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Abstract. We define a two sorted equational theory of algebraic effects
that models concurrent shared state with preemptive interleaving, recov-
ering Brookes’s seminal 1996 trace-based model precisely. The decompo-
sition allows us to analyse Brookes’s model algebraically in terms of sepa-
rate but interacting components. The multiple sorts partition terms into
layers. We use two sorts: a “hold” sort for layers that disallow interleaving
of environment memory accesses, analogous to holding a global lock on
the memory; and a “cede” sort for the opposite. The algebraic signature
comprises of independent interlocking components: two new operators
that switch between these sorts, delimiting the atomic layers, thought of
as acquiring and releasing the global lock; non-deterministic choice; and
state-accessing operators. The axioms similarly divide cleanly: the de-
limiters behave as a closure pair; all operators are strict, and distribute
over non-empty non-deterministic choice; and non-deterministic global
state obeys Plotkin and Power’s presentation of global state. Our repre-
sentation theorem expresses the free algebras over a two-sorted family of
variables as sets of traces with suitable closure conditions. When the held
sort has no variables, we recover Brookes’s trace semantics. We define
several other single- and two-sorted theories to elucidate the connection
to Brookes’s model via translation embeddings and equivalences.

Keywords: shared state · concurrency · denotational semantics · monads ·
algebraic effects · equational theory · multi-sorted algebra · trace semantics ·
representability · join semilattices · closure pairs · mnemoids · global state

1 Introduction

We decompose Brookes’s pioneering denotational model of concurrent shared
state under preemptive interleaving [7] using algebraic effects [35]. This model
possesses several desirable features in the area of denotational models for pro-
gramming languages with concurrent features. (I) It is based on traces, an el-
ementary sequential gadget. (II) It is fully compositional, as in traditional de-
notational semantics for shared-state [e.g. 15, 17]. Each syntactic programming
construct, including parallel composition, has a corresponding semantic oper-
ation combining the meanings of its constituents. Such full compositionality
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contrasts with some recent models in this area that require additional ‘seman-
tic post-processing’: some form of quotient, pruning of auxiliary mathematical
constructs, reasoning up-to behavioural equivalence; or capture only sequen-
tial blocks, reasoning about the parallel composition on a separate layer [e.g.
8, 9, 20, 25]. (III) Subsequent variations and extensions [5, 44, 45], as well as
adaptations to relaxed memory models [13, 14, 19], attest to its versatility, mak-
ing it a cornerstone in the denotational semantics for concurrent languages with
side-effects. (IV) It achieves a high level of abstraction, evident in the many
compiler transformations that the model supports, including the most common
memory access introductions and eliminations, and the laws of parallel program-
ming. Moreover, Brookes showed the model to be fully abstract in a language
extended with the await construct, which blocks execution until all memory
locations contain a given tuple of values, and then atomically updates them to
contain another tuple of values. This construct is not a natural programming
construct, but is clearly suggested by Brookes’s semantics.

Plotkin and Power’s modern theory of algebraic effects [35] refines Moggi’s
monadic approach [30] with algebraic theories. The algebraic approach informs
the monadic structure by identifying semantic counterparts to syntactic con-
structs and axiomatising their semantics equationally. The monadic structure
emerges through the well-established connection between algebraic theories and
monads [27] via representation theorems. For example: global state emerges by
axiomatising memory lookup and update [35] and a representation theorem in-
volving the state monad; non-determinism emerges by axiomatising semi-lattices
and a representation theorem involving the powerdomains [15, 32]; and so on.
The algebraic perspective may offer insights into the making of the denotational
semantics. It can suggest methods for combining different effects and modularly
augment a semantics with a given computational effect [17].

The connection between algebraic effects and concurrency has long been em-
phasised. For example, the ability to use algebraic effects, without any axioms,
and their effect handlers [4, 37, 38] to allow users to define their own schedulers
was the original motivation for their implementation in the OCaml programming
language [10, 11, 40]. Nonetheless, exhibiting abstract models such as Brookes’s
algebraically via equational axiomatisation of syntactic constructs has proved
challenging. Our own previous algebraic model [12] invalidates a key transfor-
mation, reflecting a fundamental limitation.

To overcome this limitation, we use multi-sorted algebraic theories, a direc-
tion that was raised in personal discussions since the earliest work on algebraic
effects [35]. A multi-sorted algebraic term decomposes into layers. Our two sorts
represent two modes of interaction between a program fragment and its con-
current environment. A “hold” sort (⦁) provides a reasoning layer in which the
environment may not interfere, whereas in the “cede” sort (⚬) it may. We provide
two operators that switch between these sorts. Our core idea is to axiomatise
these operators as a closure pair, an established order-theoretic special Galois-
connection, the dual to the domain-theoretic embedding-projection pairs [2].
Additionally, we axiomatise strict distributivity of the closure pair over non-
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determinism. The remaining axioms, all in the hold sort, are strikingly indepen-
dent from these axioms. In our shared-state theory SS, the remaining axioms are
precisely those of non-deterministic global state.

We prove, twice over, that SS recovers Brookes’s model in the cede sort. First,
using sets of traces akin to Brookes’s, we define a representation of SS. The repre-
sentation recovers Brookes’s model via the adjunction that forgets the hold sort.
Second, we define three algebraic theories for Brookes’s await and its sequential
variant, relating them to global-state, shared-state, and each other via embed-
dings and equivalences. The theory for concurrent await is straightforwardly
represented by Brookes’s model, and embeds in the cede sort of SS.

Caveats In our development, we opt for mathematical simplicity whenever pos-
sible. For example, we use countable-join semilattices instead of finite-join semi-
lattices to represent non-determinism. This choice streamlines the development
leading up to the representation theorem, allowing us to use countable sets in-
stead of finitely generated ones. We also do not treat recursion to avoid the com-
plexity that a domain-theoretic account incurs. The resulting model—identical to
Brookes’s—coincides with the elided domain-theoretic model over discrete pre-
domains. This model also supports iteration (i.e. while-loops) without change
thanks to countable-joins. It also supports first-order recursion without change
by equipping it with a domain-theoretic structure. These compromises let us
focus on the core concepts, and provide a relatively elementary exposition and
a clear presentation of the underlying idea, motivating future inquiry.

2 Overview
Equational theories study terms constructed from algebraic operators (§3.1). In
Plotkin and Power’s algebraic theory of effects, the operators represent funda-
mental program effects, and their arguments represent continuations. Equational
axioms reflect fundamental relationships between the operators. The equations
that hold in the theory, reflecting the semantics as a whole, are those that follow
from its axiomatic presentation by equational logic (§3.2).

In the global-state theory, a theory for sequential stateful computation, the
operators 𝖴 and 𝖫 represent updating and looking up bits in memory. For ex-
ample, consider the global-state term 𝖴y,𝟶 𝖫y(3, 𝖴x,𝟷 𝖴y,𝟷 7). After updating y to
𝟶, the computation looks y up: if it finds 𝟶, it returns 3; if it finds 𝟷, it updates x
and y to 𝟷 in succession, then returns 7. Between the update and the lookup, the
value at y cannot change. Therefore, the computation finds the value 𝟶, and takes
the left-hand continuation. The global-state axiom (UL) 𝖴ℓ,𝑏 𝖫ℓ(𝑥𝟶, 𝑥𝟷) = 𝖴ℓ,𝑏 𝑥𝑏
reflects this fact. By (UL), 𝖴y,𝟶 𝖫y(3, 𝖴x,𝟷 𝖴y,𝟷 7) = 𝖴y,𝟶 3 holds in global state.

A representing monadic model for an equational theory (§3.3) interprets the
algebraic operators as corresponding operations over the model’s domain; such
that each term, up-to equality in the theory, is represented uniquely in the
domain. Interpretations respect the theory; that is, applying an operation to
representations of terms results in the representation of the corresponding op-
erator applied to said terms: J𝑂Kop(J𝑡1Kterm, … , J𝑡𝛼Kterm) = J𝑂(𝑡1, … , 𝑡𝛼)Kterm.
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For example, global-state terms are represented by memory-manipulating func-
tions in the state-monad model. This model interprets update by precomposing
a state update J𝖴ℓ,𝑏Kop𝑓 = 𝑓 ∘ [ℓ ↦ 𝑏]; and interprets lookup by passing the
input memory state 𝜎 along to the 𝜎ℓ-continuation J𝖫ℓKop(𝑓𝟶, 𝑓𝟷) = 𝜆𝜎. 𝑓𝜎ℓ

𝜎. In
this way, global state recovers the (historically precedent) state monad.

The state monad does not account for concurrent interference. The monad
underlying Brookes’s denotational semantics does, by using sequences of tran-
sitions to denote potential behaviours (§6.1). Each transition ⟨𝜎, 𝜌⟩ in sequence
means that the computation, by relying on exclusive access to the memory at
state 𝜎, can guarantee to provide the state 𝜌 and yield to the environment.

Following the tradition of algebraic effects, we wish to recover Brookes’s
model using an equational theory for shared state. This is rather straightfor-
ward using a single-sorted theory B (§6.3) in which transitions appear as opera-
tors. However, this theory is dissatisfying, for two reasons. (I) Transitions do not
correspond to familiar programming constructs, but to Brookes artificial await
construct. (II) Conceptualising shared state as global state with concurrent in-
terference, we expect the global-state effects to be present in a theory of shared
state, and the equations between them to hold when interference is prohibited.

