# Two-sorted Algebraic Decompositions of Brookes's Shared-State Denotational Semantics

Yotam Dvir<sup>1</sup>, Ohad Kammar<sup>2</sup>, Ori Lahav<sup>1</sup>, Gordon Plotkin<sup>2</sup>

<sup>1</sup>Tel Aviv University

<sup>2</sup>University of Edinburgh

07 May 2025 | FoSSaCS | Hamilton, ON, Canada

#### Outline of the Talk

- \* Sequential setting introduction to algebraic effects [P & Power 2002]
- \* Concurrent setting:
  - » There's an algebraic effects theory for cooperative concurrency<sup>[P 2006]</sup>
  - » Using it for preemptive concurrency lacks abstraction[DKL 2022]
- Highly abstract denotational model for preemptive concurrency [Brookes 1996, BHN 2016]
- \* Two-sorted algebraic effects for concurrency:
  - » The o-sort adjunction recovers preemptive concurrency goal achieved!
  - » The ●-sort adjunction recovers cooperative concurrency nice perk

#### Section 1

The Sequential Setting

#### **Small-Step Semantics**

- \* Consider a sequential programming language
- \* Core Language: sequencing (-;-), branching  $(\mathbf{ifz} \mathbf{then} \mathbf{else} -)$ , etc.
- \* Effects: writing (l := v) and reading (l?) bits  $\mathbb{B} = \{0, 1\}$  to storage locations  $\mathbb{L}$

$$\sigma \in \mathbb{S} \triangleq \mathbb{L} \to \mathbb{B}$$

$$\sigma$$
, ( $l := 0$ ; ifz  $l$ ? then "ok" else "bug")

$$ightarrow \sigma[l\mapsto 0], (\mathbf{ifz}\ l?\ \mathbf{then}\ "\mathsf{ok"}\ \mathbf{else}\ "\mathsf{bug"})$$

$$\rightarrow \sigma[l \mapsto 0], (ifz \ 0 \ then "ok" \ else "bug")$$

$$\to \sigma[l\mapsto {\tt 0}], (\text{``ok"}) \quad \blacksquare$$

# Moggi's Monad-based Compositional (Denotational) Semantics<sup>[1991]</sup>

Domain: state transformers  $\underline{TX} \triangleq (\mathbb{S} \to \mathbb{S} \times X)$ 

$$[\![l \coloneqq \mathtt{0} \; ; \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``bug''}]\!]_{\mathrm{prog}} = \lambda \sigma. \, \langle \sigma[l \mapsto \mathtt{0}], \text{``ok''} \rangle \in \underline{T} \\ \mathrm{String}$$

# Plotkin & Power's Algebraic Effects Semantics<sup>[2002]</sup>

Monadic semantics proves contextual equivalences (adequacy theorem):

The algebraic effects theory of global state G has:

- \* Operators for updating  $U_{l,v}:1$  and looking up  $L_l:2$  bits in storage (O:arity)
- \* Axioms such as (UL)  $\mathsf{U}_{l,v}\,\mathsf{L}_l(x_{\mathsf{0}},x_{\mathsf{1}}) = \mathsf{U}_{l,v}\,x_v$

# Plotkin & Power's Algebraic Effects Semantics<sup>[2002]</sup>

Monadic semantics proves contextual equivalences (adequacy theorem):

Interpret operators as operations over the domain:

$$\begin{split} & [\![ \mathsf{U}_{l,v} ]\!]_{\mathrm{op}} f \triangleq \lambda \sigma \in \mathbb{S}. \, f \, (\sigma[l \mapsto v]) \\ & [\![ \mathsf{L}_{l} ]\!]_{\mathrm{op}} (f_{\mathsf{0}}, f_{\mathsf{1}}) \triangleq \lambda \sigma \in \mathbb{S}. \, f_{\sigma_{l}} \sigma \\ & [\![ \mathsf{U}_{l,v} \langle \rangle ]\!]_{\mathrm{term}} = [\![ l := v ]\!]_{\mathrm{prog}} \\ \end{split}$$

