓ,𝑣KG , because the general case then follows from Lemma D.1.
Thus, the interrupted execution is just a single StoRe step. Indeed, the states 〈 9𝛼, 𝜉 .o〉 and 〈 9𝜔, 𝜉 .c〉

match those in StoRe’s conclusion. The conditions of StoRe are met thanks to 𝜏 being a trace,
e.g. the segment of the stored message being unoccupied due to 𝜉 .c being well-formed. □

Lemma D.4. If 𝜏 – 𝛼 𝜉 𝜔 6 𝑣 ∈
q
rmwℓ,𝜑 ®𝑤

y
C , then rmw𝜑 (ℓ ; ®𝑤) :: 𝜏 :: 𝑣 .

PRoof. W.l.o.g. 𝜏 ∈
q
rmwℓ,𝜑 ®𝑤

y
G , because the general case then follows from Lemma D.1.

Thus, the interrupted execution is a single ReadOnly step (if 𝜏 ∈ JrmwRO
ℓ,𝜑 ®𝑤

KG) or a single RMW
step (if 𝜏 ∈ JrmwRMW

ℓ,𝜑 ®𝑤
KG), in which the initial view points to the loaded message. □

Lemma D.5. If 𝜉 ∈ 𝜉1 ‖ 𝜉2 and𝑀𝑖 :: 𝛼𝑖 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 :: 𝑉𝑖 , then

𝑀1 | | 𝑀2 :: inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} 6 〈𝑟1, 𝑟2〉 :: 〈𝑉1,𝑉2〉

PRoof. We obtain the required interrupted execution by interleaving the interrupted executions
following the interleaving that generated 𝜉 from 𝜉1 and 𝜉2 with the following modifications:
• prepending Adv—lifted using PaRLeft/PaRRight—to the first transition taken by each side;
• prepending PaRInit to the first transition;
• appending PaRFin to the last transition (since sup𝜉 .c {𝜔1, 𝜔2} = 𝜔1 t 𝜔2). □
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PRoof of the Fundamental Lemma. By induction on the typing derivation 𝛤 ` 𝑀 : 𝐴.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. To show Θ𝑎 = Θ𝑎 ∈ E{|𝐴|},
let 𝜏 ∈ JΘ𝑎Kc

C = returnCJΘ𝑎Kv
C . Suffice it we show Θ𝑎 :: 𝜏 :: Θ𝑎 . Using Lemma D.1,

we restrict to the case of 𝜏 ∈ returnGJΘ𝑎Kv
C . So 𝜏 is of the form 𝜅 〈𝜇, 𝜇〉 𝜅 6 JΘ𝑎Kv

C .

(𝑎 : 𝐴) ∈ 𝛤
𝛤 ⊨ 𝑎 : 𝐴

The required interrupted execution is obtained by taking no steps in its only transition.
Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. Denote by 𝐾
the term Θ (𝜆𝑎 : 𝐴.𝑀) = 𝜆𝑎 : 𝐴. Θ|∉{𝑎} 𝑀 . To show that 𝐾 ∈ E{|𝐴|}, let
𝜏 ∈ J𝐾Kc

C = returnCJ𝐾Kv
C . Like the previous case, we can show 𝐾 :: 𝜏 :: 𝐾

𝛤, 𝑎 : 𝐴 ⊨𝑀 : 𝐵

𝛤 ⊨ 𝜆𝑎 : 𝐴.𝑀 : 𝐴→ 𝐵

using Lemma D.1. This is sufficient, because 𝐾 ∈ V{|𝐴→ 𝐵 |}. Indeed, for𝑉 ∈ V{|𝐴|}, denoting by
Θ[𝑉 /𝑎] the substitution equal to Θ except at 𝑉 which it maps to 𝑎, by the induction hypothesis
we have

(
Θ|∉{𝑎} 𝑀

)
[𝑎 ↦→𝑉 ] = Θ[𝑉 /𝑎]𝑀 ∈ E{|𝐵 |}.

Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}.
To show that Θ(𝑁𝑀) = (Θ𝑁 ) (Θ𝑀) ∈ E{|𝐴|} holds, let 𝜏 ∈J(Θ𝑁 ) (Θ𝑀)Kc

C = JΘ𝑁 Kc
C ⟫=

C 𝜆𝑓 . JΘ𝑀Kc
C ⟫=

C 𝑓 . Unfolding:

𝛤 ⊨𝑀 : 𝐴 𝛤 ⊨ 𝑁 : 𝐴→ 𝐵

𝛤 ⊨ 𝑁𝑀 : 𝐵

∃ 𝜏1 – 𝛼1 𝜉1 𝜔1 6 𝑓 ∈ JΘ𝑁 Kc
C, 𝜏2 – 𝛼2 𝜉2 𝜔2 6 𝑟 ∈ JΘ𝑀Kc

C, 𝜏3 – 𝛼3 𝜉3 𝜔3 6 𝑠 ∈ 𝑓 𝑟 .
𝜔1 ≤ 𝛼2 ∧ 𝜔2 ≤ 𝛼3 ∧ 𝜏 = 𝛼1 𝜉1𝜉2𝜉3 𝜔3 6 𝑠 ∈ J(Θ𝑁 ) (Θ𝑀)Kc

C

By the induction hypotheses, there exists 𝜆𝑎 : 𝐴. 𝐾 ∈ V{|𝐴→ 𝐵 |} such that Θ𝑁 :: 𝜏1 :: 𝜆𝑎 : 𝐴. 𝐾 ,
and there exists𝑉 ∈ V{|𝐴|} such thatΘ𝑀 :: 𝜏2 :: 𝑉 . So𝐾 [𝑎 ↦→𝑉 ] ∈ E{|𝐵 |}, and using the Substitution
Lemma: 𝑓 𝑟 = J𝜆𝑎 : 𝐴. 𝐾Kv

CJ𝑉 Kv
C = J𝐾 [𝑎 ↦→𝑉 ]Kc

C . Therefore, there exists 𝑊 ∈ V{|𝐵 |} such that
𝐾 [𝑎 ↦→𝑉 ] :: 𝜏3 ::𝑊 . We transform to sequence the interrupted executions into one that corresponds
to 𝜏 as follows: we lift the one corresponding to 𝜏1 using AppLeft to the context [−] (Θ𝑀), we lift
the one corresponding to 𝜏2 using AppRight to the context (𝜆𝑎 : 𝐴. 𝐾) [−], and we prepend App
to the one corresponding to 𝜏3. By using Adv to compensate for the difference in delimiting views,
we get (Θ𝑁 ) (Θ𝑀) :: 𝜏 ::𝑊 .

Binds unfold like
in the case above.
The rest is handled

𝛤 ⊨𝑀 : Loc 𝛤 ⊨ 𝑁 : Val

𝛤 ⊨𝑀 – 𝑁 : 1

𝜑 ∈ RMW𝑛 𝛤 ⊨𝑀 : Loc 𝛤 ⊨ 𝑁 : Val𝑛

𝛤 ⊨ rmw𝜑 (𝑀 ;𝑁 ) : Val
using Lemma D.3 and Lemma D.4 respectively.

Let Θ ∈ Sub𝛤 be such that ∀(𝑎 : 𝐴) ∈ 𝛤 .Θ𝑎 ∈ V{|𝐴|}. Thanks to
Lemma D.1, to show Θ(𝑀1 ∥ 𝑀2) = Θ𝑀1 ∥ Θ𝑀2 ∈ E{|𝐴1 ∗𝐴2 |},
it is sufficient to consider 𝜏 ∈ JΘ𝑀1Kc

C | | |G JΘ𝑀2Kc
C . Unfolding the

𝛤 ⊨𝑀1 : 𝐴1 𝛤 ⊨𝑀2 : 𝐴2

𝛤 ⊨𝑀1 ∥ 𝑀2 : (𝐴1 ∗𝐴2)
concurrent construct, there exist 𝜏𝑖 – 𝛼𝑖 𝜉𝑖 𝜔𝑖 6 𝑟𝑖 ∈ JΘ𝑀𝑖Kc

C and 𝜉 ∈ 𝜉1 ‖ 𝜉2 such that 𝜏 –

inf𝜉 .o {𝛼1, 𝛼2} 𝜉 sup𝜉 .c {𝜔1, 𝜔2} 6 〈𝑟1, 𝑟2〉. By induction hypotheses, there exist 𝑉𝑖 ∈ V{|𝐴𝑖 |} such
that Θ𝑀𝑖 :: 𝜏𝑖 :: 𝑉𝑖 . So 〈𝑉1,𝑉2〉 ∈ V{|𝐴1 ∗𝐴2 |}, and by Lemma D.5, Θ𝑀1 ∥ Θ𝑀2 :: 𝜏 :: 〈𝑉1,𝑉2〉.

