
Two-sorted algebraic decompositions of1

Brookes’s shared-state denotational semantics2

Yotam Dvir1

, Ohad Kammar2

, Ori Lahav1

, and Gordon Plotkin2

3

1 Tel Aviv University yotamdvir@mail.tau.ac.il orilahav@tau.ac.il4
2 University of Edinburgh ohad.kammar@ed.ac.uk gdp@inf.ed.ac.uk5

Abstract. We use a two sorted equational theory of algebraic effects to6

model concurrent shared state with preemptive interleaving, recovering7

Brookes’s seminal 1996 trace-based model precisely. The decomposition8

allows us to analyse Brookes’s model algebraically in terms of separate9

but interacting components. The multiple sorts partition terms into lay-10

ers. We use two sorts: a “hold” sort for layers that disallow interleaving11

of environment memory accesses, analogous to holding a global lock on12

the memory; and a “cede” sort for the opposite. The algebraic signature13

comprises of independent interlocking components: two new operators14

that switch between these sorts, delimiting the atomic layers, thought of15

as acquiring and releasing the global lock; non-deterministic choice; and16

state-accessing operators. The axioms similarly divide cleanly: the de-17

limiters behave as a closure pair; all operators are strict, and distribute18

over non-empty non-deterministic choice; and non-deterministic global19

state obeys Plotkin and Power’s presentation of global state. Our rep-20

resentation theorem expresses the free algebras over a two-sorted family21

of variables as sets of traces with suitable closure conditions. When the22

held sort has no variables, we recover Brookes’s trace semantics.23

Keywords: shared state · concurrency · denotational semantics · monads ·24

algebraic effects · equational theory · multi-sorted algebra · trace semantics ·25

representability · join semilattices · closure pairs · mnemoids · global state26

1 Introduction27

We decompose Brookes’s pioneering denotational model of concurrent shared28

state under preemptive interleaving [7] using algebraic effects [33]. This model29

possesses several desirable features in the area of denotational models for pro-30

gramming languages with concurrent features. (I) It is based on traces, an el-31

ementary sequential gadget. (II) It is fully compositional, as in traditional de-32

notational semantics for shared-state [14, 16, e.g.]. Each syntactic programming33

construct, including parallel composition, has a corresponding semantic oper-34

ation combining the meanings of its constituents. Such full compositionality35

contrasts with some recent models in this area that require additional ‘seman-36

tic post-processing’: some form of quotient, pruning of auxiliary mathematical37

https://orcid.org/0000-0002-6507-3791
https://orcid.org/0000-0002-2071-0929
https://orcid.org/0000-0003-4305-6998
https://orcid.org/0000-0001-8496-6096

2 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

constructs, reasoning up-to behavioural equivalence; or capture only sequen-38

tial blocks, reasoning about the parallel composition on a separate layer [e.g.39

8, 9, 18, 23]. (III) Subsequent variations and extensions [5, 42, 43], as well as40

adaptations to relaxed memory models [13, 23], attest to its versatility, making41

it a cornerstone in the denotational semantics for concurrent languages with42

side-effects. (IV) It achieves a high level of abstraction, evident in the many43

compiler transformations that the model supports, including the most common44

memory access introductions and eliminations, and the laws of parallel program-45

ming. Moreover, Brookes showed the model to be fully abstract in a language46

extended with the await construct, which blocks execution until all memory47

locations contain a given tuple of values, and then atomically updates them to48

contain another tuple of values. This construct is not a natural programming49

construct, but is clearly suggested by Brookes’s semantics.50

Plotkin and Power’s modern theory of algebraic effects [33] refines Moggi’s51

monadic approach [28] with algebraic theories. The algebraic approach informs52

the monadic structure by identifying semantic counterparts to syntactic con-53

structs and axiomatising their semantics equationally. The monadic structure54

emerges through the well-established connection between algebraic theories and55

monads [25] via representation theorems. For example: global state emerges by56

axiomatising memory lookup and update [33] and a representation theorem in-57

volving the state monad; non-determinism emerges by axiomatising semi-lattices58

and a representation theorem involving the powerdomains [14, 30]; and so on.59

The algebraic perspective may offer insights into the making of the denotational60

semantics. It can suggest methods for combining different effects and modularly61

augment a semantics with a given computational effect [16].62

Contribution Our main conceptual contribution is to exhibit Brookes’s model63

algebraically. The connection between algebraic effects and concurrency has long64

been emphasised. For example, the ability to use algebraic effects, without any65

axioms, and their effect handlers [4, 35, 36] to allow users to define their own66

schedulers was the original motivation for their implementation in the OCaml67

programming language [10, 11, 38]. Nonetheless, exhibiting abstract models such68

as Brookes’s algebraically via equational axiomatisation of syntactic constructs69

has proved challenging. Our own previous algebraic model [12] invalidates a key70

transformation, reflecting a fundamental limitation of it.71

Our main technical innovation is to use multi-sorted algebraic theories, a72

direction that was raised in personal discussions since the earliest work on alge-73

braic effects [33]. A multi-sorted algebraic term decomposes into layers. Our two74

sorts represent two modes of interaction between a program fragment and its75

concurrent environment. A “hold” sort provides a reasoning layer in which the76

environment may not interfere, whereas in the “cede” sort it may. We provide77

two operators that switch between these sorts, allowing our axioms to specify78

the uninterruptable effects. Our core idea is to axiomatise these operators as a79

closure pair, an established order-theoretic special Galois-connection, the dual80

to the domain-theoretic embedding-projection pairs [2]. The remaining axioms81

are strikingly independent from these axioms, and cover the strict distributive82

Two-sorted algebraic decompositions of shared state 3

interaction of global state with non-determinism and the strict distributivity83

of the closure pair over non-determinism. Our main technical contribution is84

the representation of this theory, which uses sets of traces akin to Brookes’s,85

recovering Brookes’s model precisely in the “cede” sort.86

Summarising, our contributions are as follows:87

– A two-sorted algebraic theory for shared-state, SS.88

– A representation theorem for SS via Brookes-style trace sets.89

– A decomposition of Brookes’s model using SS and a geometric morphism.90

– A single-sorted algebraic theory for Brookes’s await, embedding into SS.91

– The first use of multi-sorted theories for algebraic effects92

Caveats Throughout the development, we opt for mathematical simplicity wher-93

ever possible. For example, we use countable-join semilattices instead of finite-94

join semilattices to represent non-determinism. This choice streamlines the de-95

velopment leading up to the main technical contribution—the representation96

theorem—allowing us to use countable sets instead of finitely generated ones.97

We also do not treat recursion to avoid the complexity a domain-theoretic ac-98

count will incur. The resulting model—identical to Brookes’s—coincides with99

the elided domain-theoretic model over discrete pre-domains. This model also100

supports iteration (i.e. while-loops) without change thanks to countable-joins.101

It also supports first-order recursion without change by equipping it with a102

domain-theoretic structure. These compromises let us focus on the core con-103

cepts, and provide a relatively elementary mathematical exposition and a clear104

presentation of the underlying idea, motivating future inquiry.105

Outline In §2 we recap notions of multi-sorted algebra. In §3 we present our106

two-sorted theory of shared state. In §4 we build a free-model representation of107

this theory, an adaptation of Brookes’s model. In §5 we recover Brookes’s model108

precisely, using two different methods that offer different perspectives: model-109

theoretically, via an adjunction with the representation; and algebraically, via an110

embedding of a single-sorted theory of transitions for Brookes’s model. Finally,111

we conclude in §6, where we discuss related work, as well as further research112

opportunities our contributions enables.113

The supplementary material also includes in appendix A some “no-go” results114

concerning single-sorted theories, motivating the use of a multi-sorted theory to115

solve the problem at hand. For example, it shows why a natural single-sorted116

theory—axiomatising yielding as closure operator—cannot work.117

2 Preliminaries118

In the algebraic effects approach to denotational semantics, we: express core119

effectful programming constructs as corresponding algebraic operations; express120

core equational axioms between them as axioms for algebraic structures; and121

derive a monad by representing the free-model over sets of variables, and define a122

denotational semantics with it. This section is a standard treatment of countably-123

infinitary multi-sorted equational theories and their free models [3, 41, e.g.].124

4 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

2.1 Terms125

We define the logical language of multi-sorted equational logic. The basic vo-126

cabulary of multi-sorted algebra is parameterised by a set sort whose elements127

, we call sorts. We will mostly focus on the single-sorted case (sort = {⭒})128

and the two-sorted case (sort = {⦁, ⚬}). A sorting scheme ⃗ ∈ Scheme sort is129

a countable sequence of sorts, e.g. a finite sequence ⃗ = ⟨0, … ,𝑛−1⟩ of length130

𝑛, or countably infinite sequence ⃗ = ⟨0,1, …⟩ of length 𝜔. For example: the131

empty scheme 0 ≔ ⟨⟩ of length 0; and the constant schemes 𝛼 ⋅  ≔ ⟨⟩𝑖<𝛼 of132

length 𝛼. We write  for the scheme 1 ⋅ .133

A sort-sorted signature Σ = ⟨opΣ, arΣ⟩ consists of a set of operators opΣ134

and an arity assignment arΣ ∶ opΣ → sort ×Scheme sort. For 𝑂 ∈ opΣ with135

arΣ 𝑂 = ⟨, ⟨𝑖⟩𝑖⟩, we write (𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ. The operator 𝑂 will allow us136

to construct a -sort term with a tuple of terms, with the 𝑖th subterm having137

sort 𝑖. For single-sorted arities (sort = {⭒}), we write 𝑂 ∶ 𝛼 for 𝑂 ∶ ⭒ (𝛼 ⋅ ⭒).138

A signature is a set sortΣ and a sortΣ-sorted signature we also denote by Σ.139

We will use the following signature to model non-deterministic choice.140

Example 1. The join semilattice single-sorted signature J consists of two opera-141

tors: join ∨ ∶ 2, i.e. ∨ ∶ ⭒ ⟨⭒, ⭒⟩ and bottom ⊥ ∶ 0 , i.e., ⊥ ∶ ⭒ ⟨⟩.142

To simplify the formulation of our representation theorem later, we generalize143

the signature to countable non-deterministic choice operators:144

Example 2. The countable-join semilattice single-sorted signature V consists of145

an 𝛼-ary choice operator ⋁𝛼 ∶ 𝛼 for every 𝛼 ≤ 𝜔. In particular, the signature J146

is included with 𝛼 = 2 (join) and 𝛼 = 0 (bottom).147

The final example demonstrates the treatment for multiple sorts:148

Example 3. The finite dimensional transformations signature M consists of a sort149

for each pair of natural numbers sortM ≔ {Hom (𝑚, 𝑛) | 𝑚, 𝑛 ∈ ℕ}, an identity150

operator Id𝑛 ∶ Hom (𝑛, 𝑛) for each 𝑛 ∈ ℕ, and, for each triple 𝑚, 𝑛, 𝑘 ∈ ℕ, a151

composition operator (∘𝑚,𝑛,𝑘) ∶ Hom (𝑚, 𝑘) ⟨Hom (𝑛, 𝑘) , Hom (𝑚, 𝑛)⟩.152

A signature generates a language of algebraic terms as follows. A sort-153

family 𝑿 ∈ Setsort is an assignment of a set 𝑿, to each sort  ∈ sort.154

We identify Set{⭒} ≅ Set, and use a set-like notation to specify families, e.g.155

𝑿 ≔ {𝑥 ∶ ⦁, 𝑦, 𝑧 ∶ ⚬} is the two-sorted family 𝑿⦁ ≔ {𝑥} and 𝑿⚬ ≔ {𝑦, 𝑧}. We156

can turn3 every sort-family 𝑿 into the set ∮ 𝑿 ≔ ∐∈sort 𝑿 equipped with157

the injections in ∶ 𝑿 → ∮ 𝑿.158

For a signature Σ and sortΣ-family 𝑿 ∈ SetsortΣ , define the sortΣ-family of159

Σ-terms over 𝑿: TermΣ𝑿 ∈ SetsortΣ , TermΣ
𝑿 ≔ {𝑡 | 𝑿 ⊢Σ 𝑡 ∶ } inductively:160

(𝑥 ∶ ) ∈ 𝑿
𝑿 ⊢Σ 𝑥 ∶ 

(𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ ∀𝑖.𝑿 ⊢Σ 𝑡𝑖 ∶ 𝑖
𝑿 ⊢Σ 𝑂 ⟨𝑡𝑖⟩𝑖<𝛼 ∶ 

3 This simple construction is a special case of the Grothendieck construction, and lets
us track the distinction between sets and families.