$$[t]_{\text{term}} = [r]_{\text{term}} \iff t \stackrel{\mathsf{G}}{=} r$$

# Adding Non-deterministic Choice

#### The theory of non-deterministic global state takes global state G and adds:

- \* Operators for choice: binary  $\vee:2$  and empty  $\perp:0$
- \* Axioms of semilattice, e.g.: (Symmetry)  $x \lor y = y \lor x$  (Neutrality)  $x \lor \bot = x$
- $* \ \, \text{Axioms of interaction, e.g.:} \quad (\lor \text{-U}) \ \, \mathsf{U}_{l,v}(x \lor y) = (\mathsf{U}_{l,v}\,x) \lor (\mathsf{U}_{l,v}\,y) \quad (\bot \text{-U}) \ \, \mathsf{U}_{l,v}\,\bot = \bot$

#### It is standard to:

- \* Generalize to larger cardinalities, e.g. countable choice
- \* Order by choices:  $t \ge r \triangleq t \lor r = t$  (t includes every choice r does)

#### Section 2

The Concurrent Setting

# Shared-State Concurrency Small-Step

Cooperative scheduling (program permits scheduler to switch a thread):

```
\begin{split} &\sigma, (l \coloneqq 1 \quad \| \quad l \coloneqq 0 \; ; \; \mathbf{yield} \; ; \; \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``bug''}) \\ &\to \sigma, (l \coloneqq 1 \quad \| \rangle \; l \coloneqq 0 \; ; \; \mathbf{yield} \; ; \; \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``bug''}) \\ &\to \sigma[l \mapsto 0], (l \coloneqq 1 \quad \| \rangle \; \mathbf{yield} \; ; \; \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``bug''}) \\ &\to \sigma[l \mapsto 0], (l \coloneqq 1 \quad \| \quad \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``bug''}) \\ &\to \ldots \end{split}
```

# Cooperative Concurrency: Resumptions<sup>[Abadi & Plotkin 2010]</sup>

The theory of resumptions Res takes non-deterministic global state and adds:

- \* Operator for yielding to the concurrent environment Y : 1
- \* Axioms of closure: (Pure)  $Yx \ge x$  (Join) YYx = Yx
- \* Axioms of interaction:  $(\lor$ -Y)  $\mathbf{Y}(x\lor y) = (\mathbf{Y}\,x)\lor (\mathbf{Y}\,y) \quad (\bot$ -Y)  $\mathbf{Y}\,\bot = \bot$

$$\begin{split} \llbracket l \coloneqq \mathbf{0} \; ; \; \mathbf{yield} \; ; \; \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``bug''} \rrbracket_{\mathrm{prog}} &= \; \llbracket \mathsf{U}_{l,\mathbf{0}} \, \mathsf{Y} \, \mathsf{L}_{l} \, (\text{``ok''}, \text{``bug''}) \rrbracket_{\mathrm{term}} \\ &\geq \; \llbracket \mathsf{U}_{l,\mathbf{0}} \, \mathsf{L}_{l} \, (\text{``ok''}, \text{``bug''}) \rrbracket_{\mathrm{term}} = \; \llbracket \mathsf{U}_{l,\mathbf{0}} \; \text{``ok''} \rrbracket_{\mathrm{prog}} \\ &\geq \; \llbracket \mathsf{U}_{l,\mathbf{0}} \, \mathsf{L}_{l} \, (\text{``ok''}, \text{``bug''}) \rrbracket_{\mathrm{term}} = \; \llbracket l \coloneqq \mathbf{0} \; ; \; \text{``ok''} \rrbracket_{\mathrm{prog}} \end{aligned}$$

#### Preemptive Concurrency Small-Step

Preemptive scheduling (non-deterministic interleaving):

$$\begin{split} &\sigma, (l\coloneqq \mathbf{1} \ \parallel \ l\coloneqq \mathbf{0} \ ; \ \mathbf{ifz} \ l? \ \mathbf{then} \ \text{``ok''} \ \mathbf{else} \ \text{``bug''}) \\ &\to \sigma[l\mapsto \mathbf{0}], (l\coloneqq \mathbf{1} \ \parallel \ \mathbf{ifz} \ l? \ \mathbf{then} \ \text{``ok''} \ \mathbf{else} \ \text{``bug''}) \\ &\to \sigma[l\mapsto \mathbf{1}], (\langle \rangle \ \parallel \ \mathbf{ifz} \ l? \ \mathbf{then} \ \text{``ok''} \ \mathbf{else} \ \text{``bug''}) \\ &\to \dots \end{split}$$

# Preemptive Concurrency: Also Resumptions?<sup>[P 2006; DKL 2022]</sup>

Use resumptions for preemptive concurrency by yielding implicitly? (i.e. using operator Y without yield construct)

Fundamental issue (no-go theorem): does  $[l?]_{prog}$  implicitly yield?