The other cases are treated similarly. □

We obtain Concrete Traces Lemma by specifying the Fundamental Lemma to ground types. To
prove the Evaluation Lemma, we observe that 𝔞-rewrites preserve evaluation:

Lemma D.6. For x ∈ 𝔞, if 𝜋 x−→ 𝜏 and
〈

9𝜋.ivw, 𝜋 .ch.o
〉
, 𝑀 ⇓ 𝜋.vl, then

〈
9𝜏 .ivw, 𝜏 .ch.o

〉
, 𝑀 ⇓ 𝜏 .vl.

PRoof. We have 𝜏 .vl = 𝜋.vl because the closure rules all preserve the return value. If x = Ti or
x = Ab, then 𝜏 .ivw = 𝜋.ivw and 𝜏 .ch.o = 𝜏 .ch.o, so the claim holds trivially. Only x = Di remains,
where 𝜋.ivw = 𝜏 .ivw [↑𝜖] and 𝜋.ch.o = 𝜏 .ch.o [↑𝜖] for some message 𝜖 . We obtain the required
execution underlying

〈
9𝜏 .ivw, 𝜏 .ch.o

〉
, 𝑀 ⇓ 𝜏 .vl from the one that underlies

〈
9𝜋.ivw, 𝜋 .ch.o

〉
, 𝑀 ⇓

, Vol. 1, No. 1, Article . Publication date: December 2024.



58 Yotam Dvir, Ohad Kammar, and Ori Lahav

𝜋.vl by replacing the timestamp 𝜖.i with 𝜖.t everywhere. A straightforward simulation argument
that justifies this. □

PRoof of the Evaluation Lemma. Denote 𝜏 – 𝛼 〈𝜇, 𝜌〉 𝜔6𝑟 ∈ J𝑀Kc. By Retroactive Closure,J𝑀Kc = J𝑀Kc
C
𝔞 . So there exists 𝜋 ∈ J𝑀Kc

C such that 𝜋 𝔞−→ 𝜏 . Proceed by induction on the number
of 𝔞-rewrites. If none, 𝜏 = 𝜋 ∈ J𝑀Kc

C , so by the Fundamental Lemma, 𝑀 :: 𝜏 :: 𝑉 for some 𝑉 . Since
𝑀 is of ground type, so is 𝑉 = J𝑉 Kv

C = 𝑟 , and thus 〈 9𝛼, 𝜇〉 , 𝑀 ⇝∗
RA≤ 〈 9𝜔, 𝜌〉 , 𝑟 , so 〈 9𝛼, 𝜇〉 , 𝑀 ⇓ 𝑟 .

Otherwise, we have 𝜋 𝔞−→ 𝜏 ′
x−→ 𝜏 where x ∈ 𝔞 and

〈
9𝜏 ′ .ivw, 𝜏 ′ .ch.o

〉
, 𝑀 ⇓ 𝜏 ′ .vl by the induction

hypothesis. We replace 𝜏 ′ with 𝜏 using Lemma D.6, as required. □

E Validating Transformations
In the followingwe prove selected results from Table 3.We explicitly mention the use of 𝔞-rewrites,
but often leave uses of 𝔠-rewrites implicit. For convenience, we denote 𝛼 𝜉𝜂 𝜔6𝑠 – (𝛼 𝜉 𝜅6𝑟 ) ⟫=
(𝜎 𝜂 𝜔 6 𝑠), and we say this trace resulted from binding the first with the second.

PRoposition E.1. If 𝛤 ` 𝑀1 : 𝐴1; 𝛤 ` 𝑁1 : 𝐵1; 𝛤, 𝑎 : 𝐴′ ` 𝑀2 : 𝐴2; and 𝛤,𝑏 : 𝐵′ ` 𝑁2 : 𝐵2:J(let𝑎 =𝑀1 in𝑀2) ∥ (let𝑏 = 𝑁1 in 𝑁2)Kc ⊇ Jmatch𝑀1 ∥ 𝑁1 with 〈𝑎,𝑏〉. 𝑀2 ∥ 𝑁2Kc

(Formally, in the right denotation we use 𝛤, 𝑎 : 𝐴′, 𝑏 : 𝐵′ ` 𝑀2 : 𝐴2 and 𝛤, 𝑎 : 𝐴′, 𝑏 : 𝐵′ ` 𝑁2 : 𝐵2.)

PRoof. Let 𝛾 ∈ J𝛤 K and instantiate the denotations with this context, denoting the resulting
sets 𝑃 and 𝑄 . Thus we require 𝑃 ⊇ 𝑄 .

Let 𝜚 ∈ 𝑄 . By Deferral of Closure, 𝜚 is in the 𝔠𝔞-closure of:

𝑄 ′ – J𝑀1Kc 𝛾 | | |G J𝑁1Kc 𝛾 ⟫=G 𝜆〈𝛾𝑎, 𝛾𝑏〉. J𝑀2Kc (𝛾𝑐 ) (𝑐 :𝐶 ) ∈𝛤,𝑎:𝐴′ | | |G J𝑁2Kc (𝛾𝑐 ) (𝑐 :𝐶 ) ∈𝛤,𝑏:𝐵′

So there exists 𝜚 ′ ∈ 𝑄 ′ that 𝔠𝔞-rewrites to 𝜚 . This 𝜚 ′ results from binding two traces. On the left,
inf𝜉 .o {𝛼1, 𝜅1} 𝜉 𝜔1 t 𝜎1 6 〈𝑟1, 𝑠1〉, where:

𝜏1 – 𝛼1 𝜉1 𝜔1 6 𝑟1 ∈ J𝑀1Kc 𝛾 ; 𝜋1 – 𝜅1 𝜂1 𝜎1 6 𝑠1 ∈ J𝑁1Kc 𝛾 ; 𝜉 ∈ 𝜉1 ‖ 𝜂1
On the right, inf𝜂.o {𝛼2, 𝜅2} 𝜂 𝜔2 t 𝜎2 6 〈𝑟2, 𝑠2〉, where, setting 𝛾𝑎 – 𝑟1 and 𝛾𝑏 – 𝑠1:

𝜏2 – 𝛼2 𝜉2 𝜔26𝑟2 ∈ J𝑀2Kc (𝛾𝑐 ) (𝑐 :𝐶 ) ∈𝛤,𝑎:𝐴′ ; 𝜋2 – 𝜅2 𝜂2 𝜎26𝑠2 ∈ J𝑁2Kc (𝛾𝑐 ) (𝑐 :𝐶 ) ∈𝛤,𝑏:𝐵′ ; 𝜂 ∈ 𝜉2 ‖ 𝜂2
The binding implies that 𝜔1 t 𝜎1 ≤ inf𝜂.o {𝛼2, 𝜅2}. In particular, 𝜔1 ≤ 𝛼2 and 𝜎1 ≤ 𝜅2. There-
fore, 𝜏1 ⟫= 𝜏2 = 𝛼1 𝜉1𝜉2 𝜔2 6 𝑟2 ∈ Jlet𝑎 =𝑀1 in𝑀2Kc and 𝜋1 ⟫= 𝜋2 = 𝜅1 𝜂1𝜂2 𝜎2 6 𝑠2 ∈Jlet𝑏 = 𝑁1 in 𝑁2Kc. Since 𝜉𝜂 ∈ 𝜉1𝜉2 ‖ 𝜂1𝜂2 and (𝜉𝜂).o = 𝜉 .o, we obtain 𝜚 ′ by interleaving these.
Therefore, 𝜚 ′ ∈ 𝑃 . Since 𝑃 is 𝔠𝔞-closed, 𝜚 ∈ 𝑃 . □

In the rest of this section we show results of the form J𝑀Kc ⊇ J𝑁 Kc
G . Each entails J𝑀Kc ⊇ J𝑁 Kc

by Deferral of Closure, thus justifying𝑀 ↠ 𝑁 in Table 3.