Two-sorted algebraic decompositions of shared state 5

Here, the elements 𝑥 ∈ 𝑿, written (𝑥 ∶ ) ∈ 𝑿, represent variables of sort .161

A sort-sorted map 𝑓 ∶ 𝑿 → 𝒀 is a sort-indexed tuple of functions between162

the corresponding sets: 𝑓 ∶ 𝑿 → 𝒀, for every  ∈ sort. Most of our devel-163

opment will utilise such sorted maps, and for now we will use them to define164

the standard notion of simultaneous substitution. A substitution 𝑿 ⊢Σ 𝜃 ∶ 𝒀 is165

a sorted function 𝜃 ∶ 𝒀 → TermΣ𝑿, specifying which -term 𝑿 ⊢Σ 𝜃𝑦 ∶  to166

substitute for each variable 𝑦 ∈ 𝒀. Each such substitution determines a sorted167

map [𝜃] ∶ Term𝒀 → Term𝑿 inductively, which we write in post-fix notation:168

(𝒀 ⊢Σ 𝑦 ∶ ) [𝜃] ≔ (𝑿 ⊢Σ 𝜃𝑦 ∶ ) (𝒀 ⊢Σ 𝑂 ⟨𝑡𝑖⟩𝑖) [𝜃] ≔ (𝑿 ⊢Σ 𝑂 ⟨𝑡𝑖 [𝜃]⟩𝑖)

2.2 Equational logic169

A -sorted Σ-equation in context 𝑿 consists of a pair ⟨𝑙, 𝑟⟩ ∈ TermΣ
𝑿 of -170

sorted Σ-terms over 𝑿. We write this situation as 𝑿 ⊢Σ 𝑙 = 𝑟 ∶ , and call 𝑙171

the left-hand side (LHS) and 𝑟 the right-hand side (RHS) of the equation. A172

presentation 𝔭 consists of a signature Σ𝔭 and axioms: a set Ax𝔭 of Σ-equations.173

Example 4. The join semilattice presentation J consists of the signature ΣJ ≔ J174

of example 1, and the axioms AxJ below, where variables and sorts are omitted:175

(Associativity) 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧
(Commutativity) 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥

(Idompotency) 𝑥 ∨ 𝑥 = 𝑥
(Neutrality) 𝑥 ∨ ⊥ = 𝑥176

Example 5. The countable-join semilattice presentation V consists of the signa-177

ture ΣV ≔ V of example 2, and the axioms AxV, omitting variables and sorts:178

(ND-return) ⋁𝑖<1𝑥𝑖 = 𝑥0
(ND-squash) ⋁𝑖<𝛼⋁𝑗<𝛽𝑖

𝑥𝑖,𝑗 = ⋁𝑘<𝛾𝑥𝑓𝑘 where 𝑓 ∶ 𝛾 ↠ ∐
𝑖<𝛼

𝛽𝑖
179

Example 6. The finite dimensional transformations presentation M consists of180

the signature ΣM ≔ M of example 3 and the axioms AxM below, omitting variables181

and sorts, as well as suppressing the sort indices (each axiom scheme includes182

every possible instantiation):183

(L-Id) Id ∘ 𝑓 = 𝑓 (R-Id) 𝑓 ∘ Id = 𝑓 (Assoc) 𝑓 ∘ (𝑔 ∘ ℎ) = (𝑓 ∘ 𝑔) ∘ ℎ184

Figure 1 presents the deductive system called equational logic. We say that a185

presentation 𝔭 proves an equation, writing 𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶  when it is derivable186

from Ax𝔭 using these standard equational reasoning rules, namely: reflexivity,187

symmetry, transitivity, use of an axiom, substitution, and congruence. This logic188

is monotone: assuming more axioms allows us to prove more equations. The alge-189

braic theory of a presentation 𝔭 is the smallest deduction-closed set of equations190

containing the axioms.191

Example 7. We can prove {𝑥, 𝑦 ∶ ⭒} ⊢J (𝑥 ∨ ⊥) ∨ 𝑦 = 𝑥 ∨ 𝑦 ∶ ⭒ using an instance192

of Neutrality and reflexivity with the following instance of congruence:193

{𝑧, 𝑦 ∶ ⭒} ⊢J 𝑡 ≔ 𝑧 ∨ 𝑦 𝜃1 ≔ (𝑧↦𝑥∨⊥
𝑦↦𝑦

) 𝜃2 ≔ (𝑧↦𝑥
𝑦↦𝑦

)

6 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

𝑿 ⊢Σ𝔭 𝑡 ∶ 
𝑿 ⊢𝔭 𝑡 = 𝑡 ∶ 

𝑿 ⊢𝔭 𝑡2 = 𝑡1 ∶ 
𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶ 

𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶  𝑿 ⊢𝔭 𝑡2 = 𝑡3 ∶ 
𝑿 ⊢𝔭 𝑡1 = 𝑡3 ∶ 

(𝑿 ⊢Σ𝔭 𝑡1 = 𝑡2 ∶ ) ∈ Ax𝔭

𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶ 
𝒀 ⊢𝔭 𝑡1 = 𝑡2 ∶  𝑿 ⊢Σ𝔭 𝜃 ∶ 𝒀

𝑿 ⊢𝔭 𝑡1 [𝜃] = 𝑡2 [𝜃] ∶ 
𝒀 ⊢Σ𝔭 𝑡 ∶  𝑿 ⊢Σ𝔭 𝜃1, 𝜃2 ∶ 𝒀 ∀(𝑦 ∶ ) ∈ 𝒀 .𝑿 ⊢𝔭 𝜃1𝑦 = 𝜃2𝑦 ∶ 

𝑿 ⊢𝔭 𝑡 [𝜃1] = 𝑡 [𝜃2] ∶ 

Fig. 1. Multi-sorted equational logic with countable arities

When a presentation 𝔭 proves the semi-lattice axioms in one of its sorts ,194

then the encoding (𝑿 ⊢Σ𝔭
𝑙 ≤ 𝑟 ∶ ) ≔ (𝑿 ⊢Σ𝔭

𝑙 ∨ 𝑟 = 𝑟 ∶ ) of inequations as195

equations in this sort is a preorder w.r.t. 𝔭-equality, i.e.196

(𝑿 ⊢𝔭 𝑠 ≤ 𝑡 ≤ 𝑠 ∶ ) ⟹ (𝑿 ⊢𝔭 𝑠 = 𝑡 ∶ )

We use similar encoding for (≥). Due to the monotonicity property of equational197

logic, once we have included an axiomatization of semi-lattices through a subset198

of the axioms, we may proceed to postulate inequations.199

We will also use a generalisation of distributivity axioms, reproducing familiar200

arithmetic distributivity equations such as 𝑥⋅max{𝑦1, 𝑦2} = max{𝑥⋅𝑦1, 𝑥⋅𝑦2}, the201

distributivity of (⋅) over max in the right-hand-side position. The generalization202

is straightforward, but technical. The main message: in a given presentation 𝔭, if203

all operators distribute over binary joins in every position, the congruence rule204

is valid for inequations:205

𝒀 ⊢Σ𝔭
𝑡 ∶  𝑿 ⊢Σ𝔭

𝜃1, 𝜃2 ∶ 𝒀 ∀(𝑦 ∶ ) ∈ 𝒀 .𝑿 ⊢𝔭 𝜃1𝑦 ≤ 𝜃2𝑦 ∶ 
𝑿 ⊢𝔭 𝑡 [𝜃1] ≤ 𝑡 [𝜃2] ∶ 

If a presentation 𝔭 supports semi-lattices in every sort and they distribute over bi-206

nary joins in every positions, then we say that 𝔭 supports inequational reasoning.207

The theory of 𝔭 then admits Bloom’s logic for ordered algebraic theories [6]. We208

let future work determine the most appropriate variety of inequational logic [32].209

Going forward, all of our presentations support inequational reasoning in this210

sense, and all operators distribute over arbitrary non-empty joins, not just the211

binary ones. Moreover, they are all strict: 𝑂(⊥, … , ⊥) = ⊥ for every operator212

(𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ𝔭. Such theories ‘absorb’ side-effects when their continuations213

diverge, an inherent ‘partial correctness’ property of Brookes’s model.214

The rest of this section is devoted to the technical definition of distributivity.215

Let Σ be a multi-sorted signature, (𝑃 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ be an operator, and216

𝑖0 < 𝛼 be one of the positions in 𝑃 ’s scheme. Assume further such that both 𝑖0
217

and  have ‘single-sorted’ operators (𝑆 ∶ 𝑖0
(𝛽 ⋅ 𝑖0

)), (𝑆′ ∶  (𝛽 ⋅ )) ∈ Σ with218

the same arity length 𝛽. We define the following distributivity axiom [17]:219

Two-sorted algebraic decompositions of shared state 7

{𝑥𝑖 ∶ 𝑖 | 𝑖0 ≠ 𝑖 < 𝛼} ∪ {𝑦𝑗 ∶ 𝑖0
∣ 𝑗 < 𝛽} ⊢Σ

𝑃 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖
𝑖 = 𝑖0 ∶ 𝑆 ⟨𝑦𝑗⟩𝑗

⟩
𝑖

= 𝑆′ ⟨𝑃 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖
𝑖 = 𝑖0 ∶ 𝑦𝑗

⟩
𝑖
⟩

𝑗

∶ 

which we call the distributivity of 𝑃 over 𝑆, 𝑆′ in the 𝑖0-component.220

Distributivity over binary joins implies monotonicity, in the following sense.221

Let 𝔭 be a presentation, (𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ𝔭 be an operator, and 𝑖0 < 𝛼 an222

index into its sorting scheme. Assume ,𝑖0
include the theory of semilattices,223

and that 𝑂 distributes over the binary joins of 𝑖0
and  in the 𝑖th

0 component.224

Then 𝑂 is monotone in this component w.r.t. the semilattice preorder, i.e., the225

following deduction rule is admissible:226

𝒀 ⊢𝔭 𝑙 ≤ 𝑟 ∶ 𝑖0

{𝑥𝑖 ∶ 𝑖 | 𝑖0 ≠ 𝑖 < 𝛼} ∪ 𝒀 ⊢𝔭 𝑂 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖
𝑖 = 𝑖0 ∶ 𝑙 ⟩

𝑖
≤ 𝑂 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖

𝑖 = 𝑖0 ∶ 𝑟 ⟩
𝑖

Specifically, if 𝔭 includes the theory of semilattices in all sorts, and every operator227

distributes over binary joins, then the congruence rule for inequations is valid.228

2.3 Algebras and models229

After presenting the proof theory—equational logic—lets turn to the model the-230

ory of universal algebra. A Σ-algebra A consists of a sortΣ-family A ∈ SetsortΣ ,231

the carrier, and an assignment A J−Kop, for each operator (𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ,232

of an operation over this carrier: A J𝑂Kop ∶ (∏𝑖<𝛼 A𝑖
) → A.233

Example 8. For any set 𝑋, define the V-algebra V𝑋 by taking the carrier to be234

the set of countable (finite or infinite) 𝑋-subsets V𝑋 ≔ Pℵ0(𝑋), and interpret235

choice as union L𝑋J⋁𝛼Kop⟨𝐷𝑖⟩𝑖<𝛼 ≔ ⋃𝑖<𝛼 𝐷𝑖.236

Example 9. Define the M-algebra M by taking the carrier to be the set of real-237

valued matrices of the corresponding dimensions, MHom(𝑚,𝑛) ≔ 𝕄ℝ
𝑚×𝑛, interpret238

the identity MJId𝑛Kop ≔ 𝐼𝑛 ∈ 𝕄ℝ
𝑛×𝑛 as the identity matrix, and composition239

MJ(∘)Kop ≔ (⋅) as matrix multiplication.240

Let A be an M-algebra. Define the opposite algebra Aop by exchanging dimen-241

sions. So Aop
Hom(𝑚,𝑛) ≔ AHom(𝑛,𝑚), the same identity AopJId𝑛Kop ≔ AJId𝑛Kop,242

and reversing composition AopJ(∘)Kop(𝐴, 𝐵) ≔ AJ(∘)Kop(𝐵, 𝐴).243

Example 10 (term algebra). The Σ-terms with variables from 𝑿 carry a canon-244

ical algebra structure FΣ𝑿, given by FΣ𝑿 ≔ TermΣ𝑿, with each 𝑂-term con-245

structor as the corresponding 𝑂-operation: (FΣ𝑿) J𝑂Kop ⟨𝑡𝑖⟩𝑖 ≔ 𝑂 ⟨𝑡𝑖⟩𝑖.246

A Σ-algebra allows us to interpret every Σ-term, given values for its variables.247

Formally, let A be a Σ-algebra. An 𝑿-environment in A is a sorted function 𝑒 ∶248