A more appropriate approach adds an operator 𝖸 to global state for yield-
ing control to the environment. Otherwise, the computation has exclusive access
to memory. This direction lead to a Brookes-like model [12]. However, unlike
Brookes’s model, it does not validate the Irrelevant Read Introduction (IRI) pro-
gram transformation, which introduces a read instruction that possibly yields
to the environment and discards the value it read. The IRI transformation is
useful as a stepping stone to other practical transformations, such as common-
subexpression elimination from conditionals, and consequently loops. Invalidat-
ing IRI seems to be a fundamental limitation of the yield-operator approach, as
we show in the appendix (§A). In retrospect, we can pinpoint the issue to 𝖸 both
releasing exclusive access to memory, and acquiring it back. Our key insight is
that the mode of computation that cedes access to memory needs to be explicit,
decomposing 𝖸 into a pair of mode-switching operators.

The remaining structure falls into place straightforwardly and naturally, in
our proposed two-sorted theory for shared state SS (§4). Each sort represents
a computation mode: hold (⦁) represents the computation’s exclusive access to
memory; cede (⚬) represents positions in which the environment may interfere.
Each operator has a sort and expects each continuation to have a specific sort.
In SS, update 𝖴 ∶ ⦁⟨⦁⟩ and lookup 𝖫 ∶ ⦁⟨⦁, ⦁⟩ are ⦁-sorted and expect ⦁-sorted
continuations, allowing us to reason about interference-free stateful interactions.

The theory SS also supports non-deterministic choice in both sorts. For ex-
ample, the term (𝖴x,𝟷 2 ∨ 𝖴x,𝟷 5) either updates x to 𝟷 and returns 2, or updates
x to 𝟷 and returns 5. We axiomatise SS such that each operator distributes over
non-deterministic choice, e.g. (𝖴x,𝟷 2 ∨ 𝖴x,𝟷 5) = 𝖴x,𝟷(2 ∨ 5). We order terms by
potential behaviours (𝑙 ≥ 𝑟) ≔ (𝑙 = 𝑙 ∨ 𝑟), a partial-order for SS-equality (§3.2).

The mode-switching operators of SS are ◁ ∶ ⚬⟨⦁⟩ and ▷ ∶ ⦁⟨⚬⟩. That is, ◁ is
⚬-sorted and expects a ⦁-sorted continuation, and vice versa for ▷. We think of
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them as delimiting atomic blocks, or acquiring and releasing an abstract global
lock. We axiomatise them in SS by strict distributivity over countable joins, i.e.
(ND-◁) ⋁𝑖<𝛼 ◁𝑥𝑖 = ◁⋁𝑖<𝛼𝑥𝑖 and (ND-▷) ⋁𝑖<𝛼 ▷𝑥𝑖 = ▷⋁𝑖<𝛼𝑥𝑖; and:

Empty (◁▷ 𝑦 = 𝑦). An empty atomic block has no observable effect.
Fuse (▷◁𝑥 ≥ 𝑥). Fusing atomic blocks eliminates potential interference.

These axiomatise ◁ and ▷ as an (insertion)-closure pair [e.g. 2].
Each SS-term denotes a set of sort-delimited traces (§5.1), which generalise

Brookes’s traces. For example, 𝑡 ≔ 𝖴y,𝟶 ▷◁ 𝖫y(3, 𝖴x,𝟷 𝖴y,𝟷 ▷ 7) denotes a set that
includes ⦁⟨(x↦𝟷

y↦𝟷) , (x↦𝟷
y↦𝟶)⟩⟨(x↦𝟷

y↦𝟷) , (x↦𝟶
y↦𝟶)⟩⚬7. Indeed, we can read off a corresponding

computation from 𝑡, initially holding the lock in the state (x↦𝟷
y↦𝟷) of both bits 𝟷:

the computation updates y to 𝟶, then yields to the environment before looking
y up; finding 𝟷, it updates x and y to 𝟷, then releases the lock and returns 7.
Brookes’s original traces correspond to those delimited by ⚬ on both ends.

With these traces we define our two-sorted generalisation of Brookes’s model,
and prove that it represents SS (§5.2). The ⚬-sorted ⚬-valued fragment (§6.2),
which represents the “block-closed” terms, is Brookes’s original model (§6.1).

We also provide an algebraic perspective on the representation, by ⚬-embed-
ding (§6.4) the transitions-theory B into SS (§6.5). This embedding maps ⟨𝜎, 𝜌⟩
to ◁ ⧙𝜎, 𝜌⧘▷, where ⧙𝜎, 𝜌⧘ ∶ ⦁⟨⦁⟩ is defined by global-state operators (§5.2).

3 Preliminaries

We present a standard treatment of countably-infinitary multi-sorted equational
theories and their free models [e.g. 3, 43], straightforwardly generalising the
single-sorted case by assigning sorts to functions and their arguments. The reader
may choose to skim/skip this section, consulting it as necessary.

3.1 Terms

We define the logical language of multi-sorted equational logic. The basic vo-
cabulary of multi-sorted algebra is parameterised by a set sort whose elements
, we call sorts. We will mostly focus on the single-sorted case (sort = {⭒})
and the two-sorted case (sort = {⦁, ⚬}). A sort-scheme ⃗ ∈ Scheme sort is a
countable sequence of sorts from sort, i.e. a finite sequence ⃗ = ⟨0, … ,𝑛−1⟩
of length 𝑛, or countably infinite sequence ⃗ = ⟨0,1, …⟩ of length 𝜔, where
𝑖 ∈ sort for all 𝑖. For example: the empty scheme 0 ≔ ⟨⟩ of length 0; and the
constant schemes 𝛼 ⋅  ≔ ⟨⟩𝑖<𝛼 of length 𝛼. We write  for the scheme 1 ⋅ .

A sort-sorted signature Σ = ⟨opΣ, arΣ⟩ consists of a set of operators opΣ
and an arity assignment arΣ ∶ opΣ → sort × Scheme sort. For 𝑂 ∈ opΣ with
arΣ 𝑂 = ⟨, ⟨𝑖⟩𝑖⟩, we write (𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ. The operator 𝑂 will allow us
to construct a -sort term with a tuple of terms, with the 𝑖th subterm having
sort 𝑖. For single-sorted arities (sort = {⭒}), we write 𝑂 ∶ 𝛼 for 𝑂 ∶ ⭒ (𝛼 ⋅ ⭒).
A signature is a set sortΣ and a sortΣ-sorted signature we also denote by Σ.

We will use the following signature to model non-deterministic choice:
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Example 1. The join semilattice single-sorted signature J consists of two opera-
tors: join ∨ ∶ 2, i.e. ∨ ∶ ⭒ ⟨⭒, ⭒⟩; and bottom ⊥ ∶ 0 , i.e. ⊥ ∶ ⭒ ⟨⟩.

To simplify the formulation of our representation theorem later, we generalise
the signature to countable non-deterministic choice operators:
Example 2. The countable-join semilattice single-sorted signature V consists of
an 𝛼-ary choice operator ⋁𝛼 ∶ 𝛼 for every 𝛼 ≤ 𝜔. In particular, the signature J
is included with 𝛼 = 2 (join) and 𝛼 = 0 (bottom).

The final example demonstrates the treatment for multiple sorts:
Example 3. The finite dimensional transformations signature M consists of a sort
for each pair of natural numbers sortM ≔ {Hom (𝑚, 𝑛) | 𝑚, 𝑛 ∈ ℕ}, an identity
operator Id𝑛 ∶ Hom (𝑛, 𝑛) ⟨⟩ for each 𝑛 ∈ ℕ, and, for each triple 𝑚, 𝑛, 𝑘 ∈ ℕ, a
composition operator (∘𝑚,𝑛,𝑘) ∶ Hom (𝑚, 𝑘) ⟨Hom (𝑛, 𝑘) , Hom (𝑚, 𝑛)⟩.

A signature generates a language of algebraic terms as follows. A sort-
family 𝑿 ∈ Setsort is an assignment of a set 𝑿, to each sort  ∈ sort.
We identify Set{⭒} ≅ Set, and use a set-like notation to specify families, e.g.
𝑿 ≔ {𝑥 ∶ ⦁, 𝑦, 𝑧 ∶ ⚬} is the two-sorted family 𝑿⦁ ≔ {𝑥} and 𝑿⚬ ≔ {𝑦, 𝑧}. We can
turn every sort-family 𝑿 into the set ∮ 𝑿 ≔ ∐∈sort 𝑿 equipped with the in-
jections in ∶ 𝑿 → ∮ 𝑿. This construction is a special case of the Grothendieck
construction, and lets us track the distinction between sets and families.