PRoposition E.2. J〈〉Kc ⊇ Jℓ? ; 〈〉Kc
G .

PRoof. Let 𝜏 ∈ Jℓ? ; 〈〉Kc
G . Unfolding definitions:

Jℓ? ; 〈〉Kc
G – Jrmwℓ,𝜆_.⊥KG ⟫=G 𝜆_. returnG 〈〉 = {

𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 6 〈〉 ∈ Trace1
�� ∃𝜈 ∈ 𝜇ℓ . 𝛼 ↣ 𝜈

}
Therefore, we have the form 𝜏 = 𝛼 〈𝜇, 𝜇〉 〈𝜌, 𝜌〉 𝜔 6 〈〉. From 𝛼 〈𝜇, 𝜇〉 𝛼 6 〈〉 ∈ J〈〉Kc

G , we obtain
𝜏 ∈ J〈〉Kc by stuttering (St) and forwarding (Fw). □

PRoposition E.3. Jℓ? ; 〈〉Kc ⊇ J〈〉Kc
G .
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PRoof. Let 𝜅 〈𝜇, 𝜇〉 𝜅 6 〈〉 ∈ J〈〉Kc
G . Since the trace is well-formed, 𝜅 ã→ 𝜇. In particular, there

exists a message 𝜈 ∈ 𝜇 such that 𝜅 ↣ 𝜈 . Therefore, 𝜅 〈𝜇, 𝜇〉 𝜅 6 𝜈.vl ∈ Jℓ?Kc
G , and so:

(𝜅 〈𝜇, 𝜇〉 𝜅 6 𝜈.vl) ⟫= (𝜅 〈𝜇, 𝜇〉 𝜅 6 〈〉) = 𝜅 〈𝜇, 𝜇〉 〈𝜇, 𝜇〉 𝜅 6 〈〉 ∈ Jℓ? ; 〈〉Kc
G

We obtain 𝜅 〈𝜇, 𝜇〉 𝜅 6 〈〉 ∈ Jℓ? ; 〈〉Kc
G by mumbling (Mu). □

PRoposition E.4. Jℓ – 𝑣Kc ⊇ JXCHG (ℓ, 𝑣) ; 〈〉Kc
G .

PRoof. By taking the traces in Jℓ – 𝑣Kc
G in which the newly added message dovetails after the

previous message in memory by choosing the initial timestamp appropriately. □

PRoposition E.5. Assuming ℓ ≠ ℓ ′, J〈ℓ – 𝑣, ℓ ′?〉Kc ⊇ Jℓ – 𝑣 ∥ ℓ ′?Kc
G .

PRoof. The elements of Jstoreℓ,𝑣KG | | |G Jrmwℓ ′,𝜆_.⊥KG are formed by interleaving a store

𝜅 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] 6 〈〉 ∈ Jstoreℓ,𝑣KG
with a load 𝜎 〈𝜌, 𝜌〉 𝜎 6𝑤 ∈ Jrmwℓ ′,𝜆_.⊥KG . Depending on the order, this results in one of:

inf𝜇 {𝜅, 𝜎} 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 〈𝜌, 𝜌〉 𝜅 [ℓ ↦→𝑡] t 𝜎 6 〈〈〉,𝑤〉 (WR)
inf𝜌 {𝜅, 𝜎} 〈𝜌, 𝜌〉 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] t 𝜎 6 〈〈〉,𝑤〉 (RW)

We prove separately that these interleavings are in J〈ℓ – 𝑣, ℓ ′?〉Kc.
• (WR): Denoting𝜃 – (𝜌 \ {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫})]{ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}where𝛼 – inf𝜇 {𝜅, 𝜎}:

𝛼 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}〉 𝛼 [ℓ ↦→𝑡] 6 〈〉 ∈ Jstoreℓ,𝑣KG
𝛼 [ℓ ↦→𝑡] t 𝜎 〈𝜃, 𝜃〉 𝛼 [ℓ ↦→𝑡] t 𝜎 6𝑤 ∈ Jrmwℓ ′,𝜆_.⊥KG

By forwarding (Fw) after binding we obtain:

𝛼 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫}〉 〈𝜃, 𝜃〉 𝜅 [ℓ ↦→𝑡] t 𝜎 6 〈〈〉,𝑤〉 ∈ J〈ℓ – 𝑣, ℓ ′?〉Kc

All that remains is to tighten (Ti) ℓ :𝑣@(𝑞, 𝑡]⟪𝛼 [ℓ ↦→𝑡]⟫ to ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫.
• (RW): Using the result for (WR), with 𝜃 – 𝜇 ] {ℓ :𝑣@(𝑞, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}:

inf𝜇 {𝜅, 𝜎} 〈𝜇, 𝜃〉 〈𝜃, 𝜃〉 𝜅 [ℓ ↦→𝑡] t 𝜎 6 〈〈〉,𝑤〉 ∈ J〈ℓ – 𝑣, ℓ ′?〉Kc

We can rewind (Rw) inf𝜇 {𝜅, 𝜎} to inf𝜌 {𝜅, 𝜎}, since 𝜌 ⊆ 𝜇. By mumbling (Mu) and stuttering
(St), we are done. □

PRoposition E.6. Assuming 𝜑®𝑣 ≤ 𝜓 ®𝑤 ,
q
rmw𝜑 (ℓ ; ®𝑣)

yc ⊇
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G .

PRoof. Let 𝜏 ∈
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G , resulting from loading a value 𝑢 from a message 𝜈 . If 𝜑®𝑣𝑢 =

𝜓 ®𝑤𝑢, then obviously 𝜏 ∈
q
rmw𝜑 (ℓ ; ®𝑣)

yc
G . Otherwise, by assumption 𝜑®𝑣𝑢 = ⊥ and 𝜓 ®𝑤𝑢 = 𝑢.

So we have 𝜏 = 𝜅 〈𝜇, 𝜇 ] {𝜖}〉 𝜅 [ℓ ↦→𝑡] 6 𝑢, with 𝜖 – ℓ :𝑢@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫, where 𝜈 ∈ 𝜇ℓ and
𝜈.t = 𝜅ℓ . In the left denotation, by loading 𝜈 [↑𝜖] we have 𝜅 [↑𝜖] 〈𝜇 [↑𝜖], 𝜇 [↑𝜖]〉 𝜅 [↑𝜖] 6 𝑢 =(
𝜅 〈𝜇, 𝜇〉 𝜅 [ℓ ↦→𝑡] 6 𝑢

)
[↑𝜖]. By diluting (Di) we obtain 𝜏 . □

PRoposition E.7. Assuming ∀ 𝑣 ′ ∈ Val. 𝜁 ®𝑢𝑣 ′ =
(
𝜓 ®𝑤𝑣′ ◦id 𝜑®𝑣

)
𝑣 ′,q

let𝑎 = rmw𝜑 (ℓ ; ®𝑣) in
〈
𝑎, rmw𝜓 (ℓ ; ®𝑤𝑎)

〉yc ⊇
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G
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PRoof. Let 𝜋 ∈
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G
. So a 𝜏 ′ – 𝛼 〈𝜇, 𝜌〉 𝜔6𝑣 ′ ∈

q
rmw𝜁 (ℓ ; ®𝑢)

yc
G

exists due to loading 𝜈 ∈ 𝜇ℓ with 𝜈.vl = 𝑣 ′, such that 𝜏 – 𝛼 〈𝜇, 𝜌〉 𝜔 6

〈
𝑣 ′, 𝜑 id

®𝑣 𝑣
′
〉

St−→ Fw−−→ 𝜋 .