𝑿 → A. Given such an environment, we can interpret every term by induction:249

A J𝑿 ⊢Σ 𝑥 ∶ Kterm 𝑒 ≔ 𝑒𝑥 A
q
𝑂 ⟨𝑡𝑖⟩𝑖

y
term

𝑒 ≔ A J𝑂Kop ⟨A J𝑡𝑖Kterm 𝑒⟩𝑖

8 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

Example 11 (substitution). An 𝑿-environment in FΣ𝑿 amounts to a substi-250

tution, and interpreting terms in FΣ𝑿 amounts to substitution.251

A Σ-algebra A validates the equation 𝑿 ⊢Σ 𝑙 = 𝑟 ∶  when evaluation in all252

environments equates its sides: AJ𝑙Kterm𝑒 = AJ𝑟Kterm𝑒 for all 𝑒 ∶ 𝑿 → A. We253

then write A ⊢ 𝑿 ⊢Σ 𝑙 = 𝑟 ∶ . A 𝔭-model is an algebra validating all of Ax𝔭.254

The soundness theorem of equational logic states that every 𝔭-model validates255

all the equations in the algebraic theory of 𝔭.256

Example 12. Referring to previous examples, the algebras V𝑋 are V-models, the257

algebras M and Mop are M-models, and the algebra of terms is an ∅-model.258

Example 13. Consider the ΣJ-algebra A for which the carrier is the set of natural259

numbers A ≔ ℕ, join interprets as addition AJ∨Kop(𝑚, 𝑛) ≔ 𝑚+𝑛, and bottom260

as zero AJ⊥Kop ≔ 0. This is not a J-model, since, taking 𝑒 ∶ {𝑥 ∶ ⭒} → A with261

𝑒𝑥 = 1, we get AJ𝑥∨𝑥Kterm𝑒 ≠ AJ𝑥Kterm𝑒; and so A �⊢ 𝑥 ∶ ⭒ ⊢J 𝑥∨𝑥 = 𝑥 ∶ ⭒.262

2.4 Representability263

The final concept we need is the representation of free models. It specifies when264

the elements in a given 𝔭-model represent the Σ𝔭-terms up-to provable equality in265

𝔭. Our main technical contribution (§4) is to show that Brookes’s trace semantics,266

generalised appropriately, is the free model for a two-sorted algebraic theory.267

A Σ-algebra homomorphism 𝜑 ∶ A → B is a sorted-function 𝜑 ∶ A → B that268

preserves the operations: 𝜑(A J𝑂Kop (𝑎1, … , 𝑎𝛼)) = B J𝑂Kop (𝜑𝑎1, … , 𝜑𝑎𝛼).269

Example 14. Transposing real-valued matrices (−)⊺ ∶ 𝕄ℝ
𝑚×𝑛 → 𝕄ℝ

𝑛×𝑚 is a homo-270

morphism (−)⊺ ∶ M → Mop, by the well-known identity (𝐴 ⋅ 𝐵)⊺ = 𝐵⊺ ⋅ 𝐴⊺.271

Example 15 (evaluation homomorphism). Evaluation using any 𝑿-environment272

𝑒 ∶ 𝑿 → A in a Σ-algebra A is a homomorphism AJ−Kterm𝑒 ∶ FΣ𝑿 → A.273

A 𝔭-model ⟨A, 𝑒⟩ over a family 𝑿 consists of a 𝔭-model A and an 𝑿-envi-274

ronment in it 𝑒 ∶ 𝑿 → A. A free 𝔭-model ⟨A, return⟩ over a family 𝑿 is then275

a 𝔭-model over 𝑿 such that every environment in every 𝔭-model 𝑒 ∶ 𝑿 → B276

extends uniquely along return to a 𝔭-homomorphism 𝑒# ∶ A → B, i.e., for all277

𝑥 ∈ 𝑿, we have: 𝑒#
 (return 𝑎) = 𝑒𝑎. We then say that the algebra A represents278

𝑿-environments via the assignment 𝑒 ↦ 𝑒#, the corresponding representation.279

The algebraic theory of effects [33] emphasises the role free models play in280

denotational semantics for programming languages with effects. In particular,281

given a free 𝔭-model over 𝑿 for every family 𝑿, one standardly obtains a monad282

suitable for the denotational semantics of a language with computational effects283

conforming to the operators in 𝔭.284

Example 16. For any set 𝑋, the V-algebra V𝑋 given by the countable powerset285

in example 8 represents 𝑋-environments; together with return 𝑥 ≔ {𝑥} it forms286

a free V-model over 𝑋. The representation assigns 𝑒 ∶ 𝑋 → B to 𝑒# ∶ V𝑋 → B,287

𝑒#𝐷 ≔ ⋃𝑥∈𝐷 𝑒𝑥. The data ⟨𝑋 ↦ V𝑋, return, (−)#⟩ is a monad.288

Two-sorted algebraic decompositions of shared state 9

3 Shared state289

To define the equational theory of shared state, we first recall the standard,290

single sorted (non-deterministic) global state theory G [16, 27, 33]. The variant291

we present here has countable non-determinism, and the global state operators292

manipulate a common memory store 𝕊 ≔ 𝕃 → 𝔹 with a finite set of locations293

𝕃 ≠ ∅ each storing a bit 𝔹 ≔ {𝟶, 𝟷}. A larger finite set of storable-values would294

not be conceptually different. Infinite sets of storable-values or locations work295

similarly with more involved representation theorems. In concrete examples, we296

let 𝕃 = {l1, l2} and use non-bracketed vectors for stores, e.g. 𝟷
𝟶 denotes (l1↦𝟷

l2↦𝟶).297

The signature ΣG consists of the countable-join semilattice operators (ex-298

ample 2), as well as two kinds of memory-access operators: lookup operators299

𝖫ℓ ∶ ⭒ ⟨⭒, ⭒⟩, to look a location ℓ ∈ 𝕃 up and branch according to the value300

found; and update operators 𝖴ℓ,𝑏 ∶ ⭒ ⟨⭒⟩, to update a location ℓ ∈ 𝕃 to the value301

𝑏 ∈ 𝔹. The global state axioms AxG consists of the countable-join semilattice302

axioms (example 5), as well as the following:303

Non-deterministic global state (omitting semilattice axioms)
(UL) 𝖴ℓ,𝑏 𝖫ℓ(𝑥𝟶, 𝑥𝟷) = 𝖴ℓ,𝑏 𝑥𝑏
(UU) 𝖴ℓ,𝑏′ 𝖴ℓ,𝑏 𝑥 = 𝖴ℓ,𝑏 𝑥
(UUc) 𝖴ℓ,𝑏 𝖴ℓ′,𝑏′ 𝑥 = 𝖴ℓ′,𝑏′ 𝖴ℓ,𝑏 𝑥 where ℓ ≠ ℓ′

(LU) 𝖫ℓ(𝖴ℓ,𝟶 𝑥, 𝖴ℓ,𝟷 𝑥) = 𝑥
(ND-U) ⋁𝑖<𝛼 𝖴ℓ,𝑏 𝑥𝑖 = 𝖴ℓ,𝑏 ⋁𝑖<𝛼𝑥𝑖

304

The induced algebraic theory [33] includes other familiar axioms [27]. For305

example, lookup also distributes over binary join, so the theory admits inequa-306

tional reasoning; consecutively looking the same location up can be merged,307

e.g. {𝑥𝟶, 𝑥𝟷, 𝑦} ⊢G 𝖫ℓ(𝖫ℓ(𝑥𝟶, 𝑥𝟷), 𝑦) = 𝖫ℓ(𝑥𝟶, 𝑦); and other combinations of look-308

ing-up and updating different locations commute, e.g. for any ℓ ≠ ℓ′ we have309

{𝑥𝟶, 𝑥𝟷} ⊢G 𝖫ℓ(𝖴ℓ′,𝑏 𝑥𝟶, 𝖴ℓ′,𝑏 𝑥𝟷) = 𝖴ℓ′,𝑏 𝖫ℓ(𝑥𝟶, 𝑥𝟷).310

Our two-sorted presentation SS of shared state extends global state. Its sorts311

are sortΣSS
= {⦁, ⚬}. The hold sort (⦁) represents an uninterrupted sequence312

of memory accesses, whereas the cede sort (⚬) allows control to pass to the313

environment. The operators and the arities of the signature ΣSS consist of a copy314

of ΣG at ⦁, a copy of ΣV at ⚬, and new operators ◁ ∶ ⚬⟨⦁⟩ and ▷ ∶ ⦁⟨⚬⟩.315

The intuitive reading for algebraic effects is from the outside in. With this316

intuition, one interpretation of the operators ◁ and ▷ is to acquire and release a317

global lock. The hold sort (⦁) represents the lock being held by one of the threads318

in the program. The cede sort (⚬) represents points in the execution in which one319

of the threads in the concurrent environment may acquire the lock. The sorts320

ensure exclusive access to the lock, and therefore to the store. In an alternative321

interpretation, these operators delimit atomic blocks, their sorts prevent nesting.322

The shared state axioms AxSS include a copy of the (non-deterministic) global323

state axioms AxG at ⦁ and a copy of the countable-join semilattice axioms AxV324

at ⚬. In particular, SS proves the semi-lattice axioms in both sorts. It further325

includes standard strict distributivity axioms for the new unary operators:326

10 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

Strict distributivity of ◁ and ▷
(ND-◁) ⋁𝑖<𝛼 ◁𝑥𝑖 = ◁⋁𝑖<𝛼𝑥𝑖 (ND-▷) ⋁𝑖<𝛼 ▷𝑥𝑖 = ▷⋁𝑖<𝛼𝑥𝑖

327

With these axioms, SS supports inequational reasoning, which represents the328

semantic refinement relation used to validate program transformations [e.g. 12].329

Finally, AxSS axiomatises ◁ and ▷ as an (insertion)-closure pair [e.g. 2]:330

Closure pair (Empty) ◁▷ 𝑦 = 𝑦 (Connect) ▷◁𝑥 ≥ 𝑥
331

They are compatible with the global-lock interpretation:332

Empty (◁▷ 𝑦 = 𝑦). Acquiring and immediately releasing the lock has no effect333

on the sequence of effects that can occur as a result of arbitrary interleavings.334

Connect (▷◁𝑥 ≥ 𝑥). Releasing and immediately acquiring the lock only al-335

lows more behaviours, as the environment is not obliged to interleave.336

To summerise, AxSS ≔ Ax⦁
G ∪ Ax⚬

V ∪ {ND-▷, ND-◁} ∪ {Empty, Connect}.337

Example 17. The ΣSS-equations appearing below are named after corresponding338

transformations that may or may not be valid, depending on the setting (e.g. is339

there concurrency, and under what assumptions), all ⚬-sorted over {𝑥 ∶ ⚬}:340

◁ 𝖫ℓ(▷𝑥,▷𝑥) = 𝑥 (Irrelevant Read Intro & Elim)
◁𝖴ℓ,𝑏1

▷◁𝖴ℓ,𝑏2
▷𝑥 ≥ ◁𝖴ℓ,𝑏2

▷𝑥 (Write Elim)
◁𝖴ℓ,𝑏1

▷◁𝖴ℓ,𝑏2
▷𝑥 ≤ ◁𝖴ℓ,𝑏2

▷𝑥 (Write Intro)

Intuitively, Irrelevant Read Intro & Elim should be valid in our setting, as341

looking a value up is not observable by the environment, and the computation342

itself discards the value. Write Elim should be valid too, because it is possible343

that the environment does not look ℓ up at the interference point between the344

updates on the LHS, covering the behaviour denoted by the RHS. On the other345

hand, Write Intro should be invalid in our setting because only on the LHS can346

a concurrently running thread look ℓ up and find 𝑏1. Formally, we will show SS347

does not prove Write Intro in example 25. Here we show SS proves the other two:348

◁ 𝖫ℓ (▷𝑥,▷𝑥)
LU
= ◁ 𝖫ℓ (𝖴ℓ,𝟶 𝖫ℓ (▷𝑥,▷𝑥) , 𝖴ℓ,𝟷 𝖫ℓ (▷𝑥,▷𝑥))
UL
= ◁ 𝖫ℓ (𝖴ℓ,𝟶 ▷𝑥, 𝖴ℓ,𝟷 ▷𝑥)

LU
= ◁▷𝑥

Empty
= 𝑥

◁𝖴ℓ,𝑏1
▷◁𝖴ℓ,𝑏2

▷𝑥
Connect

≥ ◁𝖴ℓ,𝑏1
𝖴ℓ,𝑏2

▷𝑥
UU
= ◁𝖴ℓ,𝑏2

▷𝑥

4 Representation349

We now establish the representation theorem describing a free SS-model over any350