For a signature Σ and sortΣ-family 𝑿 ∈ SetsortΣ , define the sortΣ-family of
Σ-terms over 𝑿: TermΣ𝑿 ∈ SetsortΣ , TermΣ

𝑿 ≔ {𝑡 | 𝑿 ⊢Σ 𝑡 ∶ } inductively:

(𝑥 ∶ ) ∈ 𝑿
𝑿 ⊢Σ 𝑥 ∶ 

(𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ ∀𝑖.𝑿 ⊢Σ 𝑡𝑖 ∶ 𝑖
𝑿 ⊢Σ 𝑂 ⟨𝑡𝑖⟩𝑖<𝛼 ∶ 

Here, the elements 𝑥 ∈ 𝑿, written (𝑥 ∶ ) ∈ 𝑿, represent variables of sort . We
may drop the set-brackets left of a trunstile, e.g. write 𝑥 ∶ ⦁, 𝑦, 𝑧 ∶ ⚬ ⊢Σ 𝑦 ∶ ⚬; and
omit the sorts, especially in the single-sorted case, e.g. write 𝑥, 𝑦 ⊢J 𝑥 ∨ ⊥. For
𝑡 ∈ TermΣ

𝑿, we write 𝑿 ⊢Σ 𝜓 ∶= 𝑡 ∶  to define 𝜓 as 𝑡, e.g. 𝑥, 𝑦 ⊢J 𝜓 ∶= 𝑥 ∨ ⊥.
A sort-sorted map 𝑓 ∶ 𝑿 → 𝒀 is a sort-indexed tuple of functions between

the corresponding sets: 𝑓 ∶ 𝑿 → 𝒀, for every  ∈ sort. Our development
utilises sorted maps extensively. A (simultaneous) substitution 𝑿 ⊢Σ 𝜃 ∶ 𝒀 is a
sorted function 𝜃 ∶ 𝒀 → TermΣ𝑿, specifying which -term 𝑿 ⊢Σ 𝜃𝑦 ∶  to
substitute for each variable 𝑦 ∈ 𝒀. Each such substitution determines a sorted
map [𝜃] ∶ Term𝒀 → Term𝑿 inductively, which we write in post-fix notation:

(𝒀 ⊢Σ 𝑦 ∶ ) [𝜃] ≔ (𝑿 ⊢Σ 𝜃𝑦 ∶ ) (𝒀 ⊢Σ 𝑂 ⟨𝑡𝑖⟩𝑖) [𝜃] ≔ (𝑿 ⊢Σ 𝑂 ⟨𝑡𝑖 [𝜃]⟩𝑖)

3.2 Equational logic
A -sorted Σ-equation in context 𝑿 is a pair ⟨𝑙, 𝑟⟩ ∈ TermΣ

𝑿 of -sorted Σ-
terms over 𝑿. We write this situation as 𝑿 ⊢Σ 𝑙 = 𝑟 ∶ , or just 𝑙 = 𝑟, and call
𝑙 the left-hand side (LHS) and 𝑟 the right-hand side (RHS) of the equation. A
presentation 𝔭 consists of a signature Σ𝔭 and axioms: a set Ax𝔭 of Σ-equations.
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𝑿 ⊢Σ𝔭 𝑡 ∶ 
𝑿 ⊢𝔭 𝑡 = 𝑡 ∶ 

𝑿 ⊢𝔭 𝑡2 = 𝑡1 ∶ 
𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶ 

𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶  𝑿 ⊢𝔭 𝑡2 = 𝑡3 ∶ 
𝑿 ⊢𝔭 𝑡1 = 𝑡3 ∶ 

(𝑿 ⊢Σ𝔭 𝑡1 = 𝑡2 ∶ ) ∈ Ax𝔭

𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶ 
𝒀 ⊢𝔭 𝑡1 = 𝑡2 ∶  𝑿 ⊢Σ𝔭 𝜃 ∶ 𝒀

𝑿 ⊢𝔭 𝑡1 [𝜃] = 𝑡2 [𝜃] ∶ 
𝒀 ⊢Σ𝔭 𝑡 ∶  𝑿 ⊢Σ𝔭 𝜃, 𝜃′ ∶ 𝒀 ∀(𝑦 ∶ ) ∈ 𝒀 .𝑿 ⊢𝔭 𝜃𝑦 = 𝜃′

𝑦 ∶ 
𝑿 ⊢𝔭 𝑡 [𝜃] = 𝑡 [𝜃′] ∶ 

Fig. 1. Multi-sorted equational logic with countable arities

Example 4. The join semilattice presentation J consists of the signature ΣJ ≔ J
of example 1, and the axioms AxJ below:
(Associativity) 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧
(Commutativity) 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥

(Idempotency) 𝑥 ∨ 𝑥 = 𝑥
(Neutrality) 𝑥 ∨ ⊥ = 𝑥

Example 5. The countable-join semilattice presentation V consists of the signa-
ture ΣV ≔ V of example 2, and the axioms AxV:
(ND-return) ⋁𝑖<1𝑥𝑖 = 𝑥0
(ND-squash) ⋁𝑖<𝛼⋁𝑗<𝛽𝑖

𝑥𝑖,𝑗 = ⋁𝑘<𝛾𝑥𝑓𝑘 where 𝑓 ∶ 𝛾 ↠ ∐
𝑖<𝛼

𝛽𝑖

Example 6. The finite dimensional transformations presentation M consists of
the signature ΣM ≔ M of example 3 and the axioms AxM below, suppressing the
sort indices (each axiom scheme includes every possible instantiation):
(L-Id) Id ∘ 𝑓 = 𝑓 (R-Id) 𝑓 ∘ Id = 𝑓 (Assoc) 𝑓 ∘ (𝑔 ∘ ℎ) = (𝑓 ∘ 𝑔) ∘ ℎ

Figure 1 presents the deductive system called equational logic. We say that
a presentation 𝔭 proves an equation, writing 𝑿 ⊢𝔭 𝑡1 = 𝑡2 ∶ , when it is
derivable from Ax𝔭 using these standard equational reasoning rules, namely:
reflexivity, symmetry, transitivity, use of an axiom, substitution, and congruence.
This logic is monotone: assuming more axioms allows us to prove more equations.
The algebraic theory of a presentation 𝔭 is the smallest derivation-closed set of
equations containing the axioms. We denote the theory of 𝔭 by 𝔭 as well.

Example 7. We can prove {𝑥, 𝑦 ∶ ⭒} ⊢J (𝑥 ∨ ⊥) ∨ 𝑦 = 𝑥 ∨ 𝑦 ∶ ⭒ using an instance
of Neutrality and reflexivity with the following instance of congruence:

{𝑧, 𝑦 ∶ ⭒} ⊢J 𝑡 ≔ 𝑧 ∨ 𝑦 ∶ ⭒ 𝜃⭒ ≔ (𝑧↦𝑥∨⊥
𝑦↦𝑦 ) 𝜃′

⭒ ≔ (𝑧↦𝑥
𝑦↦𝑦)

When a presentation 𝔭 proves the semi-lattice axioms in one of its sorts ,
then the encoding (𝑿 ⊢Σ𝔭

𝑙 ≤ 𝑟 ∶ ) ≔ (𝑿 ⊢Σ𝔭
𝑙 ∨ 𝑟 = 𝑟 ∶ ) of inequations as

equations in this sort is a preorder that is a partial order w.r.t. 𝔭-equality, i.e.
(𝑿 ⊢𝔭 𝑠 ≤ 𝑡 ∶ ) ∧ (𝑿 ⊢𝔭 𝑡 ≤ 𝑠 ∶ ) ⟹ (𝑿 ⊢𝔭 𝑠 = 𝑡 ∶ ). We encode (≥)
similarly. Due to the monotonicity property of equational logic, once we have
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included an axiomatisation of semi-lattices through a subset of the axioms, we
may proceed to postulate inequations.

We also use a generalisation of distributivity axioms [18], reproducing familiar
arithmetic distributivity equations such as 𝑥 ⋅ max{𝑦1, 𝑦2} = max{𝑥 ⋅ 𝑦1, 𝑥 ⋅ 𝑦2},
the distributivity of (⋅) over max in the right-hand-side position. We describe
the straightforward, but technical generalisation in the appendix (§B). The main
message is as follows. In a given presentation 𝔭, if all operators distribute over
binary joins in every position, the congruence rule is valid for inequations:

𝒀 ⊢Σ𝔭
𝑡 ∶  𝑿 ⊢Σ𝔭

𝜃, 𝜃′ ∶ 𝒀 ∀(𝑦 ∶ ) ∈ 𝒀 .𝑿 ⊢𝔭 𝜃𝑦 ≤ 𝜃′
𝑦 ∶ 

𝑿 ⊢𝔭 𝑡 [𝜃] ≤ 𝑡 [𝜃′] ∶ 
If a presentation 𝔭 supports semi-lattices in every sort and they distribute over bi-
nary joins in every positions, then we say that 𝔭 supports inequational reasoning.
The theory of 𝔭 then admits Bloom’s logic for ordered algebraic theories [6]. We
let future work determine the most appropriate variety of inequational logic [34].

Going forward, all of our presentations support inequational reasoning in this
sense, and all operators distribute over arbitrary non-empty joins, not just the
binary ones. Moreover, they are all strict: 𝑂(⊥, … , ⊥) = ⊥ for every operator
(𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ𝔭. Such theories ‘absorb’ side-effects when their continuations
diverge, an inherent ‘partial correctness’ property of Brookes’s model.

3.3 Algebras and models

After presenting the proof theory—equational logic—let’s turn to the model the-
ory of universal algebra. A Σ-algebra A consists of a sortΣ-family A ∈ SetsortΣ ,
the carrier, and an assignment A J−Kop, for each operator (𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ,
of an operation over this carrier: A J𝑂Kop ∶ (∏𝑖<𝛼 A𝑖

) → A.

Example 8. For any set 𝑋, define the V-algebra V𝑋 by taking the carrier to be
the set of countable (finite or infinite) 𝑋-subsets V𝑋 ≔ 𝒫ℵ0(𝑋), and interpret
choice as union V𝑋J⋁𝛼Kop⟨𝐷𝑖⟩𝑖<𝛼 ≔ ⋃𝑖<𝛼 𝐷𝑖.

Example 9. Define the M-algebra M by taking the carrier to be the set of real-
valued matrices of the corresponding dimensions, MHom(𝑚,𝑛) ≔ 𝕄ℝ

𝑚×𝑛, interpret
the identity MJId𝑛Kop ≔ 𝐼𝑛 ∈ 𝕄ℝ

𝑛×𝑛 as the identity matrix, and composition
MJ(∘)Kop ≔ (⋅) as matrix multiplication.

Let A be an M-algebra. Define the opposite algebra Aop by exchanging dimen-
sions. So Aop

Hom(𝑚,𝑛) ≔ AHom(𝑛,𝑚), the same identity AopJId𝑛Kop ≔ AJId𝑛Kop,
and reversing composition AopJ(∘)Kop(𝐴, 𝐵) ≔ AJ(∘)Kop(𝐵, 𝐴).
Example 10 (term algebra). The Σ-terms with variables from 𝑿 carry a canon-
ical algebra structure FΣ𝑿, given by FΣ𝑿 ≔ TermΣ𝑿, with each 𝑂-term con-
structor as the corresponding 𝑂-operation: (FΣ𝑿) J𝑂Kop ⟨𝑡𝑖⟩𝑖 ≔ 𝑂 ⟨𝑡𝑖⟩𝑖.