RO. If 𝜏 ′ ∈
r
rmwRO

ℓ,𝜁 ®𝑢

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇〉 𝜅 6

〈
𝑣 ′, 𝜑 id

®𝑣 𝑣
′
〉
where 𝜁 ®𝑢𝑣 ′ = ⊥ and 𝜈.t = 𝜅ℓ .

By assumption, 𝜑®𝑣𝑣 ′ = ⊥, so 𝜑 id
®𝑣 𝑣
′ = 𝑣 ′; and 𝜓 ®𝑤𝑣′𝑣

′ = ⊥, so by loading 𝜈 in both RMWs we
can obtain 𝜏 in the left denotation.

RMW. If 𝜏 ′ ∈
r
rmwRMW

ℓ,𝜁 ®𝑢

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇 ] {ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] 6〈

𝑣 ′, 𝜑 id
®𝑣 𝑣
′
〉
where 𝜁 ®𝑢𝑣 ′ = 𝑢′ and 𝜈.t = 𝜅ℓ . The 𝜑®𝑣𝑣 ′ = ⊥ case is similar to before, where

again 𝜏 is found in the left denotation by loading 𝜈 in both RMWs, with the difference that
here𝜓 ®𝑤𝑣′𝑣

′ = 𝑢′, to the second RMW also writes the message ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫.
The 𝜑®𝑣𝑣 ′ = 𝑤 ′ case remains, in which 𝜑 id

®𝑣 𝑣
′ = 𝑤 ′. In the sub-case that 𝜓®𝑣𝑤 ′ = ⊥ we have

𝑤 ′ = 𝑢′, and we find 𝜏 in the left denotation by loading 𝜈 and writing ℓ :𝑢′@(𝜅ℓ , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫
in the first RMW, which the second RMW loads.
In the sub-case where𝜓®𝑣𝑤 ′ = 𝑢′, the first RMW writes ℓ :𝑤 ′@(𝜅ℓ , 𝜅ℓ+𝑡2 ]⟪𝜅 [ℓ ↦→

𝜅ℓ+𝑡
2 ]⟫ instead.

For the second RMW we take a trace with initial view 𝜅 [ℓ ↦→𝜅ℓ+𝑡
2 ], enabling its loading of

this new message and writing ℓ :𝑢′@( 𝜅ℓ+𝑡2 , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫. To find 𝜏 in the left denotation we
have the latter message absorb (Ab) the former message.

Either way, 𝜏 is in
q
let𝑎 = rmw𝜑 (ℓ ; ®𝑣) in

〈
𝑎, rmw𝜓 (ℓ ; ®𝑤𝑎)

〉yc, and therefore so is 𝜋 . □

CoRollaRy E.8. Assuming 𝜁 ®𝑢 =𝜓 ®𝑤 ◦id 𝜑®𝑣 ,q〈
rmw𝜑 (ℓ ; ®𝑣) , rmw𝜓 (ℓ ; ®𝑤)

〉yc ⊇
r
let𝑎 = rmw𝜁 (ℓ ; ®𝑢) in

〈
𝑎, 𝜑 id
®𝑣 𝑎

〉zc

G

PRoof. Using a special case of Proposition E.7, where𝜓 is independent of its final parameter. □

PRoposition E.9.
q
ℓ – 𝑣 ; rmw𝜑 (ℓ ; ®𝑤)

yc ⊇
r
ℓ – 𝜑 id

®𝑤𝑣 ; 𝑣
zc

G
.

PRoof. Same as the RMW case in the proof of Proposition E.7, except the initial timestamp does
not have to equal the timestamp of the loaded message. □

PRoposition E.10. Jℓ –𝑤 ; ℓ – 𝑣Kc ⊇ Jℓ – 𝑣Kc
G .

PRoof. Replace the second assignment on the left using Proposition E.4, and follow with Propo-
sition E.9. □

PRoposition E.11. Assuming dom𝜓 ®𝑤 ⊇ dom𝜑 ®𝑢 ,q
let𝑎 = rmw𝜑 (ℓ ; ®𝑢) in match𝜓 ®𝑤𝑎 with {𝜄⊥ _.𝑎 | 𝜄> 𝑣 .ℓ – 𝑣 ; 𝑎}

yc ⊇
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G

PRoof. Let 𝜏 ∈
q
rmw𝜓 (ℓ ; ®𝑤)

yc
G =

q
rmwℓ,𝜓 ®𝑤

y
G =

r
rmwRO

ℓ,𝜓 ®𝑤

z
G
∪

r
rmwRMW

ℓ,𝜓 ®𝑤

z
G
.

RO. If 𝜏 ∈
r
rmwRO

ℓ,𝜓 ®𝑤

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇〉 𝜅 6 𝜈.vl where 𝜓 ®𝑤 (𝜈.vl) = ⊥, 𝜈 ∈ 𝜇ℓ , and

𝜈.t = 𝜅ℓ . Structurally, we haveJmatch (𝜓 ®𝑤) 𝜈.vl with {𝜄⊥ _.𝜈 .vl | 𝜄> 𝑣 .ℓ – 𝑣 ; 𝜈.vl}Kc = return𝜈.vl

By assumption, 𝜑 ®𝑢 (𝜈.vl) = ⊥. Loading the same message 𝜈 , we have 𝜏 ∈
q
rmw𝜑 (ℓ ; ®𝑢)

yc.
We obtain the desired trace from binding it with 𝜅 〈𝜇, 𝜇〉 𝜅 6 𝜈.vl ∈ return𝜈.vl.
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Table 4. Components filling roles in the definition of closure rules, using the notations of Table 2.

rule source target
’er ’ee ’er ’ee

loosen 𝜖 𝜈
expel 𝜖𝜈.ii 𝜖 𝜈
condense 𝜈 𝜖 𝜈 [↑𝜖]
stutter 〈𝜇, 𝜇〉
mumble 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 〈𝜇, 𝜃〉
tighten 𝜈 𝜖
absorb 𝜖 𝜈 𝜖𝜈.ii
dilute 𝜈 [↑𝜖] 𝜈 𝑒

RMW. If 𝜏 ∈
r
rmwRMW

ℓ,𝜓 ®𝑤

z
G
, then we have 𝜏 = 𝜅 〈𝜇, 𝜇 ] {ℓ :𝑣@(𝜈.t, 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫}〉 𝜅 [ℓ ↦→𝑡] 6 𝜈.vl

where𝜓 ®𝑤 (𝜈.vl) = 𝑣 , 𝜈 ∈ 𝜇ℓ , and 𝜈.t = 𝜅ℓ . Structurally, we haveJmatch𝜓 ®𝑤 (𝜈.vl) with {𝜄⊥ _.𝜈 .vl | 𝜄> 𝑣 .ℓ – 𝑣 ; 𝜈.vl}Kc = Jℓ – 𝑣 ; 𝜈.vlKc

Loading the same message 𝜈 , we proceed depending on 𝜑 ®𝑢 (𝜈.vl).
𝜑 ®𝑢 (𝜈.vl) = ⊥. We can bind 𝜅 〈𝜇, 𝜇〉 𝜅 6 𝜈.vl ∈

q
rmw𝜑 (ℓ ; ®𝑢)

yc, with 𝜏 ∈ Jℓ – 𝑣 ; 𝜈.vlKc.
𝜑 ®𝑢 (𝜈.vl) ≠ ⊥. Then we have 𝜅 〈𝜇, 𝜌〉 𝜅 [ℓ ↦→𝜅ℓ+𝑡

2 ] 6 𝜈.vl ∈
q
rmw𝜑 (ℓ ; ®𝑢)

yc, where 𝜌 –

𝜇 ]
{
ℓ :𝜑 ®𝑢 (𝜈.vl) @(𝜈.t, 𝜅ℓ+𝑡2 ]⟪𝜅 [ℓ ↦→

𝜅ℓ+𝑡
2 ]⟫

}
. We can bind it with

𝜅 [ℓ ↦→𝜅ℓ+𝑡
2 ]

〈
𝜌, 𝜌 ]

{
ℓ :𝑣@( 𝜅ℓ+𝑡2 , 𝑡]⟪𝜅 [ℓ ↦→𝑡]⟫

}〉
𝜅 [ℓ ↦→𝑡] 6 𝜈.vl ∈ Jℓ – 𝑣 ; 𝜈.vlKc

where at the end we absorb (Ab) the first message into the second. □

F Proof of Rewrite Castling
In this section we prove Rewrite Castling. We make a few observations to help us navigate the
elaborate case-split that makes up the proof.