𝑿 ∈ Set{⦁,⚬}. Following Brookes [7], we use sets of traces to denote behaviours.351

Two-sorted algebraic decompositions of shared state 11

4.1 Sorted traces352

A sorted trace starts with a sort (⦁ or ⚬) followed by a non-empty sequence of353

state transitions, and ending in a sorted value. The initial sort in the trace and354

the initial store in each transition represent assumptions the trace relies on from355

its concurrent and sequential environment. The final sort and value and the final356

store in each transition represent guarantees the trace makes to its environment.357

Formally, a (state) transition is a pair ⟨𝜎, 𝜌⟩ ∈ 𝕊 × 𝕊. Let 𝜉? ∈ (𝕊 × 𝕊)∗ range358

over possibly empty sequences of transitions, and 𝜉 ∈ (𝕊 × 𝕊)+ range over non-359

empty ones. For any set 𝑋, define the set of 𝑋-valued Brookes traces 𝖳𝑋 ≔360

(𝕊 × 𝕊)+ × 𝑋, also used in Brookes’s model (§5). For any family 𝑿 ∈ Set{⦁,⚬}
361

define the {⦁, ⚬}-sorted family 𝗧𝑿 of traces (𝗧𝑿) ≔ 𝖳 ∮ 𝑿. Then, for any362

sorted family 𝑿 ∈ Set{⦁,⚬}, we define the set of sorted traces over 𝑿 by:363

𝕋𝑿 ≔ ∮ 𝗧𝑿 = {⦁, ⚬} × (𝕊 × 𝕊)+ × ∐∈{⦁,⚬} 𝑿

A -sorted -valued trace is one of the form 𝜉𝑥 ≔ ⟨, 𝜉, in 𝑥⟩ in the set 𝕋𝑿.364

Example 18. ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 ∈ 𝕋𝑿, with 𝑿⚬ = ℕ, is ⦁-sorted and ⚬-valued.365

Intuitively, the trace 𝜉𝑥 models a possible behaviour, or protocol, that366

a shared-state program phrase under preemptive interleaving concurrency can367

adhere to, given as a rely/guarantee sequence.368

Example 19. The behaviour denoted by ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 relies on the preceding369

environment for 𝟷
𝟷 and for the sequential environment to hold access to the store;370

then guarantees 𝟷
𝟶 ; then relies on 𝟷

𝟷 ; and finally guarantees 𝟶
𝟶 , and returns 7 to371

the succeeding sequential environment, ceding exclusive store access.372

One can make these trace-semantic concepts more formal, for example, when373

formulating an adequacy proof w.r.t. an operational semantics. We will not define374

these concepts formally since we will not need the additional level of rigour, for375

example, because we appeal to the well-established adequacy of Brookes’s model.376

We implicitly understand the exclusive access to the store is ceded (⚬) be-377

tween transitions. For example, for the trace ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7, we could write378

⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⚬⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 for emphasis. A hypothetical ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⦁⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 would denote379

an impossible behaviour, making intermediate sorts redundant.380

One of Brookes’s innovations is that sets of traces should be closed under381

what we now call (trace) deductions. Specifically, Brookes identified two such382

deductions, given as binary relations called stutter (st−−→) and mumble (mu−−→),383

defined in such a way that if the program phrase can adhere to the source384

protocol (left of arrow), then it can adhere to the target protocol (right of arrow).385

We define these deductions in our two-sorted setting. For convenience, we386

write 𝜉?
1⚬𝜉?

2𝑥 for the trace 𝜉?
1𝜉?

2𝑥 in which, intuitively, the lock is ceded387

(⚬) at the marked spot. Formally, we require that both (a) if 𝜉?
1 is empty, then388

 = ⚬; and (b) if 𝜉?
2 is empty, then  = ⚬. In particular, the requirement holds389

when both 𝜉?
1 and 𝜉?

2 are non-empty, where we implicitly assume the ceded sort390

between them; and in the case of a ⚬-sorted ⚬-valued trace, i.e.  = ⚬ = .391

12 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

Example 20. We have the following valid/invalid notations for ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7:392

valid: ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⚬⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬⚬7 invalid: ⦁⚬⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7

We define the following sorted stutter and mumble deductions:393

𝜉?
1⚬𝜉?

2𝑥 st−−→ 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥 𝜉?
1⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝜉?

2𝑥 mu−−→ 𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑥

The condition on stutter’s source rules out deductions which implicitly cede394

access to the store to the concurrent environment at the ends of the trace. We395

will compare these deductions to Brookes’s in §5.396

Example 21. These deductions are valid, highlighting the change to the trace:397

⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 st−−→ ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⟨ 𝟶
𝟷 , 𝟶

𝟷 ⟩⚬7 ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟶 , 𝟶

𝟶 ⟩⚬7 mu−−→ ⦁⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7

However, thanks to the condition on stutter’s source, this deduction is invalid:398

⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7���st−−→ ⦁⟨ 𝟶
𝟷 , 𝟶

𝟷 ⟩⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7

The source protocol relies on the preceding sequential environment for 𝟷
𝟷 . We399

prohibit relaxing the protocol to rely on the concurrent environment for it.400

The stutter and mumble deductions follow the rely/guarantee intuition:401

Stuttering (𝜉?
1⚬𝜉?

2𝑥 st−−→ 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥) means a thread-pool also obeys the402

protocol that guarantees a state 𝜎 by relying on its environment for 𝜎.403

Mumbling (𝜉?
1⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝜉?

2𝑥 mu−−→ 𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑥) means a thread-pool which404

guarantees the store 𝜌 it later relies on also obeys the protocol in which we405

exclude the environment’s access to the store 𝜌 at that point.406

Sets of traces represent a non-deterministic choice between the behaviours407

that a program phrase may exhibit. For such a set 𝐾, define its closure under408

trace deduction 𝐾† as the least set 𝐾′ such that: 𝐾 ⊆ 𝐾′; and if 𝜏1 ∈ 𝐾′409

and 𝜏1
x−−→ 𝜏2 for x ∈ {st, mu}, then 𝜏2 ∈ 𝐾′. According to the rely/guarantee410

intuition above, a program phrase that is compatible with a set of traces is also411

compatible with its closure. We therefore represent program phrases as closed412

sets, i.e. sets 𝐾 such that 𝐾 = 𝐾†. The closure 𝐾† of a countable 𝐾 is countably413

infinite—by stuttering indefinitely—unless 𝐾 is a finite set of single-transition414

⦁-sorted ⦁-valued traces, in which case 𝐾 is already closed.415

For a set of traces 𝑈 and sort  ∈ {⦁, ⚬}, define a {⦁, ⚬}-sorted family Pℵ0(𝑈)416

by taking its  component to be the set Pℵ0 (𝑈) of countable subsets of 𝑈 whose417

elements are all -sorted. Similarly, define P†
(𝑈) ⊆ Pℵ0 (𝑈) to be the set of418

closed countable subsets of 𝑈 whose elements are all -sorted.419

The prefixing function adds the given transition to each ⦁-sorted trace:420

(𝜎, 𝜌) ∶ Pℵ0⦁ (𝕋𝑿) → Pℵ0⦁ (𝕋𝑿) (𝜎, 𝜌) 𝐾 ≔ {⦁⟨𝜎, 𝜃⟩𝜉?𝑥 ∣ ⦁⟨𝜌, 𝜃⟩𝜉?𝑥 ∈ 𝐾}

It lifts to closed sets, i.e. 𝐾 ∈ P†
⦁(𝕋𝑿) implies that (𝜎, 𝜌) 𝐾 ∈ P†

⦁(𝕋𝑿).421

Two-sorted algebraic decompositions of shared state 13

4.2 Representation theorem422

For 𝑿 ∈ Set{⦁,⚬}, define the ΣSS-algebra of 𝑿-valued closed trace-sets R𝑿 as:423

R𝑿 ≔ P†
 (𝕋𝑿) J𝖴ℓ,𝑏Kop𝐾 ≔ ⋃𝜎∈𝕊 (𝜎, 𝜎[ℓ ↦ 𝑏]) 𝐾J⋁𝑖<𝛼Kop𝐾𝑖 ≔ ⋃𝑖<𝛼 𝐾𝑖 J𝖫ℓKop(𝐾𝟶, 𝐾𝟷) ≔ ⋃𝜎∈𝕊 (𝜎, 𝜎) 𝐾𝜎ℓJ◁Kop𝐾 ≔ {⚬𝜉𝑥 | ⦁𝜉𝑥 ∈ 𝐾}† J▷Kop𝐾 ≔ {⦁⟨𝜎, 𝜎⟩𝜉𝑥 ∣ 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}†

Additionally, define return ∶ 𝑿 → R𝑿 by return 𝑥 ≔ {⟨𝜎, 𝜎⟩𝑥 | 𝜎 ∈ 𝕊}†.424

The rest of this section establishes that the algebra ⟨R𝑿, return⟩ over 𝑿425

is a free SS-model over 𝑿. A key ingredient is reification: for any {⦁, ⚬}-sorted426

family 𝑿, we define a sorted-function reify ∶ Pℵ0(𝕋𝑿) → TermΣSS𝑿, choosing a427

representative term 𝑡2 ≔ reifyJ𝑿 ⊢ 𝑡1Kterm such that 𝑿 ⊢SS 𝑡1 = 𝑡2. This use of428

countable choice is inessential, the mere existence of the defining term 𝑡2 suffices.429

First define for any ℓ ∈ 𝕃 and 𝑏 ∈ 𝔹 the cell assertion term 𝑥 ∶ ⦁ ⊢ΣSS
𝖠ℓ,𝑏 𝑥 ∶ ⦁430

that looks ℓ up and only continues if it holds 𝑏:431

𝑥 ∶ ⦁ ⊢ΣSS
𝖠ℓ,𝟶 𝑥 ≔ 𝖫ℓ(𝑥, ⊥) ∶ ⦁ 𝑥 ∶ ⦁ ⊢ΣSS

𝖠ℓ,𝟷 𝑥 ≔ 𝖫ℓ(⊥, 𝑥) ∶ ⦁
Next, for any 𝜎, 𝜌 ∈ 𝕊 define the open transition 𝑥 ∶ ⦁ ⊢ΣSS

⧙𝜎, 𝜌⧘ 𝑥 ∶ ⦁, a432

term that asserts the state is 𝜎, then updates the state to 𝜌, and returns 𝑥:433

𝑥 ∶ ⦁ ⊢ΣSS
⧙𝜎, 𝜌⧘ 𝑥 ≔ 𝖠l1,𝜎l1

… 𝖠l𝑛,𝜎l𝑛
𝖴l1,𝜌l1

… 𝖴l𝑛,𝜌𝑛
𝑥 ∶ ⦁ (𝕃 = {l1, … , l𝑛})

Define the ΣSS-term reifying a trace 𝑥 ∶  ⊢ΣSS
𝜉𝑥 ∶  by sequencing open434

transition as they are in 𝜉, separated by ▷◁; and delimited by ◁ on the left if435

 = ⚬ and by ▷ on the right if  = ⚬.436

Example 22. 𝑥 ∶ ⚬ ⊢ΣSS
⦁⟨𝜎, 𝜌⟩⟨𝜎′, 𝜌′⟩⚬𝑥 ≔ ⧙𝜎, 𝜌⧘▷◁ ⧙𝜎′, 𝜌′⧘▷𝑥 ∶ ⦁437

Trace deductions are sound w.r.t. this encoding, in the following sense:438

Proposition 23. Assume that 𝜏1 and 𝜏2 are -sorted traces over {𝑥 ∶ }, such439

that 𝜏1
x−−→ 𝜏2 for x ∈ {st, mu}. Then {𝑥 ∶ } ⊢ΣSS

𝜏1 ≥ 𝜏2 ∶ .440

Finally, we reify a trace set by reifying its traces in a chosen enumeration:441

reify ∶ Pℵ0(𝕋𝑿) → TermΣSS𝑿 reify 𝐾 ≔ (𝑿 ⊢ΣSS
⋁𝜏∈𝐾𝜏 ∶ )

By proposition 23, closure preserves reification: 𝑿 ⊢SS reify 𝐾 = reify 𝐾† ∶ .442

With reification defined, we are ready to state the representation theorem.443

Theorem 24 (SS-representation). The pair ⟨R𝑿, return⟩ is a free SS-model444

over 𝑿. Its representation sends environments 𝑒 ∶ 𝑿 → A to SS-homomorphisms445

𝑒# ∶ R𝑿 → A by 𝑒#
 𝐾 ≔ R𝑿Jreify 𝐾Kterm𝑒. Moreover, for A = R𝒀 we have:446

𝑒#
 𝐾 = {𝜉1𝜉2𝑦 ∣ 𝜉1⚬𝑥 ∈ 𝐾,

⚬𝜉2𝑦 ∈ 𝑒𝑥}
†

∪ {𝜉1⟨𝜎, 𝜃⟩𝜉2𝑦 ∣ 𝜉1⟨𝜎, 𝜌⟩⦁𝑥 ∈ 𝐾,
⦁⟨𝜌, 𝜃⟩𝜉2𝑦 ∈ 𝑒𝑥}

†
.447

Example 25. The model R {𝑥 ∶ ⚬} invalidates Write Intro:448

R {𝑥 ∶ ⚬}J◁𝖴ℓ,𝑏1
▷◁𝖴ℓ,𝑏2

▷𝑥Ktermreturn ≠ R {𝑥 ∶ ⚬}J◁𝖴ℓ,𝑏2
▷𝑥Ktermreturn

Every trace in the right-hand set has at most one state-changing transition. The449

left-hand set has traces with two. Therefore, SS does not prove Write Intro.450

14 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

5 Recovering Brookes’s model451

The theory SS recovers Brookes’s model (§5.1). We recover it twice, using dif-452

ferent strategies that offer different perspectives. First, we transform the monad453

induced by the representation of §4.2 along a right adjoint Set{⦁,⚬} → Set (§5.2).454

Then, we define an embedding translation from a single-sorted theory of transi-455

tions into SS (§5.4), corresponding to Brookes’s await construct (§5.3).456

5.1 Brookes’s model457

We designed our notions of traces, deduction, etc. from §4.1 based on the fol-458

lowing model of Brookes [7]. For any set 𝑋 ∈ Set, recall the set of Brookes459

traces 𝖳𝑋 ≔ (𝕊×𝕊)+ ×𝑋 from §4.1. Writing 𝜉𝑥 for ⟨𝜉, 𝑥⟩, Brookes’s stutter and460

mumble trace deductions are:461

𝜉?
1𝜉?

