Two-sorted Algebraic Decompositions

of Brookes's Shared-State Denotational Semantics

Yotam Dvir!, Ohad Kammar?, Ori Lahav!, Gordon Plotkin?

ITel Aviv University

2University of Edinburgh

07 May 2025 | FoSSaCS | Hamilton, ON, Canada

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 1/25

Outline of the Talk

Sequential setting — introduction to algebraic effectsl” & Power 2002]

*

x Concurrent setting:

» There's an algebraic effects theory for cooperative concurrencylP 2000]

» Using it for preemptive concurrency lacks abstraction[PXt 2022]

*

Highly abstract denotational model for preemptive concurrencyl[Brookes 1996, BHN 2016]

*

Two-sorted algebraic effects for concurrency:

» The o-sort adjunction recovers preemptive concurrency — goal achieved!

» The @-sort adjunction recovers cooperative concurrency — nice perk

mmar, O. Lahav, G. Plc Two-sorted Shared State 07 May 2025 | FoSSaCS 2/25

Section 1

The Sequential Setting

Two-sorted Shared State 07 May 2025 | FoSSaCS 3/25

Small-Step Semantics

x Consider a sequential programming language
« Core Language: sequencing (—;—), branching (ifz — then — else—), etc.

« Effects: writing (I := v) and reading (I7) bits B = {0, 1} to storage locations L

ceESEL B

o,(l:=0;ifz [? then “ok" else “bug")
— o[l + 0], (ifz [7 then “ok” else “bug")
— o[l + 0], (ifz 0 then "ok" else “bug”)
— o]

0], ("ok”)

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

4/25

Moggi's Monad-based Compositional (Denotational) Semantics!!?%!

Domain: state transformers TX = (S — S x X)

[1:=0; ifz 1? then “ok” else “bug"],0, = Ao (ol - 0], “ok”) € T'String

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 5/25

Plotkin & Power's Algebraic Effects Semantics/200%

Monadic semantics proves contextual equivalences (adequacy theorem):

[l :=0;ifz [? then "ok” else “bug"] ., = Ao. (o[l = 0], “ok") = [l := 0 ; “ok”],,0q
I (uL) I
Underlying algebraic reasoning: U0 (“ok”, “bug”)]]term = [U;0 “ok"]

term

The algebraic effects theory of global state G has:
* Operators for updating U, , : 1 and looking up L, : 2 bits in storage (O : arity)

* Axioms such as (UL) U, L,(zg,7,) = U, z,

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 6/25

Plotkin & Power's Algebraic Effects Semantics/200%

Monadic semantics proves contextual equivalences (adequacy theorem):

[l :=0;ifz [? then "ok” else “bug”] ., = Ao. (o[l = 0], “ok") = [l := 0 ; “ok”]

I I
(UL)
Underlying algebraic reasoning: U0 (“ok”, “bug”)]]term = [U;0 “ok"]

prog

term
Interpret operators as operations over the domain:
[Uiulopf = Ao €S f (ol v]) [Lillop(fo, f1) = Ao €S. fp0
[[UZ,UO]]term = [[l = U]]prog [[Ll(()? 1)]]term = [[l?]]prog
G
[[t]]term = [[r]]term — t=r J

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 6/25

Adding Non-deterministic Choice

The theory of non-deterministic global state takes global state G and adds:
« Operators for choice: binary V : 2 and empty | : 0
% Axioms of semilattice, e.g.: (Symmetry) zVy=yVz (Neutrality) zV L =2z

* Axioms of interaction, e.g.: (V-U) U, (zVy)=(U,,z)V (U,,y) (L-U)U,L=1

It is standard to:

x Generalize to larger cardinalities, e.g. countable choice

* Order by choices: t >r = tV r =1t (tincludes every choice r does)

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

7/25

Section 2

The Concurrent Setting

Two-sorted Shared State 07 May 2025 | FoSSaCS 8/25

Shared-State Concurrency Small-Step

Cooperative scheduling (program permits scheduler to switch a thread):

o,(l:==1 | l:=0;yield ; ifz [? then “ok” else “bug")
—o,(l:=1) 1:=0;yield ; ifz [? then “ok” else “bug")
— o[l 0],(l:=1 |) yield ; ifz [? then “ok” else “bug”)
— o[l 0],(l:=1 | ifz[? then "ok" else "bug")

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

9/25

Cooperative Concurrency: Resumptions!APadi & Plotkin 2010]

[l := 0;ifz I then “ok” else (yield ; "bug”)] = HUZ,O L (“ok”,Y “bug”)]

prog term

(uL)
= [Upo"ok’], =[l:=0;"ok"]

prog

The theory of resumptions Res takes non-deterministic global state and adds:
x Operator for yielding to the concurrent environment Y : 1
% Axioms of closure: (Pure) Yz > (Join) YYz =Yz
% Axioms of interaction: (V-Y) Y(zVy)=(Yz)V (Yy) (L-Y) YL=L1