\* If so, e.g. 
$$[\![l?]\!]_{\mathrm{prog}} = [\![Y L_l(Y 0, Y 1)]\!]_{\mathrm{term}}$$
 — abstraction issue:

$$\llbracket \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok''} \; \mathbf{else} \; \text{``ok''} \rrbracket_{\mathrm{prog}} \neq \llbracket \text{``ok''} \rrbracket_{\mathrm{prog}}$$

\* If not, e.g.  $[l?]_{prog} = [L_l(0,1)]_{term}$  — soundness issue:

$$\llbracket \mathbf{ifz} \; l? \; \mathbf{then} \; l? \; \mathbf{else} \; \mathbf{0} \rrbracket_{\mathrm{prog}} = \llbracket \mathbf{0} \rrbracket_{\mathrm{prog}}$$

# Historical Precedent: Reverse Engineering

Monads came first (1991) — Algebraic effects recovered them (2002)

the process is a kind of reverse engineering

— Hyland & Power [2007]

We target the Brookes monad based on sequences of atomic state transitions

- \* Highly Abstract: e.g. has  $\llbracket \mathbf{ifz} \ l$ ? then "ok" else "ok"  $\rrbracket_{\mathrm{prog}} = \llbracket \text{``ok''} \rrbracket_{\mathrm{prog}}$
- \* Extensible: e.g. infinite executions, type-and-effect systems, allocations, relaxed memory

# Historical Precedent: Reverse Engineering

Monads came first (1991) — Algebraic effects recovered them (2002)

| Setting     | Sequential         | Cooperative Concurrency | Preemptive Concurrency |
|-------------|--------------------|-------------------------|------------------------|
| Monad       | State Transformers |                         | Brookes Monad          |
| Alg. Theory | Global State       | Resumptions             | ??                     |

We target the Brookes monad based on sequences of atomic state transitions

- \* Highly Abstract: e.g. has  $\llbracket \mathbf{ifz} \ l$ ?  $\mathbf{then}$  "ok"  $\mathbf{else}$  "ok"  $\rrbracket_{\mathrm{prog}} = \llbracket \text{``ok''} \rrbracket_{\mathrm{prog}}$
- \* Extensible: e.g. infinite executions, type-and-effect systems, allocations, relaxed memory

#### Section 3

**Brookes Monad** 

# Brookes's Trace-Based Denotational Model<sup>[1996]</sup>

- \* Denotations  $[\![M]\!]_{\mathrm{prog}}$  are sets of traces
- st Trace a protocol that the pool of threads in M can adhere to

#### Example (Rely/Guarantee Intuition for Traces)

(1) relies on access (2) to guarantee access 
$$\langle \stackrel{1}{1}, \stackrel{1}{0} \rangle \langle \stackrel{1}{1}, \stackrel{0}{0} \rangle x \in \mathsf{T} X \qquad \text{where } x \in X$$
 then (3) relies on access (4) to guarantee access and return value

$$\begin{array}{c} \text{add reliance} \\ \langle \frac{1}{1}, \frac{1}{0} \rangle \langle \frac{1}{1}, \frac{0}{0} \rangle x \in \llbracket M \rrbracket_{\text{prog}} \stackrel{\text{stutter}}{\Longrightarrow} \langle \frac{1}{1}, \frac{1}{0} \rangle \langle \frac{1}{1}, \frac{0}{0} \rangle \langle \frac{0}{1}, \frac{0}{1} \rangle x \in \llbracket M \rrbracket_{\text{prog}} \\ \langle \frac{1}{1}, \frac{1}{0} \rangle \langle \frac{1}{0}, \frac{0}{0} \rangle x \in \llbracket M \rrbracket_{\text{prog}} \stackrel{\text{mumble}}{\Longrightarrow} \langle \frac{1}{1}, \frac{0}{0} \rangle x \in \llbracket M \rrbracket_{\text{prog}} \\ \stackrel{\text{remove guarantee}} \end{array}$$