2𝑥 st−−→ 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥 𝜉?
1⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝜉?

2𝑥 mu−−→ 𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑥

We reuse the notation (−)† for closure under these deductions.462

The difference between Brookes’s and our multi-sorted deuctions is the main-463

tenance of the sort in the ends of the trace. In particular, Brookes’s stutter does464

not need to assume the ‘cede’ sort (⚬) at the stuttering position in the source.465

In Brookes’s model, the environment may always interleave in either end.466

Brookes’s semantic domain 𝐵𝑋 ≔ P†(𝖳𝑋) forms a monad. The monadic467

unit is return ∶ 𝑋 → 𝐵𝑋, return 𝑥 ≔ {⟨𝜎, 𝜎⟩𝑥 | 𝜎 ∈ 𝕊}†. The Kleisli extension468

𝑒# ∶ 𝐵𝑋 → 𝐵𝑌 of every 𝑒 ∶ 𝑋 → 𝐵𝑌 is 𝑒#𝐾 ≔ {𝜉1𝜉2𝑦 | 𝜉1𝑥 ∈ 𝐾, 𝜉2𝑦 ∈ 𝑒𝑥}†. It469

interprets memory accesses, dereferencing (ℓ!) and mutation (ℓ ∶= 𝑏), as follows:470

Jℓ!K ∶ 𝟙
{⟨𝜎,𝜎⟩𝜎ℓ | 𝜎∈𝕊}†

−−−−−−−−−−→ 𝐵𝔹 Jℓ ∶= 𝑏K ∶ 𝟙
{⟨𝜎,𝜎[ℓ↦𝑏]⟩⟨⟩ | 𝜎∈𝕊}†

−−−−−−−−−−−−→ 𝐵𝟙

These generic effects [34] correspond to these monadic algebraic operations:471

J𝖱ℓK ∶ (𝐵𝑋)2 → 𝐵𝑋 J𝖱ℓK(𝐾0, 𝐾1) ≔ {⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, 𝜉𝑥 ∈ 𝐾𝜎ℓ}
†

J𝖶ℓ,𝑏K ∶ 𝐵𝑋 → 𝐵𝑋 J𝖶ℓ,𝑏K𝐾 ≔ {⟨𝜎, 𝜎[ℓ ↦ 𝑏]⟩𝜉𝑥 | 𝜎 ∈ 𝕊, 𝜉𝑥 ∈ 𝐾}†

5.2 Recovery via an adjunction472

In Brookes’s model, yielding to the concurrent environment is implicit, and473

always allowed. From our two-sorted point-of-view, we expect the traces in474

Brookes’s to represent ⚬-sorted ⚬-valued traces.475

There is an abstract construction that recovers the monad and its opera-476

tions in §5.2 from our {⦁, ⚬}-sorted model. The functor (−)⚬ ∶ Set{⦁,⚬} → Set477

has a left-adjoint (−)⚬ ∶ Set → Set{⦁,⚬}. This functor sends each set 𝑋 to the478

{⦁, ⚬} -family 𝑋⚬ ≔ {𝑥 ∶ ⚬ | 𝑥 ∈ 𝑋}, using the set-like notation for families we in-479

troduced in §2.1. Monads transform along adjoints, and transforming the monad480

obtained standardly from the representation of §4.2 along the adjunction above481

Two-sorted algebraic decompositions of shared state 15

results in Brookes’s model. Explicitly, denoting 𝐵⚬𝑋 ≔ R𝑋⚬
⚬ = P†

⚬(𝕋𝑋⚬), the482

resulting monad over Set is ⟨𝐵⚬, return⚬, (−)#
⚬ ⟩. This monad is isomorphic to483

Brookes’s ⟨𝐵, return, (−)#⟩ above by way of removing ⚬ from both ends of every484

trace. Thus, the Brookes model amounts to the free SS-model from §4.2 trans-485

formed along the adjunction (−)⚬ ⊣ (−)⚬. The monad R supports the following486

generic effects. The adjunction transforms them, via its natural bijection on487

homsets, into Brookes’s generic effects for memory access:488

Jℓ!K ∶ 𝟙⚬
J◁ 𝖫ℓ(▷0,▷1)K
−−−−−−−−−→ R𝔹⚬ Jℓ ∶= 𝑏K ∶ 𝟙⚬

J◁𝖴ℓ,𝑏 ▷⟨⟩K
−−−−−−−→ R𝟙⚬

5.3 The single-sorted theory of transitions489

There is a more direct, single-sorted presentation B for Brookes’s model. It uses490

transitions as operators rather than lookup and update operators. The signature491

ΣB consists of countable-join semilattice ΣV and a unary operator ⟨𝜎, 𝜌⟩ for492

every 𝜎, 𝜌 ∈ 𝕊. The axioms AxB consists of countable-join semilattice AxV,493

commutativity axioms (ND-B) ⟨𝜎, 𝜌⟩⋁𝑖<𝛼𝑥𝑖 = ⋁𝑖<𝛼⟨𝜎, 𝜌⟩𝑥𝑖, and:494

Trace closure
(M) ⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝑥 ≥ ⟨𝜎, 𝜃⟩𝑥 (S) 𝑥 ≥ ⟨𝜎, 𝜎⟩𝑥 (H) ⋁𝜎∈𝕊⟨𝜎, 𝜎⟩𝑥 ≥ 𝑥

495

The first two axiom schemes are algebraic counterparts to mumble and stutter.496

These alone do not recover Brookes’s model—the representation theorem for the497

theory without the (H) axioms includes potentially-empty traces. The axiom (H)498

fails in this model, but holds in Brookes’s. In the representation theorem for B499

it is tempting to require of sets of traces 𝐾 to be closure under, in addition to500

Brookes’s mumble and stutter trace deductions, the following closure condition:501

∀𝜎. 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥 ∈ 𝐾
𝜉?

1𝜉?
2𝑥 ∈ 𝐾 (hush)

The closure rule hush is admissible for trace-deduction closed 𝐾, due to the non-502

emptiness of the traces and closure under mumble. Indeed, either 𝜉?
1 or 𝜉?

2 must503

be non-empty for the rule to apply. Take 𝜎 to match an adjacent transition, and504

apply the mumble closure rule to obtain the required consequence. This nuanced505

observation would be hard to notice without this algebraic analysis.506

To conclude, we formulate the representation theorem for B. Let 𝑋 ∈ Set.507

Define the ΣB-algebra B𝑋 with carrier B𝑋 ≔ P†(𝖳𝑋) and interpretations:508

B𝑋J⋁𝑖<𝛼Kop𝐾𝑖 ≔ ⋃𝑖<𝛼 𝐾𝑖 B𝑋J⟨𝜎, 𝜌⟩Kop𝐾 ≔ {⟨𝜎, 𝜌⟩𝜏 | 𝜏 ∈ 𝐾}†

Additionally, define return ∶ 𝑋 → B𝑋 by return 𝑥 ≔ 𝜆𝑥. {⟨𝜎, 𝜎⟩𝑥 | 𝜎 ∈ 𝕊}†.509

To prove that this is a free B-model, we use reification as in §4.2, though510

here reification is more straightforward. A trace is reified as itself, and sets of511

traces use countable-join as before: reify𝐾 ≔ (𝑿 ⊢ΣB
⋁𝜏∈𝐾𝜏 ∶ ⭒). The monad512

obtained from the next proposition is Brookes’s model:513

16 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

Proposition 26. The pair ⟨B𝑋, return⟩ is a free B-model over 𝑋, for which the514

representation sends 𝑒 ∶ 𝑋 → A to 𝑒# ∶ B𝑋 → A by 𝑒#
 𝐾 ≔ B𝑋Jreify 𝐾Kterm𝑒.515

5.4 Translations and equivalences516

We will need the following notions for relating presentations. Consider a map517

between two sort sets 𝜖 ∶ sort1 → sort2. It lifts to 𝜖 ∶ Setsort2 → Setsort1 by518

precomposition: (𝜖𝒀) ≔ 𝒀𝜖. It forms the object part of a geometric morphism519

between (pre)sheaf toposes, i.e., it has left and right adjoints. The left adjoint520

𝜖∗ ∶ Setsort1 → Setsort2 is in this case (𝜖∗𝑿) ≔ ∐𝜖= 𝑿. When 𝜖 is injective,521

the left adjoint is given by the simpler formula 𝜖∗𝑿 ≔ {𝑥 ∶ 𝜖 | 𝑥 ∈ 𝑿}.522

Example 27. The geometric morphism for the map ⭒ ↦ ⚬ ∶ {⭒} ↣ {⦁, ⚬} is523

the forgetful functor (−)⚬ ∶ Set{⦁,⚬} → Set{⭒} ≅ Set. As we saw in §5.2, its left524

adjoint is (−)⚬ ∶ Set{⭒} → Set{⦁,⚬}.525

Let Σ1 and Σ2 be signatures and 𝜖 ∶ sortΣ1
→ sortΣ2

a map between their526

sort sets. A translation of signatures E ∶ Σ1 ↣ Σ2 along 𝜖 is an assignment,527

to each (𝑂 ∶ ⟨𝑖⟩𝑖<𝛼) ∈ Σ1, of a term E𝑂 ∈ TermΣ2
𝜖 {𝑥𝑖 ∶ 𝜖𝑖 | 𝑖 < 𝛼}. Such a528

translation yields a functor Etln ∶ AlgΣ2 → AlgΣ1, mapping a Σ2-algebra B to:529

EtlnB ≔ 𝜖B EtlnB J𝑂 ∶ ⟨𝑖⟩𝑖<𝛼Kop ⟨𝑏𝑖⟩ ≔ B JE𝑂Kterm ⟨𝑥𝑖 ↦ 𝑏𝑖⟩𝑖<𝛼

For a given family 𝒀 ∈ SetsortΣ2 , such a translation therefore extends uniquely530

to a Σ1-homomorphism (Etln)𝒀 ∶ 𝐹Σ1
𝜖𝒀 → Etln𝐹Σ2

𝒀 .531

Example 28. We have a translation E ∶ ΣG ↣ ΣSS along ⭒ ↦ ⦁ ∶ {⭒} ↣ {⦁, ⚬}532

that translates the ΣG-operators using their respective copies in the ⦁ sort:533

E(⋁𝛼 ∶ 𝛼) ≔ ({𝑥𝑖 ∶ ⦁ | 𝑖 < 𝛼} ⊢ΣSS
⋁𝑖<𝛼𝑥𝑖 ∶ ⦁)

E(𝖫ℓ ∶ 2) ≔ ({𝑥0, 𝑥1 ∶ ⦁} ⊢ΣSS
𝖫ℓ(𝑥0, 𝑥1) ∶ ⦁)

E(𝖴ℓ,𝑏∶ 1) ≔ ({𝑥0 ∶ ⦁} ⊢ΣSS
𝖴ℓ,𝑏 𝑥0 ∶ ⦁)