A Σ-algebra homomorphism 𝜑 ∶ A → B is a sorted-function 𝜑 ∶ A → B that
preserves the operations: 𝜑(A J𝑂Kop (𝑎1, … , 𝑎𝛼)) = B J𝑂Kop (𝜑1

𝑎1, … , 𝜑𝛼
𝑎𝛼).
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Example 11. Transposing real-valued matrices (−)⊺ ∶ 𝕄ℝ
𝑚×𝑛 → 𝕄ℝ

𝑛×𝑚 is a homo-
morphism (−)⊺ ∶ M → Mop, by the well-known identity (𝐴 ⋅ 𝐵)⊺ = 𝐵⊺ ⋅ 𝐴⊺.

A Σ-algebra allows us to interpret every Σ-term, by assigning values to its
variables. Formally, let A be a Σ-algebra. An 𝑿-environment in A is a sorted
function 𝑒 ∶ 𝑿 → A. Given such an environment, interpret terms by induction:

A J𝑿 ⊢Σ 𝑥 ∶ Kterm 𝑒 ≔ 𝑒𝑥 A
q
𝑂 ⟨𝑡𝑖⟩𝑖

y
term

𝑒 ≔ A J𝑂Kop ⟨A J𝑡𝑖Kterm 𝑒⟩𝑖

Example 12 (substitution). An 𝑿-environment in FΣ𝑿 amounts to a substi-
tution, and interpreting terms in FΣ𝑿 amounts to substitution.

Example 13 (evaluation homomorphism). Evaluation using an 𝑿-environment
𝑒 ∶ 𝑿 → A in a Σ-algebra A is a homomorphism AJ−Kterm𝑒 ∶ FΣ𝑿 → A.

A Σ-algebra A validates the equation 𝑿 ⊢Σ 𝑙 = 𝑟 ∶  when evaluation in all
environments equates its sides: AJ𝑙Kterm𝑒 = AJ𝑟Kterm𝑒 for all 𝑒 ∶ 𝑿 → A. We
then write A ⊢ 𝑿 ⊢Σ 𝑙 = 𝑟 ∶ . A 𝔭-model is an algebra validating all of Ax𝔭.
The soundness theorem of equational logic states that every 𝔭-model validates
all the equations in the algebraic theory of 𝔭.

Example 14. Referring to previous examples, the algebras V𝑋 are V-models,
the algebras M and Mop are M-models, and algebras of terms are ∅-models.

Example 15. Consider the ΣJ-algebra A for which the carrier is the set of natural
numbers A ≔ ℕ, join interprets as addition AJ∨Kop(𝑚, 𝑛) ≔ 𝑚+𝑛, and bottom
as zero AJ⊥Kop ≔ 0. This is not a J-model, since, taking 𝑒 ∶ {𝑥 ∶ ⭒} → A with
𝑒𝑥 = 1, we get AJ𝑥∨𝑥Kterm𝑒 ≠ AJ𝑥Kterm𝑒; and so A �⊢ 𝑥 ∶ ⭒ ⊢J 𝑥∨𝑥 = 𝑥 ∶ ⭒.

We end this section with representations of free models. These are 𝔭-models
whose elements represent the Σ𝔭-terms up-to provable equality in 𝔭.

A 𝔭-model ⟨A, 𝑒⟩ over a family 𝑿 consists of a 𝔭-model A and an 𝑿-envi-
ronment in it 𝑒 ∶ 𝑿 → A. A free 𝔭-model ⟨A, return⟩ over a family 𝑿 is then
a 𝔭-model over 𝑿 such that every environment in every 𝔭-model 𝑒 ∶ 𝑿 → B
extends uniquely along return to a 𝔭-homomorphism 𝑒# ∶ A → B, i.e., for all
𝑥 ∈ 𝑿, we have: 𝑒#

 (return 𝑎) = 𝑒𝑎. We then say that the algebra A represents
𝑿-environments via the assignment 𝑒 ↦ 𝑒#, the corresponding representation.

The algebraic theory of effects [35] emphasises the role free models play in
denotational semantics for programming languages with effects. In particular,
given a free 𝔭-model over 𝑿 for every family 𝑿, one standardly obtains a monad
suitable for the denotational semantics of a language with computational effects
conforming to the operators in 𝔭.

Example 16. For any set 𝑋, the V-algebra V𝑋 given by the countable powerset
in example 8 represents 𝑋-environments; together with return 𝑥 ≔ {𝑥} it forms
a free V-model over 𝑋. The representation assigns 𝑒 ∶ 𝑋 → B to 𝑒# ∶ V𝑋 → B,
defined 𝑒#𝐷 ≔ BJ⋁|𝐷|Kop⟨𝑒𝑥⟩𝑥∈𝐷; how it enumerates 𝐷 doesn’t matter since B
is a V-model. The data ⟨𝑋 ↦ V𝑋, return, (−)#⟩ is a monad.
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4 Shared state

To define the equational theory of shared state, we first recall the standard,
single sorted (non-deterministic) global state theory G [17, 29, 35]. The variant
we present here has countable non-determinism, and the global state operators
manipulate a common memory store 𝕊 ≔ 𝕃 → 𝔹 with a finite set of locations
𝕃 ≠ ∅ each storing a bit 𝔹 ≔ {𝟶, 𝟷}. A larger finite set of storable-values would
not be conceptually different. Infinite sets of storable-values or locations work
similarly with more involved representation theorems. In concrete examples, we
let 𝕃 = {x, y} and use non-bracketed vectors for stores, e.g. 𝟷

𝟶 denotes (x↦𝟷
y↦𝟶).

The signature ΣG consists of the countable-join semilattice operators (exam-
ple 2), as well as two kinds of memory-access operators: lookup operators 𝖫ℓ ∶ 2,
to look a location ℓ ∈ 𝕃 up and branch according to the value found; and update
operators 𝖴ℓ,𝑏 ∶ 1, to update a location ℓ ∈ 𝕃 to the value 𝑏 ∈ 𝔹. The global
state axioms AxG consists of the countable-join semilattice axioms (example 5),
as well as the following:

Non-deterministic global state (omitting semilattice axioms)
(UL) 𝖴ℓ,𝑏 𝖫ℓ(𝑥𝟶, 𝑥𝟷) = 𝖴ℓ,𝑏 𝑥𝑏
(UU) 𝖴ℓ,𝑏′ 𝖴ℓ,𝑏 𝑥 = 𝖴ℓ,𝑏 𝑥
(UUc) 𝖴ℓ,𝑏 𝖴ℓ′,𝑏′ 𝑥 = 𝖴ℓ′,𝑏′ 𝖴ℓ,𝑏 𝑥 where ℓ ≠ ℓ′

(LU) 𝖫ℓ(𝖴ℓ,𝟶 𝑥, 𝖴ℓ,𝟷 𝑥) = 𝑥
(ND-U) ⋁𝑖<𝛼 𝖴ℓ,𝑏 𝑥𝑖 = 𝖴ℓ,𝑏 ⋁𝑖<𝛼𝑥𝑖

The induced algebraic theory G includes axioms of less succinct presentations
of the same theory [29]. For example, lookup also distributes over binary join,
so the theory admits inequational reasoning; consecutively looking the same
location up can be merged, e.g. 𝑥𝟶, 𝑥𝟷, 𝑦 ⊢G 𝖫ℓ(𝖫ℓ(𝑥𝟶, 𝑥𝟷), 𝑦) = 𝖫ℓ(𝑥𝟶, 𝑦); and
other combinations of looking-up and updating different locations commute, e.g.
for any ℓ ≠ ℓ′ we have 𝑥𝟶, 𝑥𝟷 ⊢G 𝖫ℓ(𝖴ℓ′,𝑏 𝑥𝟶, 𝖴ℓ′,𝑏 𝑥𝟷) = 𝖴ℓ′,𝑏 𝖫ℓ(𝑥𝟶, 𝑥𝟷).

Our two-sorted presentation SS of shared state extends global state. Its sorts
are sortΣSS

= {⦁, ⚬}. The hold sort (⦁) represents an uninterrupted sequence
of memory accesses, whereas the cede sort (⚬) allows control to pass to the
environment. The operators and the arities of the signature ΣSS consist of a copy
of ΣG at ⦁, a copy of ΣV at ⚬, and new operators ◁ ∶ ⚬⟨⦁⟩ and ▷ ∶ ⦁⟨⚬⟩.

The intuitive reading for algebraic effects is from the outside in. With this
intuition, one interpretation of the operators ◁ and ▷ is to acquire and release a
global lock. The hold sort (⦁) represents the lock being held by one of the threads
in the program. The cede sort (⚬) represents points in the execution in which one
of the threads in the concurrent environment may acquire the lock. The sorts
ensure exclusive access to the lock, and therefore to the store. In an alternative
interpretation, these operators delimit atomic blocks; their sorts prevent nesting.

The shared state axioms AxSS include a copy of the (non-deterministic) global
state axioms AxG at ⦁ and a copy of the countable-join semilattice axioms AxV
at ⚬. In particular, SS proves the semi-lattice axioms in both sorts. It further
includes standard strict distributivity axioms for the new unary operators:
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Strict distributivity of ◁ and ▷
(ND-◁) ⋁𝑖<𝛼 ◁𝑥𝑖 = ◁⋁𝑖<𝛼𝑥𝑖 (ND-▷) ⋁𝑖<𝛼 ▷𝑥𝑖 = ▷⋁𝑖<𝛼𝑥𝑖

With these axioms, SS supports inequational reasoning, which represents the
semantic refinement relation used to validate program transformations [e.g. 12].