#### Reasoning in the Brookes Monad

- st Brookes's model has a monadic presentation B
  - » Domain: closed sets of traces  $\underline{BX} \triangleq \mathcal{P}^\dagger(\mathsf{T}X)$
- \* Supports program refinements, e.g.:

$$\begin{split} \llbracket l \coloneqq 0 \; ; \; \mathbf{ifz} \; l? \; \mathbf{then} \; \text{``ok"} \; \mathbf{else} \; \text{``bug"} \rrbracket_{\mathrm{prog}} \\ &= \left\{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \rho, \rho \rangle \text{``ok"} \; | \; \sigma, \rho \in \mathbb{S}, \rho_l = 0 \right\}^\dagger \cup \left\{ \cdots \text{``bug"} \; | \; \cdots \rho_l = 1 \right\}^\dagger \\ (\rho = \sigma[l \mapsto 0]) \quad \supseteq \left\{ \langle \sigma, \sigma[l \mapsto 0] \rangle \langle \sigma[l \mapsto 0], \sigma[l \mapsto 0] \rangle \text{``ok"} \; | \; \sigma \in \mathbb{S} \right\}^\dagger \\ &\quad (\dagger) \quad = \left\{ \langle \sigma, \sigma[l \mapsto 0] \rangle \text{``ok"} \; | \; \sigma \in \mathbb{S} \right\}^\dagger \\ &\quad = \left[ \llbracket l \coloneqq 0 \; ; \text{``ok"} \right]_{\mathrm{prog}} \end{split}$$

\* And equivalences, e.g.:  $[ifz\ l?\ then\ "ok"\ else\ "ok"]_{prog} = ["ok"]_{prog}$ 

# Reverse Engineering the Brookes Monad

| Setting                                                | Sequential                                                             | Cooperative Concurrency                                     | Preemptive Concurrency                                                                                                                                     |
|--------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\llbracket l := \mathtt{O}  rbracket_{\mathrm{prog}}$ | $\lambda \sigma. \langle \sigma[l \mapsto 0], \langle \rangle \rangle$ |                                                             | $ \left  \left\{ \left\langle \sigma, \sigma[l \mapsto 0] \right\rangle \left\langle \right\rangle \mid \sigma \in \mathbb{S} \right\}^{\dagger} \right  $ |
| Alg. Rep.                                              | $\left[ \left[ U_{l,o}\langle angle ight]  ight]_{	ext{term}}$         | $\llbracket U_{l,o}\langle  angle  bracket_{\mathrm{term}}$ | ??                                                                                                                                                         |

# Reverse Engineering the Brookes Monad

| Setting                                                       | Sequential                                                             | Cooperative Concurrency                                  | Preemptive Concurrency                                                                                                                      |
|---------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $\llbracket l \coloneqq \mathtt{0}  rbracket_{\mathrm{prog}}$ | $\lambda \sigma. \langle \sigma[l \mapsto 0], \langle \rangle \rangle$ |                                                          | $ \left\{ \left\langle \sigma, \sigma[l \mapsto 0] \right\rangle \left\langle \right\rangle \mid \sigma \in \mathbb{S} \right\}^{\dagger} $ |
| Alg. Rep.                                                     | $\llbracket U_{l,o}\langle  angle  bracket_{	ext{term}}$               | $\llbracket U_{l,o}\langle  angle  bracket_{	ext{term}}$ | $\llbracket \lhd U_{l,0} \rhd \langle  angle  brace  bracket_{	ext{term}}$                                                                  |