Active roles in closure rules. Intuitively, the 𝔤- and 𝔞-rules have an object message that is acted
upon, and sometimes a subject message that partakes in the action. For example, in the absorb rule
there is a message, which we call the absorb’ee, that is being “absorbed” into another, which we
call the absorb’er. We think of the absorb’er as a message that changed, rather than two different
messages. In stutter and mumble the active components are transitions rather than messages.

Table 4 lists which components of the source and target of each closure rule fill the subject and
object roles. We use these roles to distinguish scenarios within each castling case in the proof of
Rewrite Castling.The roles for forward and rewind are omitted because there is no need to analyze
different scenarios within the cases involving them in the proof.

Conditions for closure validity. Aswe introduced the closure rules in §7, we noted conditions that
imply that the target of a rewrite is a trace, assuming the source is. We summarize these below:

Lemma F.1. For x ∈ 𝔤𝔠, assume 𝜏 is a trace and 𝜏 x−→ 𝜋 . Then, using the notations of Table 2:
• If x = Mu, then 𝜋 ∈ Trace.
• If x = Ls, then 𝜋 ∈ Trace iff Ls✓(𝜈, 𝜂): either 𝜂 is empty, or 𝜈 ã→

(
𝜂 ] {𝜈}

)
.o.

• If x = Ex, then 𝜋 ∈ Trace iff Ex✓(𝜈, 𝜂): either 𝜂 is empty, or 𝜈 ã→
(
𝜂 ] {𝜈}

)
.o.

• If x = Cn, then 𝜋 ∈ Trace iff Cn✓(𝜖, 𝜉): either 𝜉 is empty, 𝜖.i ∉ 𝜉 .c.t, or 𝜖.seg∩⋃ 𝜉 .c.seg = ∅.

, Vol. 1, No. 1, Article . Publication date: December 2024.



62 Yotam Dvir, Ohad Kammar, and Ori Lahav

Table 5. Diagrams for different scenarios of each case of x ñ← y.

y\x St Mu Fw Rw Ti Ab Di
Ls 1, 2 7, 8 13 14 19, 20 26, 27 33, 34, 35
Ex 3, 4 9, 10 15 16 21, 22 28, 29 36, 37, 38
Cn 5, 6 11, 12 17 18 23, 24, 25 30, 31, 32 39, 40, 41, 42
St 43, 44 45, 46 47, 48
Mu 49, 50, 51, 52 53, 54, 55, 56 57, 58, 59, 60
Fw 61 63 65
Rw 62 64 66

• If x = St, then 𝜋 ∈ Trace iff St✓(𝛼, 𝜇): 𝛼 ↣ 𝜇 ∈ Mem.
• If x = Fw, then 𝜋 ∈ Trace iff Fw✓(𝜔, 𝜉): 𝜔 ã→ 𝜉 .c.
• If x = Rw, then 𝜋 ∈ Trace iff Rw✓(𝛼, 𝜉): 𝛼 ã→ 𝜉 .o.

In each case in the proof, the rewrite sequence after castling includes a new pre-trace. We must
show that this is a trace for the sequence to be valid, because Rewrite Castling concerns the re-
striction of the closure rules to traces. Lemma F.1 is the workhorse that powers this task.

PRoof of RewRite Castling. Diagrams attached below depict how rewrites castle in different
scenarios. We summarize the reasoning involved below. Use Table 5 to navigate through the cases.

• For cases of St ñ← y where y ∈ 𝔤 (1, 2, 3, 4, 5, 6), the required condition is about the same
chronicle as the assumed condition, except for possibly a removed transition. This means
that its opening memory is an extension of the original (result of adding messages), and the
closing memory is a reduction of the original (result of removing messages). The condition
of pointing downwards into a memory is stable under extensions, and the condition of non-
intersection is stable under reductions. Cases of Mu ñ← y where y ∈ 𝔤 (7, 8, 9, 10, 11, 12) are
simpler because the opening and closing memory remain the same.
• The cases of Fw ñ← y and Rw ñ← y where y ∈ 𝔤 (13, 14, 15, 16, 17, 18) are trivial because the

required condition remains the same.
• For cases of Ti ñ← y where y ∈ 𝔤, the required condition in the cases of y ∈ {Ls,Ex} (19,

20, 21, 22) holds because pointing downwards into a memory is stable under “loosening” a
message within the memory (𝜈 ≤ 𝜖).The remaining y = Cn case (23, 24, 25) holds because the
difference between the required condition and the original keeps the occupied timestamps
the same, and the ←⊂= relation is stable under “loosening” the first argument.
• For cases of Ab ñ← y where y ∈ 𝔤, the required condition in the cases of y ∈ {Ls,Ex}
(26, 27, 28, 29) holds because pointing downwards into a memory is stable under changing a
message’s initial timestamp and adding amessage within thememory.The remaining y = Cn
case (30, 31, 32) holds because the difference between the required condition and the original
keeps the occupied timestamps the same, and the ←⊂= relation is stable under changing the
initial timestamp of the first argument.
• Cases of Di ñ← y where y ∈ 𝔤 hold thanks to Lemma 7.6 when y ∈ {Ls,Ex} (33, 34, 35, 36, 37,

38). The remaining y = Cn case (39, 40, 41, 42) is the most complicated. First, we note that
(− [↑𝜖]) [↑𝜖 [↑𝜖]] = (− [↑𝜖]) [↑𝜖 [↑𝜖]], which means that the pre-trace to be “diluted” is of
the correct shape. The rewrite is valid because ←⊂= is stable under changing the timestamp of
the second argument. In particular, it is stable under pulling both arguments along the same
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message which does not intersect the arguments’ segments. Finally, the condition for the
pre-trace to be a trace is satisfied because the message is being pulled along a message that
was either removed or known to appear later in the chronicle (as a local message); either
way, the segment is free. There are also the cases where they overlap this way or that, in
which we use the trivial dovetailing geometry of ←⊂=.
• For cases of x ñ← St where x ∈ 𝔞, the required condition in the cases of x ∈ {Ti,Ab} (43, 44,

45, 46) holds because there remains a message at each timestamp where there was a message
originally, and the initial view remains the same. The remaining y = Di case (47, 48) holds
because pointing-to is stable under pulling along a message; and if the initial view pointed
to the dilute’ee then after pulling it, it will point to the dilute’er pulled along the dilute’ee.
• The cases of x ñ← Mu where x ∈ 𝔞 (49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60) do not require

special considerations regarding conditions.
• For cases of x ñ← y where x ∈ 𝔞 and y ∈ {Fw,Rw}, the required condition in the cases

of x ∈ {Ti,Ab} (61, 62, 63, 64) holds because pointing downwards into a memory is stable
under “loosening” a message within the memory (𝜈 ≤ 𝜖). The case of x ∈ Di (65, 66) hold
thanks to Lemma 7.6, and the fact that pointing downward into a memory is stable under
pulling along the samemessage; and if the delimiting view pointed to the dilute’ee then after
pulling it, it will point to the dilute’er pulled along the dilute’ee. □

The rest of the manuscript is the collection of figures for the proof above.