[1:=0; yield ; ifz 17 then "ok” else “bug"] = [U; YL, (“ok”, "bug")]
(Pure)
> [Ug oLy (Mok”, “bug”)]

term

(UL) W W
term - [[Ul’o Ok]]term - [[l =0 ; Ok]]ng

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 10/25

Preemptive Concurrency Small-Step

Preemptive scheduling (non-deterministic interleaving):

o,(l:=1 | 1:=0;ifz[? then "ok" else “bug”)
— o[l 0],(l:=1 | ifz (? then “ok"” else “bug")
— o[l 1],(() || ifz (7 then “ok” else “bug”)

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

11/25

Preemptive Concurrency: Also Resumptions?[P 2006; DKL 2022]

Use resumptions for preemptive concurrency by yielding implicitly?

(i.e. using operator Y without yield construct)

Fundamental issue (no-go theorem): does [I7],,,,, implicitly yield?

« 1f so, e.g. [I17] roe = [Y Li(YO0,Y 1)]iery, — abstraction issue:

prog

[ifz [? then “ok” else “ok"]]p]rog + H“Ok"]]pmg

* If not, e.g. [I?] 008 = [L1(0; 1)]ierm — soundness issue:

i ? ? =
[ifz [? then [? else Oﬂprog [[O]]prog

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

12/25

Historical Precedent: Reverse Engineering

Monads came first (1991) — Algebraic effects recovered them (2002)

the process is a kind of reverse engineering

— Hyland & Power [2007]

We target the Brookes monad based on sequences of atomic state transitions

« Highly Abstract: e.g. has [ifz [? then “ok" else “ok”]]p]rog = [[“ok”]]prOg

x Extensible: e.g. infinite executions, type-and-effect systems, allocations, relaxed memory

Yotam Dvi Kammar, O. Lahav, G] Two-sorted Shared State 07 May 2025 | FoSSaCS 13/25

Historical Precedent: Reverse Engineering

Monads came first (1991) — Algebraic effects recovered them (2002)

Setting ’ Sequential | Cooperative Concurrency | Preemptive Concurrency
Monad State Transformers Brookes Monad
Alg. Theory Global State Resumptions 7

We target the Brookes monad based on sequences of atomic state transitions

« Highly Abstract: e.g. has [ifz [? then “ok" else “ok”]]prog = [[“ok”]]pmg

x Extensible: e.g. infinite executions, type-and-effect systems, allocations, relaxed memory

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 13/25

Section 3

Brookes Monad

Two-sorted Shared State 07 May 2025 | FoSSaCS 14 /25

Brookes's Trace-Based Denotational Model199]

 Denotations [M],,, are sets of traces

x Trace — a protocol that the pool of threads in M can adhere to

Example (Rely/Guarantee Intuition for Traces)
(1) relies on access\v f(2) to guarantee access

(1,801, %)z eTX where z € X

then (3) relies on accessj &(4) to guarantee access and return value

add reliance
stutter
(1562015 8)7 € [M]prog == (1, 6)(1: {1, D)z € [M] 10

mumble

(1, 32055 0)2 € [M]prog === (1, 0)7 € [M]0q
remove guarantee

" Yotam Duir, O. Kammar, O. Lahav, G. Plotkin | Two-sorted Shared State 07 May 2025 | FoSSaCS 1525

Reasoning in the Brookes Monad

+x Brookes's model has a monadic presentation B
» Domain: closed sets of traces BX = PT(TX)
x Supports program refinements, e.g.:
[l:=0;ifz [? then "ok” else “bug"],,,,
= {(.0ll = 0){p,)"0k | 0, p € S,y = 0} U {-"bug” | -y = 1}
(p=oll=0]) D{{o,0[l+0]){c[l+ 0],0[l > 0])"ok" | o € S}T
() ={{o.olir 0))"ok" | o € 8}’
=[l:=0;"ok"]

prog
« And equivalences, e.g.: [ifz {7 then “ok"” else “ok"] = ["ok”]

prog prog

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 16 /25

Reverse Engineering the Brookes Monad

Setting ’ Sequential ’ Cooperative Concurrency ’ Preemptive Concurrency
[= Olpog | o (o]l 1+ 01,) {{o,oll > 0]) () [0 €5}
Alg Rep [[Ul,0<>]]term [[Ul,0<>ﬂterm 77

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 17/25

Reverse Engineering the Brookes Monad

Setting ’ Sequential ’ Cooperative Concurrency ’ Preemptive Concurrency
[l := O] rog | Ao (o]l = 0],) {(o,0ll0]) ()| o €S}
Alg Rep [[Ul,0<>]]term [[Ul,0<>ﬂterm [[Q Ul,O [><>]]term

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 17/25

Section 4

Our Two-sorted Shared State Theory

" Yotam Duir, O. Kammar, O. Lahav, G. Plotkin | Two-sorted Shared State 07 May 2025 | FoS$aCS 1825