A translation of presentations E ∶ 𝔭1 ↣ 𝔭2 along 𝜖 is a translation of their534

signatures along 𝜖 that, moreover, preserves the provability of axioms:535

(𝑿 ⊢Σ𝔭1
𝑡1 = 𝑡2 ∶ ) ∈ Ax𝔭1

⟹ 𝜖∗𝑿 ⊢𝔭2
Etln𝑡1 = Etln𝑡2 ∶ 𝜖

Example 29. The translation of global state into shared state from example 28536

is a translation of presentations E ∶ G ↣ SS.537

Translations along composable sort maps compose via substitution, and a538

translation E ∶ 𝔭 ↣ 𝔭 along idΣ𝔭
is an identity translation when, for all terms539

𝑡 ∈ TermΣ𝔭
 𝑿, we have 𝑿 ⊢𝔭 Etln𝑡 = 𝑡 ∶ . A translation E ∶ 𝔭1 ↣ 𝔭2 along 𝜖 is540

an equivalence if 𝜖 is a bijection, and there exists an embedding E−1 ∶ 𝔭2 ↣ 𝔭1541

along 𝜖−1, such that E∘E−1 and E−1 ∘E are identity translations. We then write542

𝔭1 ≃ 𝔭2 and say that the presentations are equivalent. Two multi-sorted theories543

are equivalent iff their associated free-model monads are isomorphic.544

Two-sorted algebraic decompositions of shared state 17

5.5 Translation through the two-sorted theory of transitions545

We define a two-sorted presentation Tgs of the open transitions ⧙𝜎, 𝜌⧘ as se-546

quential operators. The signature ΣTgs has countable-joins and a unary operator547

⦗𝜎, 𝜌⦘ for 𝜎, 𝜌 ∈ 𝕊. The axioms AxTgs consist of countable-join semilattice AxV,548

strict distributivity axioms (ND-T) ⦗𝜎, 𝜌⦘ ⋁𝑖<𝛼𝑥𝑖 = ⋁𝑖<𝛼 ⦗𝜎, 𝜌⦘ 𝑥𝑖, and:549

Open transition axioms
(HS) 𝑥 = ⋁𝜎∈𝕊 ⦗𝜎, 𝜎⦘ 𝑥

(Seq=) ⦗𝜎, 𝜌⦘ ⦗𝜌, 𝜃⦘ 𝑥 = ⦗𝜎, 𝜃⦘ 𝑥
(Seq≠) ⦗𝜎, 𝜌⦘ ⦗𝜇, 𝜃⦘ 𝑥 = ⊥ 𝜌 ≠ 𝜇

550

Define the translation EG ∶ Tgs ↣ G by interpreting transitions as the open551

transitions from §4.2: EGtln ⦗𝜎, 𝜌⦘ ≔ ⧙𝜎, 𝜌⧘ 𝑥0. Conversely, ETgs ∶ G ↣ Tgs by552

interpreting lookup and update as follows, similar to the representation of §4.2:553

ETgstln
𝖴ℓ,𝑏 ≔ ⋁𝜎∈𝕊 ⦗𝜎, 𝜎[ℓ ↦ 𝑏]⦘ 𝑥0 ETgstln

𝖫ℓ ≔ ⋁𝜎∈𝕊 ⦗𝜎, 𝜎⦘ 𝑥𝜎ℓ

These witness an equivalence: G ≃ Tgs.554

This equivalence lets us use Tgs instead of G in the atomic block layer of555

SS. In detail, the presentation Tr of the two-sorted theory of transitions is given556

by AxTr ≔ Ax⦁
Tgs ∪ Ax⚬

V ∪ {ND-▷, ND-◁} ∪ {Empty, Connect}. Extending the557

translations ETgs and EG to all of the operators gives an equivalence Tr ≃ SS,558

and so they induce the same monad, and recover Brookes’s model.559

Define the translation E ∶ B ↣ Tr along ⭒ ↦ ⚬ by sending transitions to their560

delimited open counterparts: Etln⟨𝜎, 𝜌⟩ ≔ ◁ ⦗𝜎, 𝜌⦘▷𝑥0. By post-composition561

with the above equivalence, the single-sorted theory of transitions translate to562

shared state B ↣ SS. Brookes’s model, being a free B-model, is thus the ⚬-sorted563

fragment of SS over ⚬-variables, formally.564

6 Conclusion and further work565

We presented an equational theory for shared state (SS). It separates reasoning566

into two layers. In the held layer (⦁), we prohibit the concurrent environment567

from accessing memory, and we can reason about memory accesses by a pool568

of threads sequentially. In the ceded layer (⚬), the concurrent environment may569

interleave, but memory access is forbidden. We also presented theories of tran-570

sitions (Tr and Tgs) and formally related them to the shared state theory. One571

of these theories (Tr) is a single-sorted theory that recovers Brookes’s model.572

We find this theory unsatisfying for a conceptual and a technical reason. Con-573

ceptually, it is a theory of Brookes’s await construct, which we find unnatural.574

Technically, Tr does not admit global state as an explicit component of the the-575

ory. We believe understanding how global state fits as a component will inform576

modelling other effects in the concurrent setting. The theory of shared state ad-577

dresses these concerns. On the one hand, it admits the global state theory as-578

is, and axiomatizes the interleaving-enabling/disabling operators (◁/▷) without579

explicit interaction with global state. On the other hand, this theory recovers580

18 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

Brookes’s model precisely in a principled manner: by transforming a monad and581

its operations along an adjunction, and through algebraic translations.582

Our theory uses countable-join semilattices. In the resulting—Brookes’s—583

model, they can express iteration (i.e. while-loops). The same model admits584

first-order recursion, i.e. least-fixpoints of mutually-defined first-order functions,585

using the 𝜔-complete partial order structure of the refinement order and the586

Scott-continuity of the semantics. We can support higher-order recursion by587

recourse to domain-theory, generalising algebraic theories using order-enriched588

theories. There are several standard variants, each with subtle logical trade-589

offs [32]. We can also restrict the semantics to terminating languages by using590

finite-join semilattice instead of countable joins. The resulting representation591

theorem then uses finitely-generated closed subsets.592

We want to analyse Brookes’s parallel composition operator algebraically.593

Brookes composed programs in parallel by interleaving traces from each thread.594

Initial results show we can define Brookes’s parallel composition by simultaneous595

induction over terms. However, we would like to provide a more abstract account,596

by recourse to the universal property of free models. This abstraction may ex-597

pose special properties of global state, or lead to general parallel composition598

operation satisfying the expected laws of concurrent programming [15, 29, 37].599

We want to model more effects similarly, within this modular multi-sorted600

algebraic framework. These effects include: more advanced notions of state, such601

as dynamic allocation [20], higher-order memory cells [26, 39], and weak mem-602

ory [13]; control-flow effects such as exceptions and effect handlers [4]; and prob-603

abilistic programming with shared state [24].604

Our two sorts limit access to the whole store. We would like to explore limiting605

access in finer granularity, and per-location in the first instance. In this direction,606

the theory has: sorts for every finite subset 𝑠 ⊆ 𝕃 of locations; and operators:607

◁ℓ ∶ 𝑠 ∖ {ℓ} ⟨𝑠 ∪ {ℓ}⟩ ▷ℓ ∶ 𝑠 ∪ {ℓ} ⟨𝑠 ∖ {ℓ}⟩
One needs care in designing the appropriate (in)equations for these operators.608

It may be interesting to design programming language constructs that ex-609

pose the sort discipline in the surface language. It is natural to expose them610

as locking/unlocking, while tracking the capability to call the lock in typing611

judgements. This construct explicates regions that rule out data-races with the612

environment. It seems such typing judgements would rule out deadlocks struc-613

turally, and so may limit program expressiveness, or be hard to use. It remains614

to be seen whether such abstractions are useful.615

If the multi-sorted approach does indeed generalise to more sophisticated ef-616

fects, then it will be instructive to review its assumptions. For example, the strict-617

ness axioms impose a partial-correctness discipline: the semantics says nothing618

about the effect a diverging program has on its memory. Relaxing or removing619

strictness may give a model that allows us to reason about diverging programs.620

In conclusion, our two-sorted decomposition of Brookes’s seminal model pro-621

vides a new insights into its assumptions and components, and opens up new622

research directions for modelling more advanced programming language features623

involving concurrent shared state.624

Bibliography625

[1] Abadi, M., Plotkin, G.D.: A model of cooperative threads. Log. Methods626

Comput. Sci. 6(4) (2010), https://doi.org/10.2168/LMCS-6(4:2)2010627

[2] Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Com-628

puter Science, Oxford University Press (04 1995), ISBN 9780198537625,629

https://doi.org/10.1093/oso/9780198537625.003.0001630

[3] Adámek, J., Rosický, J., Vitale, E.M.: Algebraic Theories: A Categorical631

Introduction to General Algebra. Cambridge Tracts in Mathematics, Cam-632

bridge University Press (2010)633

[4] Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers.634

J. Log. Algebraic Methods Program. 84(1) (2015), https://doi.org/10.635

1016/J.JLAMP.2014.02.001636

[5] Benton, N., Hofmann, M., Nigam, V.: Effect-dependent transformations for637

concurrent programs. In: PPDP, ACM (2016), https://doi.org/10.1145/638

2967973.2968602639

[6] Bloom, S.L.: Varieties of ordered algebras. Journal of Computer and Sys-640

tem Sciences 13(2) (1976), ISSN 0022-0000, https://doi.org/10.1016/641

S0022-0000(76)80030-X642

[7] Brookes, S.D.: Full abstraction for a shared-variable parallel language. Inf.643

Comput. 127(2) (1996), https://doi.org/10.1006/inco.1996.0056644

[8] Castellan, S., Clairambault, P., Winskel, G.: The parallel intensionally fully645

abstract games model of pcf. In: LICS (2015), https://doi.org/10.1109/646

LICS.2015.31647

[9] Dodds, M., Batty, M., Gotsman, A.: Compositional verification of compiler648

optimisations on relaxed memory. In: ESOP, ETAPS, LNCS, vol. 10801,649

Springer (2018), https://doi.org/10.1007/978-3-319-89884-1_36650

[10] Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakr-651

ishnan, K.C., White, L.: Concurrent system programming with effect han-652

dlers. In: TFP, LNCS, vol. 10788, Springer (2017), https://doi.org/10.653

1007/978-3-319-89719-6_6654

[11] Dolan, S., White, L., Sivaramakrishnan, K.C., Yallop, J., Madhavapeddy,655

A.: Effective concurrency with algebraic effects (2015), OCaml Workshop656

[12] Dvir, Y., Kammar, O., Lahav, O.: An algebraic theory for shared-state657

concurrency. In: APLAS, LNCS, vol. 13658, Springer (2022), https://doi.658

org/10.1007/978-3-031-21037-2_1659

[13] Dvir, Y., Kammar, O., Lahav, O.: A denotational approach to re-660

lease/acquire concurrency. In: ESOP, ETAPS, LNCS, vol. 14577, Springer661

(2024), https://doi.org/10.1007/978-3-031-57267-8_5662

[14] Hennessy, M.C.B., Plotkin, G.D.: Full abstraction for a simple parallel pro-663

gramming language. In: Mathematical Foundations of Computer Science,664

Springer, Berlin, Heidelberg (1979), ISBN 978-3-540-35088-0665

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.1093/oso/9780198537625.003.0001
https://doi.org/10.1016/J.JLAMP.2014.02.001
https://doi.org/10.1016/J.JLAMP.2014.02.001
https://doi.org/10.1016/J.JLAMP.2014.02.001
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.1016/S0022-0000(76)80030-X
https://doi.org/10.1016/S0022-0000(76)80030-X
https://doi.org/10.1016/S0022-0000(76)80030-X
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1109/LICS.2015.31
https://doi.org/10.1109/LICS.2015.31
https://doi.org/10.1109/LICS.2015.31
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5