𝛼 𝜉𝜂
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉𝜂
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

St

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂′)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂′)

St

1. The St ñ← Ls case when the loosen’ee does not appear across the stutter’ee.

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

) (
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜇 ] {𝜖}〉

(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

) (
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜇 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔

St

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜉 ′𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

2. The St ñ← Ls case when the loosen’ee appears across the stutter’ee.
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𝛼 𝜉𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

St

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂′)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂′)

St

3. The St ñ← Ex case when the expel’ee does not appear across the stutter’ee.

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜇 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

) (
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜇 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

St

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜉 ′𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

4. The St ñ← Ex case when the expel’ee appears across the stutter’ee.

𝛼 𝜉𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜇〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

St

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉 ′𝜂)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉 ′ 〈𝜇, 𝜇〉 𝜂)

St

5. The St ñ← Cn case when the condense’ee does not appear across the stutter’ee.
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𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

) (
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜇 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

) (
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜇 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

St

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

St

6. The St ñ← Cn case when the condense’ee appears across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

Mu

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂′)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂′)

Mu

7. The Mu ñ← Ls case when the loosen’ee does not appear across the mumble’er.

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜖}〉 〈𝜌 ] {𝜖}, 𝜃 ] {𝜖}〉

(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜃 ] {𝜖}〉

(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 〈𝜌 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔

Mu

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

8. The Mu ñ← Ls case when the loosen’ee appears across the mumble’er.
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𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

Mu

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂′)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂′)

Mu

9. The Mu ñ← Ex case when the expel’ee does not appear across the mumble’er.

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜖𝜈.ii

}〉 〈
𝜌 ]

{
𝜖𝜈.ii

}
, 𝜃 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜃 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 〈𝜌 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Mu

Ex
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

10. The Mu ñ← Ex case when the expel’ee appears across the mumble’er.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜃〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

Mu

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉 ′ 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉 ′ 〈𝜇, 𝜃〉 𝜂)

Mu

11. The Mu ñ← Cn case when the condense’ee does not appear across the mumble’er.
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𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 〈𝜌 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 〈𝜌 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

Mu

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Mu

12. The Mu ñ← Cn case when the condense’ee appears across the mumble’er.

𝛼 𝜉
(
𝜂 ] {𝜖}

)
𝜅

𝛼 𝜉
(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜅

𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜔

Fw
𝜅 ≤ 𝜔

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂)

𝜅 ≤ 𝜔
Fw

13. The Fw ñ← Ls case.

𝜅 𝜉
(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜖}

)
𝜔

𝜅 𝜉
(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜔

Rw
𝛼 ≤ 𝜅

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓(𝜈, 𝜂)

𝛼 ≤ 𝜅
Rw

14. The Rw ñ← Ls case.
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𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜅

𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Fw
𝜅 ≤ 𝜔

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂)

𝜅 ≤ 𝜔
Fw

15. The Fw ñ← Ex case.

𝜅 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝜅 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Rw
𝛼 ≤ 𝜅

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓(𝜈, 𝜂)

𝛼 ≤ 𝜅
Rw

16. The Rw ñ← Ex case.

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜅
)
[↑𝜖]

(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

Fw
𝜅 ≤ 𝜔

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

𝜅 ≤ 𝜔
Fw

17. The Fw ñ← Cn case.
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𝜅 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝜅 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

Rw
𝛼 ≤ 𝜅

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

𝛼 ≤ 𝜅
Rw

18. The Rw ñ← Cn case.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖, 𝜈}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓

(
𝜈, 𝜂′ ] {𝜈}

)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜂′ ] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

19. The Ti ñ← Ls case when the loosen’ee appears first after the tighten’ee.

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜖, 𝜖}〉 𝜂 ] {𝜖, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜈}〉 𝜂 ] {𝜈, 𝜈} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜖, 𝜈}〉 𝜂 ] {𝜖, 𝜈} 𝜔

Ti
𝜈 ≤vw 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

20. The Ti ñ← Ls case when the loosen’ee appears first before the tighten’ee.
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𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂 ] {𝜈}

) (
𝜂′ ]

{
𝜈, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂 ] {𝜖}

) (
𝜂′ ]

{
𝜖, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖, 𝜈, 𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓

(
𝜈, 𝜂′ ] {𝜈}

)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜂′ ] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

21. The Ti ñ← Ex case when the expel’ee appears first after the tighten’ee.

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜈, 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜈, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜖, 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜖, 𝜈, 𝜖} 𝜔

Ti
𝜈 ≤vw 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)
𝜈 ≤vw 𝜖

Ti

22. The Ti ñ← Ex case when the expel’ee appears first before the tighten’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖, 𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉

(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓

(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓
(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]

Ti

23. The Ti ñ← Cn case when the condense’ee appears first after the tighten’ee, and the tighten’ee
is not the condense’er.
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𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉

(
𝜂 ] {𝜖}

) (
𝜂′ ] {𝜖}

)
𝜔
)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓

(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)

Cn

𝜖 ←⊂= 𝜖 ∧ Cn✓
(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]

Ti

24. The Ti ñ← Cn case when the condense’ee appears first after the tighten’ee, and the tighten’ee
is the condense’er.

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜖, 𝜈, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜈}〉 𝜂 ] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜖, 𝜈}〉 𝜂 ] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Ti
𝜈 ≤vw 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖]
Ti

25. The Ti ñ← Cn case when the condense’ee appears first before the tighten’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜖

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜈

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓

(
𝜈, 𝜂′ ] {𝜈, 𝜖}

)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜂′ ]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

26. The Ab ñ← Ls case when the loosen’ee appears first after the absorb’ee.
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𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜈, 𝜖, 𝜖}〉 𝜂 ] {𝜈, 𝜖, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

) 〈
𝜇 ] {𝜖}, 𝜌 ]

{
𝜖𝜈.ii , 𝜖

}〉
𝜂 ]

{
𝜖𝜈.ii , 𝜖

}
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜖, 𝜈}〉 𝜂 ] {𝜈, 𝜖, 𝜈} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

) 〈
𝜇 ] {𝜈}, 𝜌 ]

{
𝜖𝜈.ii , 𝜈

}〉
𝜂 ]

{
𝜖𝜈.ii , 𝜈

}
𝜔

Ab
𝜈 ←⊂ 𝜖

Ls
𝜈 ≤vw 𝜖 ∧ Ls✓

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜉 ′

〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

27. The Ab ñ← Ls case when the loosen’ee appears first before the absorb’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ]

{
𝜈, 𝜖, 𝜖𝜈.ii

})
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜈, 𝜖

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓

(
𝜈, 𝜂′ ] {𝜈, 𝜖}

)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜂′ ]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

28. The Ab ñ← Ex case when the expel’ee appears first after the absorb’ee.

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜈, 𝜖, 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜈, 𝜖, 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜖𝜈.ii , 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖𝜈.ii , 𝜖𝜈.ii

}
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

) 〈
𝜇 ] {𝜈, 𝜖}, 𝜌 ]

{
𝜖𝜈.ii , 𝜈, 𝜖

}〉
𝜂 ]

{
𝜖𝜈.ii , 𝜈, 𝜖

}
𝜔

Ab
𝜈 ←⊂ 𝜖

Ex
𝜈 ≤vw 𝜖 ∧ Ex✓

(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜉 ′

〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

29. The Ab ñ← Ex case when the expel’ee appears first before the absorb’ee.
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𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜈, 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜈

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓

(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓
(
𝜖, 𝜉

〈
𝜇, 𝜌 ]

{
𝜈𝜖.ii

}〉
𝜂 ]

{
𝜈𝜖.ii

})
𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]

Ab

30. The Ab ñ← Cn case when the condense’ee appears first after the absorb’er, and the absorb’er
is not the condense’er.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii , 𝜖

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

(
𝛼 𝜉

〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

}) (
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜖 ←⊂= 𝜖 ∧ Cn✓

(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)

Cn

𝜖𝜈.ii ←⊂= 𝜖 ∧ Cn✓
(
𝜖, 𝜉

〈
𝜇, 𝜌 ]

{
𝜈𝜖.ii

}〉
𝜂 ]

{
𝜈𝜖.ii

})
𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]