#### Section 4

Our Two-sorted Shared State Theory

# Our Two-sorted Theory of Shared State \$

- \* Sorts: Hold (●) & Cede (o)
- \* Operators:
  - »  $\bullet$ -sorted update  $\mathsf{U}_{l,v}: \bullet \langle \bullet \rangle$  and lookup  $\mathsf{L}_l: \bullet \langle \bullet, \bullet \rangle$
  - » choice in each sort
  - » acquire  $\triangleleft : o \langle \bullet \rangle$  release  $\triangleright : \bullet \langle o \rangle$
- \* Axioms:
  - » •-copy of the global state axioms
  - » Standard choice axioms (including distributivity and strictness)
  - » Closure pair axioms: (Empty)  $\lhd \rhd x = x$  (Fuse)  $\rhd \lhd x \geq x$
- \* Represented by a two-sorted generalization  $B^{\{ullet, \circ\}}$  of the Brookes monad B
  - $>\!\! >\!\! [\![ \lhd \mathsf{U}_{l,v} \rhd \langle \rangle ]\!]_{\mathrm{term}} \cong [\![l \coloneqq v]\!]_{\mathrm{prog}} \qquad [\![ \lhd \mathsf{L}_l(\rhd \mathsf{0}, \rhd \mathsf{1}) ]\!]_{\mathrm{term}} \cong [\![l?]\!]_{\mathrm{prog}}$

# Reasoning with Shared State \$

(Fuse) ( $\triangleright \triangleleft x \ge x$ ): fusing atomic blocks eliminates potential interference

$$\begin{split} & [\![ \mathbf{ifz} \ \mathit{l}? \ \mathbf{then} \ \text{``ok''} \ \mathsf{else} \ \text{``ok''} ]\!]_{\mathrm{prog}} \cong [\![ \lhd \ \mathsf{L}_{\mathit{l}} \ (\rhd \text{``ok''}, \rhd \text{``ok''})]\!]_{\mathrm{term}} \\ & \stackrel{\mathsf{G}}{=} [\![ \lhd \rhd \text{``ok''} ]\!]_{\mathrm{term}} = [\![ \text{``ok''} ]\!]_{\mathrm{term}} \cong [\![ \text{``ok''} ]\!]_{\mathrm{prog}} \end{split}$$

(Empty) ( $\lhd \triangleright x = x$ ): empty atomic blocks have no observable effect

#### Section 5

Our Two-sorted Brookes Monad

#### Two-sorted Brookes Traces

- \* Each family  $X \in \mathbf{Set}^{\{ullet, o\}}$  has a ullet-component  $X_{ullet} \in \mathbf{Set}$  and a o-component  $X_{ullet} \in \mathbf{Set}$
- \* Generalize to sorted traces:  $\square \langle \sigma_1, \rho_1 \rangle \dots \langle \sigma_i, \rho_i \rangle \dots \langle \sigma_n, \rho_n \rangle \lozenge x$  is  $\square$ -sorted and  $\lozenge$ -valued

#### Example (Rely/Guarantee Intuition for Sorted Traces)

relies on predecessor holding guarantees releasing e-sorted and o-valued: 
$$\bullet \langle \stackrel{1}{1}, \stackrel{1}{0} \rangle \langle \stackrel{1}{1}, \stackrel{0}{0} \rangle \circ x \in (\mathbb{T}X)_{\bullet}$$

where  $x \in X_{a}$ 

\* Same closure rules  $(\stackrel{\text{stutter}}{\Longrightarrow})$  &  $(\stackrel{\text{mumble}}{\Longrightarrow})$  except: no stutter next to •

#### Example (Disallowed stutter)

$$\bullet \langle \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \rangle \langle \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \rangle \mathsf{o}x \xrightarrow{\mathsf{stutter}} \bullet \langle \begin{smallmatrix} 0 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \rangle \langle \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \rangle \langle \begin{smallmatrix} 1 \\ 1 \end{smallmatrix}, \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \rangle \mathsf{o}x$$

#### Representation of our Theory of Shared State \$

- \* Monad  $B^{\{\bullet, \circ\}}$  represents the shared-state theory \$\mathbb{S}\$:
  - » Domain for each sort  $\square$ : closed sets of  $\square$ -sorted traces  $\underline{B^{\{\bullet, \circ\}}X_{\square}} \triangleq \mathcal{P}^{\dagger}((\mathbb{T}X)_{\square})$
  - » Interpretations:

$$[V]_{op} \triangleq \bigcup$$
 (Choice)

$$[\![ \lhd ]\!]_{op} K \triangleq \{ \circ \xi \diamond x \mid \bullet \xi \diamond x \in K \}^{\dagger}$$
 (Acquire)