Our Two-sorted Theory of Shared State $

« Sorts: Hold (@) & Cede (0)

x Operators:
» e-sorted update U, , : @ (®) and lookup L, : @ (e, @)
» choice in each sort
» acquire < :o(e) release > : @(0)

* Axioms:

» e@-copy of the global state axioms
» Standard choice axioms (including distributivity and strictness)
» Closure pair axioms: (Empty) <>x =2 (Fuse) >b<x >

« Represented by a two-sorted generalization B{®°} of the Brookes monad B

» |I<] Ul,v D<>]]term = [[l = v]]prog [[<] Ll(l> 07 > 1)]]term = [[l?]]prog

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

19/25

Reasoning with Shared State $

[l :=0;ifz [? then “ok” else “bug”]]p]rog =~ [<U; o> <Ly (> ok”, >"bug"”)ierm

(Fuse
D) E[<] Ul,O Ll (D“Okna I>“bl'lg”)]]term

(UL)
= [9U10 50K Dy = [1:= 05 “0K"]_,

(Fuse) (> <z > z): fusing atomic blocks eliminates potential interference J

[ifz I? then “ok” else “ok"], .o, = [<IL; (>"0k”, >"0k")] erm

G w o gn (Empty) .
= [[<] > ok]]term :ﬁ ok]]term = [[ok]]prog

(Empty) (<> 2 = z): empty atomic blocks have no observable effect J

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 20/25

Section 5

Our Two-sorted Brookes Monad

" Yotam Duir, O. Kammar, O. Lahav, G. Plotkin | Two-sorted Shared State 07 May 2025 | FoS$aCS 2125

Two-sorted Brookes Traces

x Each family X € Set'* has a e-component X, € Set and a o-component X, € Set

« Generalize to sorted traces: a(oy,pq) ... (0;,0;) - (0,,, p,,) O is O-sorted and ¢-valued

Example (Rely/Guarantee Intuition for Sorted Traces)

relies on predecessor holding\v fguarantees releasing
e-sorted and o-valued: ol W1 %)ox e (TX), where x € X
stutter mumble
« Same closure rules () & () except: no stutter next to @

Example (Disallowed stutter)

stutte
o(1,5)(1, 8>OI%°<?, (1, 0)(1, 5)ox

Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 22 /25

Representation of our Theory of Shared State $

« Monad B®°} represents the shared-state theory $:

» Domain for each sort o: closed sets of o-sorted traces B{**' X = P1((TX),)
» Interpretations:

VI, = U (Choice)

[<lo, K = {00z | @0 € K} (Acquire)

[>]op K 2 {o(0,0)¢0x | 0 € S, 00z € K} (Release)

U lopK = U, s (0,0l 1= v]) K (Update)
[Lilop (Ko K1) = U, (0,0) K, (Lookup)

where (0, p) K = {@(c,0)0x | @(p,0)¢0x € K}

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 23/25

Recovery Along the Inclusion-Projection Adjunction

* Monad B{*°} transformed along (—)° 4 (=), = Brookes's monad B
» Xe2{z:o|zeX} — BloIX° =2PI((TX°),)=PH(TX)=DBX

» |I<] Ul,v l><>]]term = [[l = v]]prog [[<] Ll(l> 07 > 1)]]term = [[l?]]prog

>~ B monad

B1*°} monad =
1 Bleot < (=)
: $-Alg € Set{.’o} L Set
| — ~
| O e

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS

24 /25

Recovery Along the Inclusion-Projection Adjunction

+ Monad B{®°} transformed along (—)® 4 (—), represents the resumptions theory Res

» Closure axioms (Y = > <): (Pure) > <z >z (Join) ><d><dzr=0><z
» II[> <]<>]]term = [[yield]]prog IIUZ,UO]]term = IIZ = v]]prog [[Ll(o7 1)]]term = [[l?]]prog

represents Res

B1*°} monad =
1 Bleot < ()
: $-Alg € Set{.’o} L Set
| — ~
| O .

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 24 /25

High-Level Outline of the Solution

A two-sorted algebraic effects theory for shared state concurrency $:
(the first example of a multi-sorted algebraic effects theory)

x The sorts Hold @ & Cede o declare exclusive access to memory

x Classic algebraic effects theories:
» Global State G in @ W /
» Choice (semilattice) in both sorts %C té'
x The Closure Pair theory C for managing access:
» Operators: Acquire <1 : o(e) & Release > : @(0)
» Closure pair axioms: (Empty) <>z =2 (Fuse) > <z >z
* Represented by a two-sorted model recovering known models in each sort:

» The o-incl - o-proj adjunction recovers Brookes's model (preemptive concurrency)
» The e-incl + e-proj adjunction represents Resumptions (cooperative concurrency)

Yotam Dvir, O. Kammar, O. Lahav, G. Plotkin Two-sorted Shared State 07 May 2025 | FoSSaCS 25/25

	The Sequential Setting
	The Concurrent Setting
	Brookes Monad
	Our Two-sorted Shared State Theory
	Our Two-sorted Brookes Monad
	Appendix
	Backup Slides