20 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

[15] Hoare, T.: Laws of programming: The algebraic unification of theories of666

concurrency. In: CONCUR 2014 – Concurrency Theory, Springer, Berlin,667

Heidelberg (2014), ISBN 978-3-662-44584-6668

[16] Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor.669

Theor. Comput. Sci. 357(1-3) (2006), https://doi.org/10.1016/j.tcs.670

2006.03.013671

[17] Hyland, M., Power, J.: Discrete Lawvere theories and computational ef-672

fects. Theoretical Computer Science 366(1) (2006), ISSN 0304-3975, https:673

//doi.org/10.1016/j.tcs.2006.07.007, algebra and Coalgebra in Com-674

puter Science675

[18] Jeffrey, A., Riely, J.: On Thin Air Reads: Towards an Event Structures676

Model of Relaxed Memory. LMCS Volume 15, Issue 1 (Mar 2019), https:677

//doi.org/10.23638/LMCS-15(1:33)2019678

[19] Kammar, O.: Algebraic theory of type-and-effect systems. Ph.D. thesis,679

University of Edinburgh, UK (2014), URL http://hdl.handle.net/1842/680

8910681

[20] Kammar, O., Levy, P.B., Moss, S.K., Staton, S.: A monad for full ground682

reference cells. In: LICS (2017), https://doi.org/10.1109/LICS.2017.683

8005109684

[21] Kammar, O., McDermott, D.: Factorisation systems for logical relations and685

monadic lifting in type-and-effect system semantics. In: MFPS, Electronic686

Notes in Theoretical Computer Science, vol. 341, Elsevier (2018), https:687

//doi.org/10.1016/j.entcs.2018.11.012688

[22] Kammar, O., Plotkin, G.D.: Algebraic foundations for effect-dependent op-689

timisations. In: POPL, ACM (2012), https://doi.org/10.1145/2103656.690

2103698691

[23] Kavanagh, R., Brookes, S.: A denotational semantics for SPARC TSO. In:692

MFPS, ENTCS, vol. 341, Elsevier (2018), https://doi.org/10.1016/j.693

entcs.2018.03.025694

[24] Kozen, D.: Semantics of probabilistic programs. Journal of Computer and695

System Sciences 22(3) (1981), ISSN 0022-0000, https://doi.org/10.696

1016/0022-0000(81)90036-2697

[25] Lawvere, F.W.: Functorial Semantics of Algebraic Theories and Some Alge-698

braic Problems in the context of Functorial Semantics of Algebraic Theories.699

Ph.D. thesis, Department of Mathematics (1963)700

[26] Levy, P.B.: Possible world semantics for general storage in call-by-value. In:701

Computer Science Logic, Springer, Berlin, Heidelberg (2002), ISBN 978-3-702

540-45793-0703

[27] Melliès, P.: Local states in string diagrams. In: RTA-TLCA, LNCS, vol.704

8560, Springer (2014), https://doi.org/10.1007/978-3-319-08918-8_705

23706

[28] Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1) (1991),707

https://doi.org/10.1016/0890-5401(91)90052-4708

[29] Paquet, H., Saville, P.: Effectful semantics in bicategories: strong, com-709

mutative, and concurrent pseudomonads. LICS, Association for Comput-710

ing Machinery, New York, NY, USA (2024), ISBN 9798400706608, https:711

//doi.org/10.1145/3661814.3662130712

https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
http://hdl.handle.net/1842/8910
http://hdl.handle.net/1842/8910
http://hdl.handle.net/1842/8910
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.1016/j.entcs.2018.11.012
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-319-08918-8_23
https://doi.org/10.1007/978-3-319-08918-8_23
https://doi.org/10.1007/978-3-319-08918-8_23
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3661814.3662130
https://doi.org/10.1145/3661814.3662130
https://doi.org/10.1145/3661814.3662130

Two-sorted algebraic decompositions of shared state 21

[30] Plotkin, G.D.: A powerdomain for countable non-determinism. In: Au-713

tomata, Languages and Programming, Springer, Berlin, Heidelberg (1982),714

ISBN 978-3-540-39308-5715

[31] Plotkin, G.D.: Hennessy-plotkin-brookes revisited. In: FSTTCS, Lecture716

Notes in Computer Science, vol. 4337, Springer (2006), https://doi.org/717

10.1007/11944836_2718

[32] Plotkin, G.D.: Some Varieties of Equational Logic. Springer, Berlin,719

Heidelberg (2006), ISBN 978-3-540-35464-2, https://doi.org/10.1007/720

11780274_8721

[33] Plotkin, G.D., Power, J.: Notions of computation determine monads. In:722

FOSSACS, ETAPS, LNCS, vol. 2303, Springer (2002), https://doi.org/723

10.1007/3-540-45931-6_24724

[34] Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Applied725

Categorical Structures 11(3) (2003), ISSN 1572-9095, https://doi.org/726

10.1023/A:1023064908962727

[35] Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: ESOP,728

ETAPS, LNCS, vol. 5502, Springer (2009), https://doi.org/10.1007/729

978-3-642-00590-9_7730

[36] Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Com-731

put. Sci. 9(4) (2013), https://doi.org/10.2168/LMCS-9(4:23)2013732

[37] Rivas, E., Jaskelioff, M.: Monads with merging (Jun 2019), URL https:733

//inria.hal.science/hal-02150199, working paper or preprint734

[38] Sivaramakrishnan, K.C., Dolan, S., White, L., Kelly, T., Jaffer, S., Mad-735

havapeddy, A.: Retrofitting effect handlers onto ocaml. In: PLDI, ACM736

(2021), https://doi.org/10.1145/3453483.3454039737

[39] Sterling, J., Gratzer, D., Birkedal, L.: Denotational semantics of gen-738

eral store and polymorphism (2023), URL https://arxiv.org/abs/2210.739

02169740

[40] Svyatlovskiy, M., Mermelstein, S., Lahav, O.: Compositional semantics for741

shared-variable concurrency. Proc. ACM Program. Lang. 8(PLDI) (2024),742

https://doi.org/10.1145/3656399743

[41] Tarlecki, A.: Some nuances of many-sorted universal algebra: A review. Bull.744

EATCS 104, 89–111 (2011), URL http://eatcs.org/beatcs/index.php/745

beatcs/article/view/121746

[42] Turon, A.J., Wand, M.: A separation logic for refining concurrent objects.747

In: POPL, ACM (2011), https://doi.org/10.1145/1926385.1926415748

[43] Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying749

shared variable concurrent programs. Formal Aspects Comput. 9(2) (1997),750

https://doi.org/10.1007/BF01211617751

Acknowledgments. This work was funded by a Royal Society University Research752

Fellowship. For the purpose of Open Access the authors have applied a CC BY pub-753

lic copyright licence to any Author Accepted Manuscript version arising from this754

submission. We thank the following people for interesting and useful discussions and755

suggestions: Danel Ahman, Andrej Bauer, Martín Escardó, Justus Matthiesen, Sam756

Staton, and Rob van Glabbeek.757

https://doi.org/10.1007/11944836_2
https://doi.org/10.1007/11944836_2
https://doi.org/10.1007/11944836_2
https://doi.org/10.1007/11780274_8
https://doi.org/10.1007/11780274_8
https://doi.org/10.1007/11780274_8
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9(4:23)2013
https://inria.hal.science/hal-02150199
https://inria.hal.science/hal-02150199
https://inria.hal.science/hal-02150199
https://doi.org/10.1145/3453483.3454039
https://arxiv.org/abs/2210.02169
https://arxiv.org/abs/2210.02169
https://arxiv.org/abs/2210.02169
https://doi.org/10.1145/3656399
http://eatcs.org/beatcs/index.php/beatcs/article/view/121
http://eatcs.org/beatcs/index.php/beatcs/article/view/121
http://eatcs.org/beatcs/index.php/beatcs/article/view/121
https://doi.org/10.1145/1926385.1926415
https://doi.org/10.1007/BF01211617

22 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

A No-go results758

We can present Brookes’s model using a single-sorted presentation (§5.3). How-759

ever, we found this presentation unsatisfactory, and so propose a two-sorted760

account. Our use of the two-sorted approach follows a relatively thorough inves-761

tigation into alternative single-sorted approaches, and we can provide some crisp762

results that certain single-sorted approaches fail. These no-go results, together763

with the perspectives on future work the two-sorted decomposition suggests (§6),764

are evidence for the merit of our two-sorted approach. They may also inform fu-765

ture search for a single-sorted presentation that we have overlooked.766

Single-sorted transitions present Brookes’s model in terms of the await con-767

struct. This presentation highlights await’s importance for reasoning in Brookes’s768

model and why await is a key ingredient in Brookes’s full abstraction result.769

Without await, Brookes’s model is not fully abstract at 1st-order:770

No-go 1 (Svyatlovskiy et al. [40]). Brookes’s model is not fully-abstract771

w.r.t. the operational semantics in which differentiating contexts can only read772

and mutate single memory cells atomically.773

Moreover, every single-sorted presentation of Brookes’s model must involve774

operators other than the interpretation of read and write, considered as generic775

effects [34]. Formally, given a family of algebraic operations and a monad, we776

can construct the sub-monad generated by a set of operations [19, 21, 22].777

No-go 2. The sub-monad generated by the semantics of read and write, and by778

union, differs from the Brookes model.779

Proof. The trace-sets generated by read and write always contain a trace in780

which at most one cell changes within each transition. Brookes’s model includes781

other subsets, definable via the await construct.782

The traces in Brookes’s model explicitly yield control to their concurrent783

environment. Following Abadi and Plotkin [1], we investigated adding an addi-784

tional unary operator 𝖸 for yielding control to the concurrent environment. It785

is natural to interpret 𝖸 as adding a no-op transition ⟨𝜎, 𝜎⟩ before every trace786

in its argument, modelling a possible interference by the environment. An alter-787

native choice is to add such no-op transitions and also keep the original traces,788

modelling a possibility for a yield in the previous sense. Both of these options789

trivialize in Brookes’s model:790

No-go 3. Consider the following interpretations of 𝖸 in Brookes’s model:791

J𝖸K1
op 𝐾 ≔ {⟨𝜎, 𝜎⟩𝜏 | 𝜏 ∈ 𝐾} J𝖸K2

op 𝐾 ≔ 𝐾 ∪ J𝖸K1
op 𝐾

Then J𝖸K𝑖
op 𝐾 = 𝐾 for both 𝑖 ∈ {1, 2}, for any closed 𝐾.792

Proof. 𝐾 is closed under stutter and hush.793

Two-sorted algebraic decompositions of shared state 23

Even though Brookes’s model does not support this intuition, we explored794

where the yield approach leads. With this yield operator, lookup and update795

can represent interference-free memory-access as axiomatized in the global-state796

theory, and surface-language level read and write can be modelled by some com-797

bination of the algebraic operators. Formally, let Res be a presentation that798

includes non-deterministic global state, and the yield operator 𝖸, which is Res-799

provably strict and distributes over joins.800

Option 1 (Dvir et al.’s presentation [12]). For a previous theory of ours,801

we took a minimal Res satisfying our restrictions, and defined the algebraic802

representation of read:803

𝖱ℓ(𝑥𝟶, 𝑥𝟷) ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣRes
𝖫ℓ((𝑥𝟶 ∨ 𝖸 𝑥𝟶), (𝑥𝟷 ∨ 𝖸 𝑥𝟷)))

Reading may admit an interference point after looking the value up in memory.804

Option 2 (Plotkin’s presentation [31]). Another natural option is to take805

Res to also prove that 𝖸 is a closure operator, i.e. 𝑥 ⊢Res 𝖸 𝖸 𝑥 = 𝖸 𝑥 ≥ 𝑥. In this806

option, the intuition for 𝖸 is that of a possible yield, and possibly yielding twice807

is the same as once. This theory allows the algebraic representation of read to808

be a bit more natural:809

𝖱ℓ(𝑥𝟶, 𝑥𝟷) ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣRes
𝖸 𝖫ℓ(𝖸 𝑥𝟶, 𝖸 𝑥𝟷))

Both options prove (Irrelevant Read Elim), but not (Irrelevant Read Intro):810

𝑥 ⊢Res 𝖱ℓ(𝑥, 𝑥) ≥ 𝑥 (Irrelevant Read Elim)
𝑥 �⊢Res 𝖱ℓ(𝑥, 𝑥) ≤ 𝑥 (Irrelevant Read Intro)

Brookes’s model validates (Irrelevant Read Intro), so the proposed theories are811

both not abstract enough. Adding (Irrelevant Read Intro) as an axiom in either812

version is problematic, as it implies the following inequation:813

𝑥 ⊢ΣRes
𝖱ℓ(𝖱ℓ(𝑥𝟶,𝟶, 𝑥𝟶,𝟷), 𝖱ℓ(𝑥𝟷,𝟶, 𝑥𝟷,𝟷)) ≤ 𝖱ℓ(𝑥𝟶,𝟶, 𝑥𝟷,𝟷) (Same Read Intro)

The corresponding program transformation is invalid in our setting because the814

environment can interfere, mutating ℓ between the successive reads.815

We summarise this intermediate result:816

No-go 4. Let Res be either Dvir et al.’s or Plotkin’s presentation, and define817

𝖱ℓ accordingly. if (Irrelevant Read Elim) and (Irrelevant Read Intro) are valid818

in Res, then so is (Same Read Intro).819

Another approach is to add unary operators ◁′ and ▷′ that delimit the mem-820

ory accesses. Formally, let Del be a presentation that includes non-deterministic821

global state, and the delimiting operators ◁′ and ▷′, which are Del-provably822

strict and distribute over joins. Define the algebraic representation of read:823