Ab

31. The Ab ñ← Cn case when the condense’ee appears first after the absorb’er, and the absorb’er
is the condense’er.

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

) 〈
𝜇 ] {𝜈, 𝜖}, 𝜌 ]

{
𝜖𝜈.ii , 𝜈, 𝜖

}〉
𝜂 ]

{
𝜖𝜈.ii , 𝜈, 𝜖

}
𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜖, 𝜈}〉 𝜂 ] {𝜈, 𝜖, 𝜈} 𝜔

)
[↑𝜖]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

) 〈
𝜇 ] {𝜈}, 𝜌 ]

{
𝜖𝜈.ii , 𝜈

}〉
𝜂 ]

{
𝜖𝜈.ii , 𝜈

}
𝜔
)
[↑𝜖]

Ab
𝜈 ←⊂ 𝜖

Cn
𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂ 𝜖 [↑𝜖]
Ab

32. The Ab ñ← Cn case when the condense’ee appears first before the absorb’er.
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(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ Ls✓

(
𝜈 [↑𝜖] ,

(
𝜂′ ] {𝜈}

)
[↑𝜖]

)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜂′ ] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

33. The Di ñ← Ls case when the loosen’ee appears first after the dilute’ee.

(
𝛼 𝜉

(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜈, 𝜖, 𝜖}〉 𝜂 ] {𝜈, 𝜖, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜈}〉 𝜂 ] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜖, 𝜈}〉 𝜂 ] {𝜈, 𝜖, 𝜈} 𝜔

Di
𝜈 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ Ls✓

(
𝜈 [↑𝜖] ,

(
𝜉 ′ 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)
[↑𝜖]

)

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

34. The Di ñ← Ls case when the loosen’ee appears first before the dilute’ee, and the dilute’er is
not the loosen’ee.

(
𝛼 𝜉

(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜖, 𝜖}〉 𝜂 ] {𝜖, 𝜖} 𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜖, 𝜈}〉 𝜂 ] {𝜖, 𝜈} 𝜔

Di
𝜖 ←⊂= 𝜖

Ls
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ Ls✓(𝜈 [↑𝜖] , (𝜉 ′ 〈𝜇, 𝜌〉 𝜂) [↑𝜖])

Ls

𝜈 ≤vw 𝜖 ∧ Ls✓
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)
𝜈 ←⊂= 𝜖

Di

35. The Di ñ← Ls case when the loosen’ee appears first before the dilute’ee, and the dilute’er is
the loosen’ee.
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(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ]

{
𝜈, 𝜖𝜈.ii

})
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ]

{
𝜈, 𝜖, 𝜖𝜈.ii

})
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ Ex✓

(
𝜈 [↑𝜖] ,

(
𝜂′ ] {𝜈}

)
[↑𝜖]

)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜂′ ] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

36. The Di ñ← Ex case when the expel’er appears first after the dilute’ee.

(
𝛼 𝜉

(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜈, 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜈, 𝜖𝜈.ii

}
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜈, 𝜖, 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜈, 𝜖, 𝜖𝜈.ii

}
𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

Di
𝜈 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ Ex✓

(
𝜈 [↑𝜖] ,

(
𝜉 ′ 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)
[↑𝜖]

)

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)
𝜈 ←⊂= 𝜖

Di

37. The Di ñ← Ex case when the expel’er appears first before the dilute’ee, and the dilute’er is not
the expel’er.

(
𝛼 𝜉

(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖𝜈.ii

}
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜖, 𝜖𝜈.ii

}〉
𝜂 ]

{
𝜖, 𝜖𝜈.ii

}
𝜔

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜖, 𝜈, 𝜖} 𝜔

Di
𝜖 ←⊂= 𝜖

Ex
𝜈 [↑𝜖] ≤vw 𝜖 [↑𝜖] ∧ Ex✓(𝜈 [↑𝜖] , (𝜉 ′ 〈𝜇, 𝜌〉 𝜂) [↑𝜖])

Ex

𝜈 ≤vw 𝜖 ∧ Ex✓
(
𝜈, 𝜉 ′ 〈𝜇, 𝜌 ] {𝜖}〉 𝜂 ] {𝜖}

)
𝜈 ←⊂= 𝜖

Di

38. The Di ñ← Ex case when the expel’er appears first before the dilute’ee, and the dilute’er is the
expel’er.
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(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈, 𝜖}

)
𝜔

((
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜈}

)
𝜔
)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜈}

)
𝜔
)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ Cn✓

(
𝜖 [↑𝜖] , 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓
(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Di

39. The Di ñ← Cn case when the condense’ee appears first after the dilute’ee, and the dilute’ee is
not the condense’er.

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜈}〉 𝜂 ] {𝜈, 𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈, 𝜖, 𝜈}〉 𝜂 ] {𝜈, 𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ Cn✓(𝜖 [↑𝜖] , 𝜉 [↑𝜖])

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

40. The Di ñ← Cn case when the condense’ee appears first before the dilute’ee, and the dilute’er is
not the condense’ee.

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖, 𝜖}

)
𝜔

((
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂 ] {𝜈}

) (
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

) (
𝜂′ ] {𝜈, 𝜖}

)
𝜔
)
[↑𝜖]

Di
𝜈 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ Cn✓

(
𝜖 [↑𝜖] , 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈}

)

Cn

𝜖 ←⊂= 𝜖 ∧ Cn✓
(
𝜖, 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖}

)
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]

Di

41. The Di ñ← Cn case when the condense’ee appears first after the dilute’ee, and the dilute’ee is
the condense’er.
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(
𝛼 𝜉

(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 𝜂 ] {𝜈, 𝜖} 𝜔

)
[↑𝜖]

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜖, 𝜈, 𝜖}〉 𝜂 ] {𝜖, 𝜈, 𝜖} 𝜔

((
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 𝜂 ] {𝜈} 𝜔

)
[↑𝜖]

)
[↑𝜖 [↑𝜖]]

(
𝛼 𝜉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜖, 𝜈}〉 𝜂 ] {𝜖, 𝜈} 𝜔

)
[↑𝜖]

Di
𝜖 ←⊂= 𝜖

Cn
𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖] ∧ Cn✓(𝜖 [↑𝜖] , 𝜉 [↑𝜖])

Cn

𝜈 ←⊂= 𝜖 ∧ Cn✓(𝜖, 𝜉)

𝜈 [↑𝜖] ←⊂= 𝜖 [↑𝜖]
Di

42. The Di ñ← Cn case when the condense’ee appears first before the dilute’ee, and the dilute’er is
the condense’ee.

𝛼 𝜉𝜂 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉𝜂 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂′ ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

St
St✓(𝛼, 𝜇)

St

St✓(𝛼, 𝜇)

𝜈 ≤vw 𝜖

Ti

43. The Ti ñ← St case when the tighten’ee does not appear across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜉 ′ ] {𝜈}

) (
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜉 ′ ] {𝜖}

) (
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜇 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜇 ] {𝜖}〉

(
𝜂 ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

St
St✓(𝛼, 𝜇 ] {𝜈})

St

St✓(𝛼, 𝜇 ] {𝜖})

𝜈 ≤vw 𝜖

Ti

44. The Ti ñ← St case when the tighten’ee appears across the stutter’ee.
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𝛼 𝜉𝜂 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉𝜂
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

St
St✓(𝛼, 𝜇)

St

St✓(𝛼, 𝜇)

𝜈 ←⊂ 𝜖
Ab

45. The Ab ñ← St case when the absorb’ee does not appear across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜉 ′ ] {𝜈, 𝜖}

) (
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜉 ′ ]

{
𝜖𝜈.ii

}) (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜇 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 (
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜇 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

St
St✓(𝛼, 𝜇 ] {𝜈, 𝜖})

St

St✓
(
𝛼, 𝜇 ]

{
𝜖𝜈.ii

})
𝜈 ←⊂ 𝜖
Ab

46. The Ab ñ← St case when the absorb’ee appears across the stutter’ee.

(
𝛼 𝜉𝜂 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉𝜂 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜇〉 𝜂 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