$$\llbracket \rhd \rrbracket_{\text{op}} K \triangleq \{ \bullet \langle \sigma, \sigma \rangle \xi \lozenge x \mid \sigma \in \mathbb{S}, \mathsf{o} \xi \lozenge x \in K \}^{\dagger}$$
 (Release)

$$\llbracket \mathsf{U}_{l,v} \rrbracket_{\mathrm{op}} K \triangleq \bigcup_{\sigma \in \mathbb{S}} \left( \sigma, \sigma[l \mapsto v] \right) K \tag{Update}$$

$$\llbracket \mathbf{L}_{l} \rrbracket_{\mathrm{op}}(K_{0}, K_{1}) \triangleq \bigcup_{\sigma \in \mathbb{S}} (\sigma, \sigma) \, K_{\sigma_{l}} \tag{Lookup}$$

where 
$$(\sigma, \rho) K \triangleq \{ \bullet \langle \sigma, \theta \rangle \xi \otimes x \mid \bullet \langle \rho, \theta \rangle \xi \otimes x \in K \}$$

# Recovery Along the Inclusion-Projection Adjunction

\* Monad  $B^{\{\bullet, {\rm o}\}}$  transformed along  $(-)^{\rm o}\dashv (-)_{\rm o}\cong {\sf Brookes's}$  monad B

$$\text{ } \text{ } \text{ } X^{\mathsf{o}} \triangleq \{x: \mathsf{o} \mid x \in X\} \quad - \quad \underline{B^{\{\bullet, \mathsf{o}\}}X^{\mathsf{o}}_{\phantom{\mathsf{o}}}} = \mathcal{P}^{\dagger}((\mathbb{T}X^{\mathsf{o}})_{\mathsf{o}}) \cong \mathcal{P}^{\dagger}(\mathsf{T}X) = \underline{BX}$$

» 
$$\llbracket \lhd \mathsf{U}_{l,v} \rhd \langle \rangle \rrbracket_{\mathrm{term}} \cong \llbracket l \coloneqq v \rrbracket_{\mathrm{prog}} \qquad \llbracket \lhd \mathsf{L}_l (\rhd \mathsf{0}, \rhd \mathsf{1}) \rrbracket_{\mathrm{term}} \cong \llbracket l? \rrbracket_{\mathrm{prog}}$$

#### $\cong B$ monad



# Recovery Along the Inclusion-Projection Adjunction

- \* Monad  $B^{\{ullet,o\}}$  transformed along  $(-)^{ullet}\dashv (-)_{ullet}$  represents the resumptions theory Res
  - » Closure axioms  $(Y \mapsto \triangleright \triangleleft)$ :  $(Pure) \triangleright \triangleleft x \ge x$   $(Join) \triangleright \triangleleft \triangleright \triangleleft x = \triangleright \triangleleft x$
  - $> [\![ \rhd \lhd \langle \rangle ]\!]_{\mathrm{term}} \cong [\![ \mathbf{yield} ]\!]_{\mathrm{prog}} \quad [\![ \mathsf{U}_{l,v} \langle \rangle ]\!]_{\mathrm{term}} \cong [\![ l \coloneqq v ]\!]_{\mathrm{prog}} \quad [\![ \mathsf{L}_l(\mathsf{0},\mathsf{1}) ]\!]_{\mathrm{term}} \cong [\![ l ? ]\!]_{\mathrm{prog}}$

#### represents Res



#### High-Level Outline of the Solution

A two-sorted algebraic effects theory for **shared state concurrency \$**: (the first example of a multi-sorted algebraic effects theory)

- \* The sorts Hold & Cede o declare exclusive access to memory
- \* Classic algebraic effects theories:
  - » Global State G in ●
  - » Choice (semilattice) in both sorts
- \* The Closure Pair theory C for managing access:
  - » Operators: Acquire  $\triangleleft : o\langle \bullet \rangle$  & Release  $\triangleright : \bullet \langle o \rangle$
  - » Closure pair axioms: (Empty)  $\lhd \rhd x = x$  (Fuse)  $\rhd \lhd x \geq x$
- \* Represented by a two-sorted model recovering known models in each sort:
  - » The o-incl ⊢ o-proj adjunction recovers Brookes's model (preemptive concurrency)
  - » The ●-incl ¬ ●-proj adjunction represents Resumptions (cooperative concurrency)