Finally, AxSS axiomatises ◁ and ▷ as an (insertion)-closure pair [e.g. 2]:

Closure pair (Empty) ◁▷ 𝑦 = 𝑦 (Fuse) ▷◁𝑥 ≥ 𝑥

They are compatible with the global-lock interpretation:

Empty (◁▷ 𝑦 = 𝑦). Acquiring and immediately releasing the lock has no effect
on the sequence of effects that can occur as a result of arbitrary interleavings.

Fuse (▷◁𝑥 ≥ 𝑥). Releasing and immediately acquiring the lock only allows
more behaviours. The environment may or may not interleave there.

To summerise, AxSS ≔ Ax⦁
G ∪ Ax⚬

V ∪ {ND-▷, ND-◁} ∪ {Empty, Fuse}.

Example 17. The ΣSS-equations appearing below are named after corresponding
transformations that may or may not be valid, depending on the setting (e.g. is
there concurrency, and under what assumptions), all ⚬-sorted over {𝑥 ∶ ⚬}:

◁ 𝖫ℓ(▷𝑥,▷𝑥) = 𝑥 (Irrelevant Read Intro & Elim)
◁𝖴ℓ,𝑏1

▷◁𝖴ℓ,𝑏2
▷𝑥 ≥ ◁𝖴ℓ,𝑏2

▷𝑥 (Write Elim)
◁𝖴ℓ,𝑏1

▷◁𝖴ℓ,𝑏2
▷𝑥 ≤ ◁𝖴ℓ,𝑏2

▷𝑥 (Write Intro)

Intuitively, Irrelevant Read Intro & Elim should be valid in our setting, as
looking a value up is not observable by the environment, and the computation
itself disregards the value. Write Elim should be valid too, because it is possible
that the environment does not look ℓ up at the interference point between the
updates on the LHS, covering the behaviour denoted by the RHS. On the other
hand, Write Intro should be invalid in our setting because only on the LHS can
a concurrently running thread look ℓ up and find 𝑏1. Formally, we will show SS
does not prove Write Intro in example 25. Here we show SS proves the other two:

◁ 𝖫ℓ (▷𝑥,▷𝑥)
LU
= ◁ 𝖫ℓ (𝖴ℓ,𝟶 𝖫ℓ (▷𝑥,▷𝑥) , 𝖴ℓ,𝟷 𝖫ℓ (▷𝑥,▷𝑥))
UL
= ◁ 𝖫ℓ (𝖴ℓ,𝟶 ▷𝑥, 𝖴ℓ,𝟷 ▷𝑥)

LU
= ◁▷𝑥

Empty
= 𝑥

◁𝖴ℓ,𝑏1
▷◁𝖴ℓ,𝑏2

▷𝑥
Fuse
≥ ◁𝖴ℓ,𝑏1

𝖴ℓ,𝑏2
▷𝑥

UU
= ◁𝖴ℓ,𝑏2

▷𝑥

5 Representation

We now establish the representation theorem describing a free SS-model over any
𝑿 ∈ Set{⦁,⚬}. Following Brookes [7], we use sets of traces to denote behaviours.
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5.1 Sorted traces

A sorted trace starts with a sort (⦁ or ⚬) followed by a non-empty sequence of
state transitions, and ending in a sorted value. The initial sort in the trace and
the initial store in each transition represent assumptions the trace relies on from
its concurrent and sequential environment. The final sort and value and the final
store in each transition represent guarantees the trace makes to its environment.

Formally, a (state) transition is a pair ⟨𝜎, 𝜌⟩ ∈ 𝕊 × 𝕊. Let 𝜉? ∈ (𝕊 × 𝕊)∗ range
over possibly empty sequences of transitions, and 𝜉 ∈ (𝕊 × 𝕊)+ range over non-
empty ones. For any set 𝑋, define the set of 𝑋-valued Brookes traces 𝖳𝑋 ≔
(𝕊 × 𝕊)+ × 𝑋, also used in Brookes’s model (§6). For any family 𝑿 ∈ Set{⦁,⚬}

define the {⦁, ⚬}-sorted family 𝗧𝑿 of traces (𝗧𝑿) ≔ 𝖳 ∮ 𝑿. Then, for any
sorted family 𝑿 ∈ Set{⦁,⚬}, we define the set of sorted traces over 𝑿 by:

𝕋𝑿 ≔ ∮ 𝗧𝑿 = {⦁, ⚬} × (𝕊 × 𝕊)+ × ∐∈{⦁,⚬} 𝑿

A -sorted -valued trace is one of the form 𝜉𝑥 ≔ ⟨, 𝜉, in 𝑥⟩ in the set 𝕋𝑿.

Example 18. ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 ∈ 𝕋𝑿, with 𝑿⚬ = ℕ, is ⦁-sorted and ⚬-valued.

Intuitively, the trace 𝜉𝑥 models a potential behaviour, or protocol, that
a shared-state program phrase under preemptive interleaving concurrency can
exhibit, or adhere to, given as a rely/guarantee sequence.

Example 19. The behaviour denoted by ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 relies on the preceding
environment for 𝟷

𝟷 and for the sequential environment to hold access to the store;
then guarantees 𝟷

𝟶 ; then relies on 𝟷
𝟷 ; and finally guarantees 𝟶

𝟶 , and returns 7 to
the succeeding sequential environment, ceding exclusive store access.

One can make these trace-semantic concepts more formal, for example, when
formulating an adequacy proof w.r.t. an operational semantics. We will not define
these concepts formally since we will not need the additional level of rigour, for
example, because we appeal to the well-established adequacy of Brookes’s model.

We implicitly understand the exclusive access to the store is ceded (⚬) be-
tween transitions. For example, for the trace ⦁⟨ 𝟷

𝟷 , 𝟷
𝟶 ⟩⟨ 𝟷

𝟷 , 𝟶
𝟶 ⟩⚬7, we could write

⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⚬⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 for emphasis. A hypothetical ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⦁⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 would denote
an impossible behaviour, making intermediate sorts redundant.

One of Brookes’s innovations is that sets of traces should be closed under
what we now call (trace) deductions. Specifically, Brookes identified two such
deductions, given as binary relations called stutter ( st−−→) and mumble ( mu−−→),
defined in such a way that if the program phrase can adhere to the source
protocol (left of arrow), then it can adhere to the target protocol (right of arrow).

We define these deductions in our two-sorted setting. For convenience, we
write 𝜉?

1⚬𝜉?
2𝑥 for the trace 𝜉?

1𝜉?
2𝑥 in which, intuitively, the lock is ceded

(⚬) at the marked spot. Formally, we require that both (a) if 𝜉?
1 is empty, then

 = ⚬; and (b) if 𝜉?
2 is empty, then  = ⚬. In particular, the requirement holds

when both 𝜉?
1 and 𝜉?

2 are non-empty, where we implicitly assume the ceded sort
between them; and in the case of a ⚬-sorted ⚬-valued trace, i.e.  = ⚬ = .
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Example 20. We have the following valid/invalid notations for ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7:

valid: ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⚬⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬⚬7 invalid: ⦁⚬⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7

We define the following sorted stutter and mumble deductions:

𝜉?
1⚬𝜉?

2𝑥 st−−→ 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥 𝜉?
1⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝜉?

2𝑥 mu−−→ 𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑥

The condition on stutter’s source rules out deductions which implicitly cede
access to the store to the concurrent environment at the ends of the trace. We
will compare these deductions to Brookes’s in §6.

Example 21. These deductions are valid, highlighting the change to the trace:

⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7 st−−→ ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⟨ 𝟶
𝟷 , 𝟶

𝟷 ⟩⚬7 ⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟶 , 𝟶

𝟶 ⟩⚬7 mu−−→ ⦁⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7

However, thanks to the condition on stutter’s source, this deduction is invalid:

⦁⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7���st−−→ ⦁⟨ 𝟶
𝟷 , 𝟶

𝟷 ⟩⟨ 𝟷
𝟷 , 𝟷

𝟶 ⟩⟨ 𝟷
𝟷 , 𝟶

𝟶 ⟩⚬7

The source protocol relies on the preceding sequential environment for 𝟷
𝟷 . We

prohibit relaxing the protocol to rely on the concurrent environment for it.

The stutter and mumble deductions follow the rely/guarantee intuition:

Stuttering (𝜉?
1⚬𝜉?

2𝑥 st−−→ 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥) means a thread-pool also obeys the
protocol that guarantees a state 𝜎 by relying on its environment for 𝜎.

Mumbling (𝜉?
1⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝜉?

2𝑥 mu−−→ 𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑥) means a thread-pool that
guarantees the store 𝜌 it later relies on also obeys the protocol in which we
exclude the environment’s access to the store 𝜌 at that point.

Sets of traces represent a non-deterministic choice between the behaviours
that a program phrase may exhibit. For such a set 𝐾, define its closure under
trace deduction 𝐾† as the least set 𝐾′ such that: 𝐾 ⊆ 𝐾′; and if 𝜏1 ∈ 𝐾′

and 𝜏1
x−−→ 𝜏2 for x ∈ {st, mu}, then 𝜏2 ∈ 𝐾′. According to the rely/guarantee

intuition above, a program phrase that is compatible with a set of traces is also
compatible with its closure. We therefore represent program phrases as closed
sets, i.e. sets 𝐾 such that 𝐾 = 𝐾†. The closure 𝐾† of a countable 𝐾 is countably
infinite—by stuttering indefinitely—unless 𝐾 is a finite set of single-transition
⦁-sorted ⦁-valued traces, in which case 𝐾 is already closed.