St
St✓(𝛼 [↑𝜖] , 𝜇 [↑𝜖])

St

St✓(𝛼, 𝜇)

𝜈 ←⊂= 𝜖
Di

47. The Di ñ← St case when the dilute’ee does not appear across the stutter’ee.
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(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜉 ′ ] {𝜈}

) (
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜉 ′ ] {𝜈, 𝜖}

) (
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜇 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜇 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

St
St✓(𝛼 [↑𝜖] , (𝜇 ] {𝜈}) [↑𝜖])

St

St✓(𝛼, 𝜇 ] {𝜖})

𝜈 ←⊂= 𝜖
Di

48. The Di ñ← St case when the dilute’ee appears across the stutter’ee.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜂′ ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

49. The Ti ñ← Mu case when the tighten’ee appears in neither themumble’er nor themumble’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 〈𝜌 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜌 ] {𝜖}〉 〈𝜌 ] {𝜖}, 𝜃 ] {𝜖}〉

(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉
(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉
(
𝜉 ′ ] {𝜖}

)
〈𝜇 ] {𝜖}, 𝜃 ] {𝜖}〉

(
𝜂 ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

50. The Ti ñ← Mu case when the tighten’ee appears in both the mumble’er and the mumble’ee.
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𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 〈𝜌 ] {𝜈}, 𝜃 ] {𝜈}〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜖}〉 〈𝜌 ] {𝜖}, 𝜃 ] {𝜖}〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈}〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜖}〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

51. The Ti ñ← Mu case when the tighten’ee appears first in the mumble’er.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃 ] {𝜈}〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃 ] {𝜖}〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈}〉 𝜂
(
𝜂′ ] {𝜈}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜖}〉 𝜂
(
𝜂′ ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Mu

Mu
𝜈 ≤vw 𝜖

Ti

52. The Ti ñ← Mu case when the tighten’ee appears first in the mumble’ee.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

53. The Ab ñ← Mu case when the absorb’ee appears in neither themumble’er nor themumble’ee.
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𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 〈𝜌 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜌 ]

{
𝜖𝜈.ii

}〉 〈
𝜌 ]

{
𝜖𝜈.ii

}
, 𝜃 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜉 ′ ]

{
𝜖𝜈.ii

}) 〈
𝜇 ]

{
𝜖𝜈.ii

}
, 𝜃 ]

{
𝜖𝜈.ii

}〉 (
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

54. The Ab ñ← Mu case when the absorb’ee appears in both the mumble’er and the mumble’ee.

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 〈𝜌 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜌 ]

{
𝜖𝜈.ii

}〉 〈
𝜌 ]

{
𝜖𝜈.ii

}
, 𝜃 ]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜃 ]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

55. The Ab ñ← Mu case when the absorb’ee appears first in the mumble’er.

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉 〈𝜇, 𝜌〉
〈
𝜌, 𝜃 ]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
〈
𝜇, 𝜃 ]

{
𝜖𝜈.ii

}〉
𝜂
(
𝜂′ ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Mu

Mu
𝜈 ←⊂ 𝜖
Ab

56. The Ab ñ← Mu case when the absorb’ee appears first in the mumble’ee.
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(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃〉 𝜂 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

57. The Di ñ← Mu case when the dilute’ee appears in neither the mumble’er nor the mumble’ee.

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜌 ] {𝜈}〉 〈𝜌 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜌 ] {𝜈, 𝜖}〉 〈𝜌 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉

(
𝜉 ′ ] {𝜈}

)
〈𝜇 ] {𝜈}, 𝜃 ] {𝜈}〉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉
(
𝜉 ′ ] {𝜈, 𝜖}

)
〈𝜇 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉

(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

58. The Di ñ← Mu case when the dilute’ee appears in both the mumble’er and the mumble’ee.

(
𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈}〉 〈𝜌 ] {𝜈}, 𝜃 ] {𝜈}〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌 ] {𝜈, 𝜖}〉 〈𝜌 ] {𝜈, 𝜖}, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈}〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

59. The Di ñ← Mu case when the dilute’ee appears first in the mumble’er.
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(
𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃 ] {𝜈}〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜌〉 〈𝜌, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈}〉 𝜂

(
𝜂′ ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉 〈𝜇, 𝜃 ] {𝜈, 𝜖}〉 𝜂
(
𝜂′ ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Mu

Mu
𝜈 ←⊂= 𝜖

Di

60. The Di ñ← Mu case when the dilute’ee appears first in the mumble’ee.

𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜅

𝛼 𝜉
(
𝜂 ] {𝜖}

)
𝜅

𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Fw
𝜅 ≤vw𝜔 ∧ Fw✓(𝜔, (𝜉 (𝜂 ] {𝜈}) ) .c)

Fw

𝜅 ≤vw𝜔 ∧ Fw✓(𝜔, (𝜉 (𝜂 ] {𝜖}) ) .c)
𝜈 ≤vw 𝜖

Ti

61. The Ti ñ← Fw case.

𝜅 𝜉
(
𝜂 ] {𝜈}

)
𝜔

𝜅 𝜉
(
𝜂 ] {𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈}

)
𝜔

𝛼 𝜉
(
𝜂 ] {𝜖}

)
𝜔

Ti
𝜈 ≤vw 𝜖

Rw
𝛼 ≤vw 𝜅 ∧ Rw✓(𝛼, (𝜉 (𝜂 ] {𝜈}) ) .o)

Rw

𝛼 ≤vw 𝜅 ∧ Rw✓(𝛼, (𝜉 (𝜂 ] {𝜖}) ) .o)
𝜈 ≤vw 𝜖

Ti

62. The Ti ñ← Rw case.
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𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜅

𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜅

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Fw
𝜅 ≤vw𝜔 ∧ Fw✓(𝜔, (𝜉 (𝜂 ] {𝜈, 𝜖}) ) .c)

Fw

𝜅 ≤vw𝜔 ∧ Fw✓(𝜔, (𝜉 (𝜂 ] {
𝜖𝜈.ii

}) )
.c
)

𝜈 ←⊂ 𝜖
Ab

63. The Ab ñ← Fw case.

𝜅 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝜅 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

𝛼 𝜉
(
𝜂 ]

{
𝜖𝜈.ii

})
𝜔

Ab
𝜈 ←⊂ 𝜖

Rw
𝛼 ≤vw 𝜅 ∧ Rw✓(𝛼, (𝜉 (𝜂 ] {𝜈, 𝜖}) ) .c)

Rw

𝛼 ≤vw 𝜅 ∧ Rw✓(𝛼, (𝜉 (𝜂 ] {
𝜖𝜈.ii

}) )
.c
)

𝜈 ←⊂ 𝜖
Ab

64. The Ab ñ← Rw case.

(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜅
)
[↑𝜖]

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜅

(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Fw
𝜅 [↑𝜖] ≤vw𝜔 [↑𝜖] ∧ Fw✓(𝜔 [↑𝜖] , ( (𝜉 (𝜂 ] {𝜈}) ) [↑𝜖]) .c)

Fw

𝜅 ≤vw𝜔 ∧ Fw✓(𝜔, (𝜉 (𝜂 ] {𝜖}) ) .c)
𝜈 ←⊂= 𝜖

Di

65. The Di ñ← Fw case.
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(
𝜅 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝜅 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

(
𝛼 𝜉

(
𝜂 ] {𝜈}

)
𝜔
)
[↑𝜖]

𝛼 𝜉
(
𝜂 ] {𝜈, 𝜖}

)
𝜔

Di
𝜈 ←⊂= 𝜖

Rw
𝛼 [↑𝜖] ≤vw 𝜅 [↑𝜖] ∧ Rw✓(𝛼 [↑𝜖] , ( (𝜉 (𝜂 ] {𝜈}) ) [↑𝜖]) .c)

Rw

𝛼 ≤vw 𝜅 ∧ Rw✓(𝛼, (𝜉 (𝜂 ] {𝜖}) ) .c)
𝜈 ←⊂= 𝜖

Di

66. The Di ñ← Rw case.
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