𝖱ℓ(𝑥𝟶, 𝑥𝟷) ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣRes
◁′ 𝖫ℓ(▷′ 𝑥𝟶,▷′ 𝑥𝟷)) (⋆)

24 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

This approach subsumes the two Res options suggested above, by using the824

axioms 𝑥 ⊢ ◁′ 𝑥 = 𝑥 and 𝑥 ⊢ ▷′ 𝑥 = 𝑥 ∨ 𝖸 𝑥 for Dvir et al.’s presentations; and825

using 𝑥 ⊢ ◁′ 𝑥 = 𝖸 𝑥 and 𝑥 ⊢ ▷′ 𝑥 = 𝖸 𝑥 for Plotkin’s presentation. In both826

cases, and more generally whenever ◁′ and ▷′ are given by a combination of827

joins and yields, they commute:828

Lemma 30. Let 𝑡1 and 𝑡2 be {∨, 𝖸}-term over {𝑥}. If 𝑥 ⊢Del ◁′ 𝑥 = 𝑡1 and829

𝑥 ⊢Del ▷′ 𝑥 = 𝑡2, then 𝑥 ⊢Del ◁′ ▷′ 𝑥 = ▷′ ◁′ 𝑥.830

Proof. Using the semilattice axioms and distributivity of 𝖸 over joins, every831

{∨, 𝖸}-term 𝑡 over {𝑥} is Del-equal to a non-deterministic choice between terms832

of the form 𝖸𝑛 𝑥 for 𝑛 ∈ 𝑁𝑡 ⊆ ℕ. Both terms above are equal to the same term833

of this form, with 𝑁 = {𝑛1 + 𝑛2 | 𝑛1 ∈ 𝑁◁′ 𝑥, 𝑛2 ∈ 𝑁▷′ 𝑥}.834

Any alternative of Del for which ◁′ and ▷′ commute is not satisfactory:835

No-go 5. Let Del be a presentation that includes non-deterministic global state,836

and the unary operators ◁′ and ▷′, which Del proves to be strict, distribute over837

joins, and commute. With read from (⋆), if Del proves (Irrelevant Read Elim)838

and (Irrelevant Read Intro), then it proves (Same Read Intro).839

Proof. Combining (Irrelevant Read Elim) and (Irrelevant Read Intro), we have840

𝑥 ⊢Del 𝖱ℓ(𝑥, 𝑥) = 𝑥. Using global-state, we have 𝑥 ⊢Del 𝖱ℓ(𝑥, 𝑥) = ◁′ ▷′ 𝑥.841

Therefore, 𝑥 ⊢Del ◁′ ▷′ 𝑥 = 𝑥. They commute, so 𝑥 ⊢Del ▷′ ◁′ 𝑥 = 𝑥. Using842

global-state, we prove (Same Read Intro) in Del.843

Therefore, any such theory Del is either unsound, or it fails to validate a844

transformation that Brookes’s model does. Thus, when picking Del, we need to845

make sure that ◁′ and ▷′ do not commute.846

As a final option we cover here, we could take the axioms 𝑥 ⊢ ◁′ ▷′ 𝑥 = 𝑥847

and 𝑥 ⊢ ▷′ ◁′ 𝑥 ≥ 𝑥. These are like the closure pair axioms of our shared-848

state presentation SS, but without the sort discipline. The single-sorted signature849

allows ill-bracketed terms such as 𝑥 ⊢ ◁′ ◁′ 𝑥. Though it may be possible to850

axiomatize that all such terms are equal to ⊥, a more principled way to avoid851

such terms is to use a two-sorted theory as we have.852

The analysis we offered in this section does not rule out the possibility of a853

satisfactory single-sorted theory of shared-state. We hope that these considera-854

tions could inform future pursuit of this theory, or a tighter no-go result.855

B Proof of the representation theorem856

To start, we first prove proposition 23, soundness of encoded trace deductions:857

Proof. First, standardly in G we have 𝑥 ∶ ⭒ ⊢G ⧙𝜎, 𝜌⧘ ⧙𝜌′, 𝜃⧘ 𝑥 ≥ ⧙𝜎, 𝜃⧘ 𝑥 ∶ ⭒ and858

𝑥 ∶ ⭒ ⊢G ⧙𝜎, 𝜎⧘ 𝑥 ≥ 𝑥 ∶ ⭒, which are included in the ⦁ sort in SS.859

– The former, combined with Connect, leads to soundness of mumble.860

Two-sorted algebraic decompositions of shared state 25

– The latter, combined with Empty, leads to soundness of stutter.861

That reification is indifferent to closure follows:862

Proposition 31. For 𝐾 ∈ Pℵ0 (𝕋𝑿), 𝑿 ⊢SS reify 𝐾 = reify 𝐾† ∶ .863

Proof. Follows from proposition 23 by inequational reasoning.864

To prove the SS-Rep. Thm., let 𝑿 ∈ Set{⦁,⚬}. We start by giving alternative865

formulas to the interpretations of the lock operators.866

Lemma 32. Denote the set of sequences of transitions, where each transition867

has equal components 𝕊∗
= ≔ {⟨𝜎, 𝜎⟩ | 𝜎 ∈ 𝕊}∗. The following hold:868

R𝑿 J◁Kop 𝐾 = {⚬𝜉?
0𝜉𝑥 ∣ 𝜉?

0 ∈ 𝕊∗
=, ⦁𝜉𝑥 ∈ 𝐾}

R𝑿 J▷Kop 𝐾 = {⦁𝜉𝑥, ⦁⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}

Proof sketch. The fact that 𝐾 is closed means that most trace deductions af-869

forded in the interpretations as defined in the SS-Rep. Thm. are redundant.870

– In R𝑿 J◁Kop 𝐾, the only application of a trace deduction that results in a871

trace that would is not in the set before taking the closure is one of stutter872

at the start of the trace.873

– In R𝑿 J▷Kop 𝐾, the only application of a trace deduction that results in a874

trace that would is not in the set before taking the closure is one of mumble875

at the start of the trace.876

Lemma 33. R𝑿 is an SS-model.877

Proof. This amounts to showing that R𝑿 validates every SS-axiom.878

– The countable-join semilattice ones follow standardly for sets and unions.879

– Commutativity follows from the fact that interpretations are all defined by880

direct images.881

– The global state equations validate as they did in the model from Dvir882

et al. [12], where they were interpreted in a similar manner.883

This leaves Empty:884

J◁K J▷K 𝐾 = J◁K {⦁𝜉𝑥, ⦁⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}
= {⚬𝜉?

0𝜉𝑥 ∣ 𝜉?
0 ∈ 𝕊∗

=, ⦁𝜉𝑥 ∈ 𝐾} = 𝐾

where the last step is due to 𝐾 being closed; and Connect:885

J▷K J◁K 𝐾 = J▷K {⚬𝜉?
0𝜉𝑥 ∣ 𝜉?

0 ∈ 𝕊∗
=, ⦁𝜉𝑥 ∈ 𝐾}

= {⦁𝜉?
0𝜉𝑥, ⦁⟨𝜎, 𝜎⟩𝜉?

0𝜉𝑥 ∣ 𝜉?
0 ∈ 𝕊∗

=, ⦁𝜉𝑥 ∈ 𝐾} ⊇ 𝐾

where the last step is by taking an empty 𝜉?
0 in the first element.886

26 Y. Dvir, O. Kammar, O. Lahav, and G. Plotkin

We mention some equations regarding open transitions provable in SS.887

Lemma 34. 𝑥 ∶ ⦁ ⊢SS ⋁𝜎∈𝕊 ⧙𝜎, 𝜎⧘ 𝑥 = 𝑥 ∶ ⦁888

Proof. Follows from the global state validity: 𝑥 ∶ ⭒ ⊢G ⋁𝜎∈𝕊 ⧙𝜎, 𝜎⧘ 𝑥 = 𝑥 ∶ ⭒.889

Lemma 35. 𝑥 ∶ ⚬ ⊢SS ⋁𝜎∈𝕊 ◁ ⧙𝜎, 𝜎⧘▷𝑥 = 𝑥 ∶ ⚬890

Proof. Follows from ND-◁, lemma 34, and Empty.891

Let’s turn to the extension of environments along return. Let A be an SS-892

algebra, and let 𝑒 ∶ 𝑿 → A be an 𝑿-environment in A. Then:893

Lemma 36. 𝑒# is homomorphic.894

Proof. By evaluating both sides, it suffices to show that for every operator (𝑂 ∶895

⟨1, … ,𝛼⟩) ∈ ΣSS, and all 𝐾𝑖 ∈ R𝑿𝑖
:896

𝑿 ⊢SS reify(R𝑿 J𝑂Kop (𝐾1, … , 𝐾𝛼)) = 𝑂(reify𝐾1, … , reify𝐾𝛼) ∶ 

As in the proof of lemma 33, most follow as in Dvir et al.’s model [12],897

and we focus again on the interesting cases of ◁ and ▷. In both cases, we898

use proposition 31 to simplify. For the treatment of the ▷ case below, we use899

lemma 34 in the third equation:900

𝑿 ⊢SS reify(R𝑿 J▷Kop 𝐾) = reify{⦁⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}
= ⋁𝜎∈𝕊,⚬𝜉𝑥∈𝐾 ⧙𝜎, 𝜎⧘▷⚬𝜉𝑥
= ⋁⚬𝜉𝑥∈𝐾 ▷⚬𝜉𝑥
= ▷⋁⚬𝜉𝑥∈𝐾⚬𝜉𝑥 = ▷(reify𝐾) ∶ ⦁

𝑿 ⊢SS reify(R𝑿 J◁Kop 𝐾) = reify{⚬𝜉𝑥 | ⦁𝜉𝑥 ∈ 𝐾}
= ⋁⦁𝜉𝑥∈𝐾 ◁⦁𝜉𝑥
= ◁⋁⦁𝜉𝑥∈𝐾⦁𝜉𝑥 = ◁(reify𝐾) ∶ ⚬

Lemma 37. 𝑒 = 𝑒# ∘ return for all 𝑥 ∈ 𝑿.901

Proof. By evaluating in 𝑒 the equations 𝑥 ∶  ⊢SS reify(return 𝑥) = 𝑥 ∶ , which902

are easily verified in light of proposition 31, using lemmas 34 and 35.903

Lemma 38. return# ∶ R𝑿 → R𝑿 is the identity.904

Proof sketch. Follows by calculation, mainly by showing that for any 𝐾 ∈ R𝑿⦁,905

we have that R {𝑥 ∶ ⦁} J⧙𝜎, 𝜌⧘ 𝑥Kterm (𝑥 ↦ 𝐾) = (𝜎, 𝜌) 𝐾.906

Finally, we show uniqueness. Let 𝑓 ∶ R𝑿 → A be a homomorphism. Then:907

Lemma 39. If 𝑒 = 𝑓 ∘ return then 𝑓 = 𝑒#.908

Two-sorted algebraic decompositions of shared state 27

Proof. We use the following notation. For any SS-algebra B and ̃𝑒 ∶ 𝑿 → B, we909

denote eval(̃𝑒) ≔ BJ−Kterm ̃𝑒 ∶ TermΣSS𝑿 → B. Thus, ̃𝑒# = eval(̃𝑒) ∘ reify.910

Since eval(𝑓 ∘ return) ∶ TermΣSS𝑿 → A is the only homomorphic extension911

of 𝑓 ∘ return ∶ 𝑿 → A along the inclusion 𝜄 ∶ 𝑿 ↪ TermΣSS𝑿, we have that912

eval(𝑓 ∘ return) = 𝑓 ∘ eval(return). Using lemma 38:913

𝑒# = eval(𝑒) ∘ reify = eval(𝑓 ∘ return) ∘ reify = 𝑓 ∘ eval(return) ∘ reify = 𝑓

Putting everything together, ⟨R𝑿, return⟩ is a SS-model over 𝑿 (lemma 33)914

such that every environment homomorphically (lemma 36) extends along return915

(lemma 37), and does so uniquely (lemma 39). So ⟨R𝑿, return⟩ is a free SS-model916

over 𝑿, proving the SS-Rep. Thm.917

	Two-sorted algebraic decompositions of Brookes's shared-state denotational semantics
	Introduction
	Preliminaries
	Terms
	Equational logic
	Algebras and models
	Representability

	Shared state
	Representation
	Sorted traces
	Representation theorem

	Recovering Brookes's model
	Brookes recap
	Via an adjunction
	Single-sorted transitions
	Translations & equivalences
	Two-sorted transitions

	Conclusion and further work
	Motivation for two sorts
	Representation theorem proof