For a set of traces 𝑈 and sort  ∈ {⦁, ⚬}, define a {⦁, ⚬}-sorted family 𝒫ℵ0(𝑈)
by taking its  component to be the set 𝒫ℵ0 (𝑈) of countable subsets of 𝑈 whose
elements are all -sorted. Similarly, define 𝒫†

(𝑈) ⊆ 𝒫ℵ0 (𝑈) to be the set of
closed countable subsets of 𝑈 whose elements are all -sorted.

The prefixing function adds the given transition to each ⦁-sorted trace:

(𝜎, 𝜌) ∶ 𝒫ℵ0⦁ (𝕋𝑿) → 𝒫ℵ0⦁ (𝕋𝑿) (𝜎, 𝜌) 𝐾 ≔ {⦁⟨𝜎, 𝜃⟩𝜉?𝑥 ∣ ⦁⟨𝜌, 𝜃⟩𝜉?𝑥 ∈ 𝐾}

It lifts to closed sets, i.e. 𝐾 ∈ 𝒫†
⦁(𝕋𝑿) implies that (𝜎, 𝜌) 𝐾 ∈ 𝒫†

⦁(𝕋𝑿).
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5.2 Representation theorem
For 𝑿 ∈ Set{⦁,⚬}, define the ΣSS-algebra of 𝑿-valued closed trace-sets R𝑿 as:

R𝑿 ≔ 𝒫†
 (𝕋𝑿) J𝖴ℓ,𝑏Kop𝐾 ≔ ⋃𝜎∈𝕊 (𝜎, 𝜎[ℓ ↦ 𝑏]) 𝐾J⋁𝑖<𝛼Kop𝐾𝑖 ≔ ⋃𝑖<𝛼 𝐾𝑖 J𝖫ℓKop(𝐾𝟶, 𝐾𝟷) ≔ ⋃𝜎∈𝕊 (𝜎, 𝜎) 𝐾𝜎ℓJ◁Kop𝐾 ≔ {⚬𝜉𝑥 | ⦁𝜉𝑥 ∈ 𝐾}† J▷Kop𝐾 ≔ {⦁⟨𝜎, 𝜎⟩𝜉𝑥 ∣ 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}†

Additionally, define return ∶ 𝑿 → R𝑿 by return 𝑥 ≔ {⟨𝜎, 𝜎⟩𝑥 | 𝜎 ∈ 𝕊}†.
The rest of this section establishes that the algebra ⟨R𝑿, return⟩ over 𝑿

is a free SS-model over 𝑿. A key ingredient is reification: for any {⦁, ⚬}-sorted
family 𝑿, we define a sorted-function reify ∶ 𝒫ℵ0(𝕋𝑿) → TermΣSS𝑿, choosing a
representative term 𝑡2 ≔ reifyJ𝑿 ⊢ 𝑡1Kterm such that 𝑿 ⊢SS 𝑡1 = 𝑡2. This use of
countable choice is inessential, the mere existence of the defining term 𝑡2 suffices.

First define for any ℓ ∈ 𝕃 and 𝑏 ∈ 𝔹 the cell assertion term 𝑥 ∶ ⦁ ⊢ΣSS
𝖠ℓ,𝑏 𝑥 ∶ ⦁

that looks ℓ up and only continues if it holds 𝑏:
𝑥 ∶ ⦁ ⊢ΣSS

𝖠ℓ,𝟶 𝑥 ≔ 𝖫ℓ(𝑥, ⊥) ∶ ⦁ 𝑥 ∶ ⦁ ⊢ΣSS
𝖠ℓ,𝟷 𝑥 ≔ 𝖫ℓ(⊥, 𝑥) ∶ ⦁

Next, for any 𝜎, 𝜌 ∈ 𝕊 we define the open transition 𝑥 ∶ ⦁ ⊢ΣSS
⧙𝜎, 𝜌⧘ 𝑥 ∶ ⦁, as

a term that asserts the state is 𝜎, then updates the state to 𝜌, and returns 𝑥:
𝑥 ∶ ⦁ ⊢ΣSS

⧙𝜎, 𝜌⧘ 𝑥 ≔ 𝖠l1,𝜎l1
… 𝖠l𝑛,𝜎l𝑛

𝖴l1,𝜌l1
… 𝖴l𝑛,𝜌𝑛

𝑥 ∶ ⦁ (𝕃 = {l1, … , l𝑛})
Now we can represent traces as terms. Define the ΣSS-term reifying a trace

𝑥 ∶  ⊢ΣSS
𝜉𝑥 ∶  by sequencing open transition as they are in 𝜉, separated by

▷◁; and delimited by ◁ on the left if  = ⚬ and by ▷ on the right if  = ⚬.
Example 22. 𝑥 ∶ ⚬ ⊢ΣSS

⦁⟨𝜎, 𝜌⟩⟨𝜎′, 𝜌′⟩⚬𝑥 ≔ ⧙𝜎, 𝜌⧘▷◁ ⧙𝜎′, 𝜌′⧘▷𝑥 ∶ ⦁
Trace deductions are sound w.r.t. this encoding, in the following sense:

Proposition 23. Assume that 𝜏1 and 𝜏2 are -sorted traces over {𝑥 ∶ }, such
that 𝜏1

x−−→ 𝜏2 for x ∈ {st, mu}. Then 𝑥 ∶  ⊢ΣSS
𝜏1 ≥ 𝜏2 ∶ .

Finally, we reify a trace set by reifying its traces in a chosen enumeration:
reify ∶ 𝒫ℵ0(𝕋𝑿) → TermΣSS𝑿 reify 𝐾 ≔ (𝑿 ⊢ΣSS

⋁𝜏∈𝐾𝜏 ∶ )
By proposition 23, closure preserves reification: 𝑿 ⊢SS reify 𝐾 = reify 𝐾† ∶ .

Using reification, we state the representation theorem (proof in §C).
Theorem 24 (SS-representation). The pair ⟨R𝑿, return⟩ is a free SS-model
over 𝑿. Its representation sends environments 𝑒 ∶ 𝑿 → A to SS-homomorphisms
𝑒# ∶ R𝑿 → A by 𝑒#

 𝐾 ≔ R𝑿Jreify 𝐾Kterm𝑒. Moreover, for A = R𝒀 we have:

𝑒#
 𝐾 = {𝜉1𝜉2𝑦 ∣ 𝜉1⚬𝑥 ∈ 𝐾,

⚬𝜉2𝑦 ∈ 𝑒𝑥}
†

∪ {𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑦 ∣ 𝜉?
1⟨𝜎, 𝜌⟩⦁𝑥 ∈ 𝐾,

⦁⟨𝜌, 𝜃⟩𝜉?
2𝑦 ∈ 𝑒𝑥}

†
.

Example 25. The model R {𝑥 ∶ ⚬} invalidates Write Intro:
R {𝑥 ∶ ⚬}J◁𝖴ℓ,𝑏1

▷◁𝖴ℓ,𝑏2
▷𝑥Ktermreturn ≠ R {𝑥 ∶ ⚬}J◁𝖴ℓ,𝑏2

▷𝑥Ktermreturn
Every trace in the right-hand set has at most one state-changing transition. The
left-hand set has traces with two. Therefore, SS does not prove Write Intro.
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6 Recovering Brookes’s model

The theory SS recovers Brookes’s model (§6.1). We recover it twice, using differ-
ent strategies that offer different perspectives. The first transforms the monad
induced by the representation of §5.2 along a right adjoint (−)⚬ ∶ Set{⦁,⚬} → Set
sending each {⦁, ⚬}-family 𝑿 to the set 𝑿⚬ ≔ {𝑥 | (𝑥 ∶ ⚬) ∈ 𝑿} (§6.2). In the
second, we define a single-sorted theory of transitions B that recovers Brookes’s
model straightforwardly (§6.3). In this theory, the transition operators corre-
spond to Brookes’s await construct. After swiftly introducing embedding trans-
lations (§6.4), we show that B embeds into SS. The embedding factors through
another, two-sorted, theory of transitions Tr (§6.5).

6.1 Brookes’s model

We designed our notions of traces, deduction, etc. from §5.1 based on the follow-
ing model of Brookes [7], in which traces cannot hold exclusive memory access
at their ends. In this model, ceding access is implicit.

For any set 𝑋 ∈ Set, recall the set of Brookes traces 𝖳𝑋 ≔ (𝕊 × 𝕊)+ × 𝑋
from §5.1. Writing 𝜉𝑥 for ⟨𝜉, 𝑥⟩, Brookes’s stutter and mumble deductions are:

𝜉?
1𝜉?

2𝑥 st−−→ 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥 𝜉?
1⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝜉?

2𝑥 mu−−→ 𝜉?
1⟨𝜎, 𝜃⟩𝜉?

2𝑥

We reuse the notation (−)† for closure under these deductions.
The difference between Brookes’s deductions and our multi-sorted deductions

is the maintenance of the sort on each end of the trace. In particular, Brookes’s
stutter does not need to explicitly allow interleaving at the relevant position in
the source, because the environment may always interleave on either end.

Brookes’s semantic domain 𝐵𝑋 ≔ 𝒫†(𝖳𝑋) forms a monad. The monadic
unit is return ∶ 𝑋 → 𝐵𝑋, return 𝑥 ≔ {⟨𝜎, 𝜎⟩𝑥 | 𝜎 ∈ 𝕊}†. The Kleisli extension
𝑒# ∶ 𝐵𝑋 → 𝐵𝑌 of every 𝑒 ∶ 𝑋 → 𝐵𝑌 is 𝑒#𝐾 ≔ {𝜉1𝜉2𝑦 | 𝜉1𝑥 ∈ 𝐾, 𝜉2𝑦 ∈ 𝑒𝑥}†. It
interprets memory accesses, dereferencing (ℓ!) and mutation (ℓ ∶= 𝑏), as follows:

Jℓ!K ∶ 𝟙
{⟨𝜎,𝜎⟩𝜎ℓ | 𝜎∈𝕊}†

−−−−−−−−−−→ 𝐵𝔹 Jℓ ∶= 𝑏K ∶ 𝟙
{⟨𝜎,𝜎[ℓ↦𝑏]⟩⟨⟩ | 𝜎∈𝕊}†

−−−−−−−−−−−−→ 𝐵𝟙

These generic effects [36] correspond to these monadic algebraic operations:

J𝖱ℓK ∶ (𝐵𝑋)2 → 𝐵𝑋 J𝖱ℓK(𝐾0, 𝐾1) ≔ {⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, 𝜉𝑥 ∈ 𝐾𝜎ℓ
}†

J𝖶ℓ,𝑏K ∶ 𝐵𝑋 → 𝐵𝑋 J𝖶ℓ,𝑏K𝐾 ≔ {⟨𝜎, 𝜎[ℓ ↦ 𝑏]⟩𝜉𝑥 | 𝜎 ∈ 𝕊, 𝜉𝑥 ∈ 𝐾}†

6.2 Recovery via an adjunction

In Brookes’s model, yielding to the concurrent environment is implicit, and
always allowed. From our two-sorted point-of-view, we expect the traces in
Brookes’s model to represent ⚬-sorted ⚬-valued traces.

There is an abstract construction that recovers the monad and its opera-
tions in §6.2 from our {⦁, ⚬}-sorted model. The functor (−)⚬ ∶ Set{⦁,⚬} → Set
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has a left-adjoint (−)⚬ ∶ Set → Set{⦁,⚬}. This functor sends each set 𝑋 to the
{⦁, ⚬} -family 𝑋⚬ ≔ {𝑥 ∶ ⚬ | 𝑥 ∈ 𝑋}, using the set-like notation for families we in-
troduced in §3.1. Monads transform along adjoints, and transforming the monad
obtained standardly from the representation of §5.2 along the adjunction above
results in Brookes’s model. Explicitly, denoting 𝐵⚬𝑋 ≔ R𝑋⚬

⚬ = 𝒫†
⚬(𝕋𝑋⚬), the

resulting monad over Set is ⟨𝐵⚬, return⚬, (−)#
⚬ ⟩. This monad is isomorphic to

Brookes’s ⟨𝐵, return, (−)#⟩ above by way of removing ⚬ from both ends of every
trace. Thus, the Brookes model amounts to the free SS-model from §5.2 trans-
formed along the adjunction (−)⚬ ⊣ (−)⚬. The monad R supports the following
generic effects. The adjunction transforms them, via its natural bijection on
homsets, into Brookes’s generic effects for memory access:

Jℓ!K ∶ 𝟙⚬
J◁ 𝖫ℓ(▷0,▷1)K
−−−−−−−−−→ R𝔹⚬ Jℓ ∶= 𝑏K ∶ 𝟙⚬

J◁𝖴ℓ,𝑏 ▷⟨⟩K
−−−−−−−→ R𝟙⚬

6.3 The single-sorted theory of transitions

There is a more direct, single-sorted presentation B for Brookes’s model. It uses
transitions as operators rather than lookup and update operators. The signature
ΣB consists of countable-joins ΣV and a unary transition operator ⟨𝜎, 𝜌⟩ for every
𝜎, 𝜌 ∈ 𝕊. The axioms AxB consist of the countable-join semilattice axioms AxV,
strict distributivity axioms (ND-B) ⟨𝜎, 𝜌⟩⋁𝑖<𝛼𝑥𝑖 = ⋁𝑖<𝛼⟨𝜎, 𝜌⟩𝑥𝑖, and:

Trace closure
(M) ⟨𝜎, 𝜌⟩⟨𝜌, 𝜃⟩𝑥 ≥ ⟨𝜎, 𝜃⟩𝑥 (S) 𝑥 ≥ ⟨𝜎, 𝜎⟩𝑥 (H) ⋁𝜎∈𝕊⟨𝜎, 𝜎⟩𝑥 ≥ 𝑥

∀𝜎. 𝜉?
1⟨𝜎, 𝜎⟩𝜉?

2𝑥 ∈ 𝐾
𝜉?

1𝜉?
2𝑥 ∈ 𝐾

Fig. 2. The hush rule

The first two axiom schemes are algebraic counter-
parts to mumble and stutter. These alone do not re-
cover Brookes’s model—the representation theorem for
the theory without the (H) axioms includes potentially-
empty traces. The axiom (H) fails in this model, but holds in Brookes’s. In the
representation theorem for B it is tempting to require, along with closure under
Brookes’s mumble and stutter trace deductions, closure under hush: presented in
fig. 2 for a set of traces 𝐾. However, there is no need, due to the non-emptiness
of the traces. Indeed, either 𝜉?

1 or 𝜉?
2 must be non-empty for the rule to apply.

Take 𝜎 to match an adjacent transition, and apply the mumble closure rule to
obtain the required consequence. This nuanced observation exposing the hush
rule would be hard to notice without this algebraic analysis.

To conclude, we formulate the representation theorem for B. Let 𝑋 ∈ Set.
Define the ΣB-algebra B𝑋 with carrier B𝑋 ≔ 𝒫†(𝖳𝑋) and interpretations:

B𝑋J⋁𝑖<𝛼Kop𝐾𝑖 ≔ ⋃𝑖<𝛼 𝐾𝑖 B𝑋J⟨𝜎, 𝜌⟩Kop𝐾 ≔ {⟨𝜎, 𝜌⟩𝜏 | 𝜏 ∈ 𝐾}†

Additionally, define return ∶ 𝑋 → B𝑋 by return 𝑥 ≔ 𝜆𝑥. {⟨𝜎, 𝜎⟩𝑥 | 𝜎 ∈ 𝕊}†.
To prove that this is a free B-model, we use reification as in §5.2, though

here reification is more straightforward. A trace is reified as itself, and sets of
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traces use countable-joins as before: reify𝐾 ≔ (𝑿 ⊢ΣB
⋁𝜏∈𝐾𝜏 ∶ ⭒). The monad

obtained from the next proposition is Brookes’s model:
Proposition 26. The pair ⟨B𝑋, return⟩ is a free B-model over 𝑋, for which the
representation sends 𝑒 ∶ 𝑋 → A to 𝑒# ∶ B𝑋 → A by 𝑒#

 𝐾 ≔ B𝑋Jreify 𝐾Kterm𝑒.

6.4 Translations and equivalences
We will need the following notions for relating presentations. Consider a map
between two sort sets 𝜖 ∶ sort1 → sort2. It lifts to 𝜖 ∶ Setsort2 → Setsort1 by
precomposition: (𝜖𝒀 ) ≔ 𝒀𝜖. It forms the object part of a geometric morphism
between (pre)sheaf toposes, i.e., it has left and right adjoints. The left adjoint
𝜖∗ ∶ Setsort1 → Setsort2 is in this case (𝜖∗𝑿) ≔ ∐𝜖= 𝑿. When 𝜖 is injective,
the left adjoint is given by the simpler formula 𝜖∗𝑿 ≔ {𝑥 ∶ 𝜖 | 𝑥 ∈ 𝑿}.
Example 27. The geometric morphism for the map ⭒ ↦ ⚬ ∶ {⭒} ↣ {⦁, ⚬} is
the forgetful functor (−)⚬ ∶ Set{⦁,⚬} → Set{⭒} ≅ Set. As we saw in §6.2, its left
adjoint is (−)⚬ ∶ Set{⭒} → Set{⦁,⚬}.

Let Σ1 and Σ2 be signatures and 𝜖 ∶ sortΣ1
→ sortΣ2

a map between their
sort sets. A translation of signatures E ∶ Σ1 ↣ Σ2 along 𝜖 is an assignment,
to each (𝑂 ∶ ⟨𝑖⟩𝑖<𝛼) ∈ Σ1, of a term E𝑂 ∈ TermΣ2

𝜖 {𝑥𝑖 ∶ 𝜖𝑖 | 𝑖 < 𝛼}. Such a
translation yields a functor Etln ∶ AlgΣ2 → AlgΣ1, mapping a Σ2-algebra B to:

EtlnB ≔ 𝜖B EtlnB J𝑂 ∶ ⟨𝑖⟩𝑖<𝛼Kop ⟨𝑏𝑖⟩ ≔ B JE𝑂Kterm ⟨𝑥𝑖 ↦ 𝑏𝑖⟩𝑖<𝛼

For a given family 𝒀 ∈ SetsortΣ2 , such a translation therefore extends uniquely
to a Σ1-homomorphism (Etln)𝒀 ∶ 𝐹Σ1

𝜖𝒀 → Etln𝐹Σ2
𝒀 .

Example 28. We have a translation E ∶ ΣG ↣ ΣSS along ⭒ ↦ ⦁ ∶ {⭒} ↣ {⦁, ⚬}
that translates the ΣG-operators using their respective copies in the ⦁ sort:

E(⋁𝛼 ∶ 𝛼) ≔ ({𝑥𝑖 ∶ ⦁ | 𝑖 < 𝛼} ⊢ΣSS
⋁𝑖<𝛼𝑥𝑖 ∶ ⦁)

E(𝖫ℓ ∶ 2) ≔ ({𝑥0, 𝑥1 ∶ ⦁} ⊢ΣSS
𝖫ℓ(𝑥0, 𝑥1) ∶ ⦁)

E(𝖴ℓ,𝑏∶ 1) ≔ ({𝑥0 ∶ ⦁} ⊢ΣSS
𝖴ℓ,𝑏 𝑥0 ∶ ⦁)

A translation of presentations E ∶ 𝔭1 ↣ 𝔭2 along 𝜖 is a translation of their
signatures along 𝜖 that, moreover, preserves the provability of axioms:

(𝑿 ⊢Σ𝔭1
𝑡1 = 𝑡2 ∶ ) ∈ Ax𝔭1

⟹ 𝜖∗𝑿 ⊢𝔭2
Etln𝑡1 = Etln𝑡2 ∶ 𝜖

Example 29. The translation of global state into shared state from example 28
is a translation of presentations E ∶ G ↣ SS.

Translations along composable sort maps compose via substitution, and a
translation E ∶ 𝔭 ↣ 𝔭 along idΣ𝔭

is an identity translation when, for all terms
𝑡 ∈ TermΣ𝔭

 𝑿, we have 𝑿 ⊢𝔭 Etln𝑡 = 𝑡 ∶ . A translation E ∶ 𝔭1 ↣ 𝔭2 along 𝜖 is
an equivalence if 𝜖 is a bijection, and there exists an embedding E−1 ∶ 𝔭2 ↣ 𝔭1
along 𝜖−1, such that E∘E−1 and E−1 ∘E are identity translations. We then write
𝔭1 ≃ 𝔭2 and say that the presentations are equivalent. Two multi-sorted theories
are equivalent iff their associated free-model monads are isomorphic.
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6.5 Translation through the two-sorted theory of transitions
We define a two-sorted presentation Tgs of the open transitions ⧙𝜎, 𝜌⧘ as se-
quential operators. The signature ΣTgs consists of countable-joins ΣV and a
unary open transition operator ⦗𝜎, 𝜌⦘ for 𝜎, 𝜌 ∈ 𝕊. The axioms AxTgs consist of
the countable-join semilattice axioms AxV, strict distributivity axioms (ND-T)
⦗𝜎, 𝜌⦘ ⋁𝑖<𝛼𝑥𝑖 = ⋁𝑖<𝛼 ⦗𝜎, 𝜌⦘ 𝑥𝑖, and:

Open transition axioms
(HS) 𝑥 = ⋁𝜎∈𝕊 ⦗𝜎, 𝜎⦘ 𝑥

(Seq=) ⦗𝜎, 𝜌⦘ ⦗𝜌, 𝜃⦘ 𝑥 = ⦗𝜎, 𝜃⦘ 𝑥
(Seq≠) ⦗𝜎, 𝜌⦘ ⦗𝜇, 𝜃⦘ 𝑥 = ⊥ 𝜌 ≠ 𝜇

Translate EG ∶ Tgs ↣ G by interpreting transitions as the open transitions
from §5.2: EG ⦗𝜎, 𝜌⦘ ≔ (𝑥0 ⊢ΣG

⧙𝜎, 𝜌⧘ 𝑥0). Conversely, translate ETgs ∶ G ↣ Tgs
as follows, similar to the representation of update and lookup from §5.2:

ETgs𝖴ℓ,𝑏 ≔ (𝑥0 ⊢ΣTgs
⋁𝜎∈𝕊⦗𝜎, 𝜎[ℓ ↦ 𝑏]⦘ 𝑥0) ETgs𝖫ℓ ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣTgs

⋁𝜎∈𝕊⦗𝜎, 𝜎⦘ 𝑥𝜎ℓ
)

Using the equivalence Tgs ≃ G that these translations witness we can trans-
late B ↣ SS along ⭒ ↦ ⚬. We define a two-sorted presentation Tr, mimicking the
definition of SS but replacing the operators and axioms of G with those of Tgs in
the hold (⦁) sort: AxTr ≔ Ax⦁

Tgs ∪ Ax⚬
V ∪ {ND-▷, ND-◁} ∪ {Empty, Fuse}. Ex-

tending the translations ETgs and EG to all of the operators gives an equivalence
Tr ≃ SS. So Tr induces the same monad as SS, recovering Brookes’s model.

Tgs ≃ G↣ ⭒↦

⦁

↣

B ⭒↦⚬↣ Tr ≃ SS
Fig. 3. Th. chart

Define the translation ETr ∶ B ↣ Tr along ⭒ ↦ ⚬ by
sending transitions to their delimited open counterparts:
ETr⟨𝜎, 𝜌⟩ ≔ (𝑥0 ∶ ⚬ ⊢ΣTr

◁ ⦗𝜎, 𝜌⦘▷𝑥0 ∶ ⚬). Using Tr ≃ SS
we get B ↣ SS (fig. 3). Brookes’s model, as a free B-model,
is thus the ⚬-sorted fragment of SS over ⚬-variables, formally.

7 Conclusion and further work

We presented an equational theory for shared state (SS). It separates reasoning
into two layers. In the held layer (⦁), we prohibit the concurrent environment
from accessing memory, and we can reason about memory accesses by a pool
of threads sequentially. In the ceded layer (⚬), the concurrent environment may
interleave, and local memory access is forbidden. We also presented theories of
transitions (B, Tgs, & Tr) and formally related them to (non-deterministic) global
state (G) and shared state (SS). The single-sorted theory B recovers Brookes’s
model, but it does so by using Brookes’s await construct, which we find unnat-
ural; and it does not admit global state explicitly as a component of the theory.
We believe that admitting global state will inform modelling other effects in the
concurrent setting. Our theory SS addresses these concerns. It admits the global
state theory as-is, and axiomatises the mode-switching operators (◁/▷) without
explicit interaction with global state. This theory recovers Brookes’s model ex-
actly, in a principled manner: by transforming a monad and its operations along
an adjunction; and, independently, through algebraic translations.
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Our theory uses countable-join semilattices to recover Brookes’s model. They
can express iteration (i.e. while-loops). The same model admits first-order re-
cursion, i.e. least-fixpoints of mutually-defined first-order functions, using the 𝜔-
complete partial order structure of the refinement order and the Scott-continuity
of the semantics. We can support higher-order recursion by recourse to domain-
theory, generalising algebraic theories using order-enriched theories. There are
several standard variants, each with subtle logical trade-offs [34]. We can also
restrict the semantics to terminating languages by restricting to finite joins, and
using finitely-generated closed subsets for the representation.

We want to analyse Brookes’s parallel composition operator algebraically.
Brookes composed programs in parallel by interleaving traces from each thread.
Initial results show we can define Brookes’s parallel composition by simultaneous
induction over terms. However, we would like to provide a more abstract account,
by recourse to the universal property of free models. This abstraction may ex-
pose special properties of global state, or lead to a general parallel composition
operation satisfying the expected laws of concurrent programming [16, 31, 39].

We would like to model more effects within this modular multi-sorted al-
gebraic framework. These effects include: more advanced notions of state, such
as dynamic allocation [22], higher-order memory cells [28, 41], and weak mem-
ory [13, 14]; control-flow effects such as exceptions and effect handlers [4]; and
probabilistic programming with shared state [26].

If the multi-sorted approach does indeed generalise to more sophisticated ef-
fects, then it will be instructive to review its assumptions. For example, the strict-
ness axioms impose a partial-correctness discipline: the semantics says nothing
about the effect a diverging program has on its memory. Relaxing or removing
strictness may give a model that allows us to reason about diverging programs.

Our two sorts limit access to the whole store. We would like to explore finer
granularity. For example, a theory with per-location access limitation, with sorts
for every finite subset 𝑠 ⊆ 𝕃 of locations, and operators (◁ℓ ∶ 𝑠∖{ℓ} ⟨𝑠∪{ℓ}⟩) and
(▷ℓ ∶ 𝑠∪{ℓ} ⟨𝑠∖{ℓ}⟩). We expect the axiomatisation’s design to require subtlety.

It may be interesting to to expose the sort discipline in the surface language
through typing judgements, explicating regions that rule out data-races with the
environment. It seems such judgements would rule out deadlocks structurally,
and so may limit expressiveness. Whether this idea is useful remains to be seen.

In conclusion, our two-sorted decomposition of Brookes’s seminal model pro-
vides new insights into its assumptions and components, and reveals new direc-
tions for modelling more advanced features involving concurrent shared state.
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A No-go results

We can present Brookes’s model using a single-sorted presentation (§6.3). How-
ever, we found this presentation unsatisfactory, and so propose a two-sorted
account. Our use of the two-sorted approach follows a relatively thorough inves-
tigation into alternative single-sorted approaches, and we can provide some crisp
results that certain single-sorted approaches fail. These no-go results, together
with the perspectives on future work the two-sorted decomposition suggests (§7),
are evidence for the merit of our two-sorted approach. They may also inform fu-
ture search for a single-sorted presentation that we have overlooked.

Single-sorted transitions present Brookes’s model in terms of the await con-
struct. This presentation highlights the importance of await for reasoning in
Brookes’s model and why await is a key ingredient in Brookes’s full abstraction
result. Without await, Brookes’s model is not fully abstract at 1st-order:

No-go 1 (Svyatlovskiy et al. [42]). Brookes’s model is not fully-abstract
w.r.t. the operational semantics in which differentiating contexts can only read
and mutate single memory cells atomically.

Moreover, every single-sorted presentation of Brookes’s model must involve
operators other than the interpretations of read and write, considered as generic
effects [36]. Formally, given a family of algebraic operations and a monad, we
can construct the sub-monad generated by a set of operations [21, 23, 24].

No-go 2. The sub-monad generated by the semantics of read and write, and by
union, differs from the Brookes model.

Proof. The trace-sets generated by read and write always contain a trace in
which at most one cell changes within each transition. Brookes’s model includes
other subsets, definable via the await construct.

The traces in Brookes’s model explicitly yield control to their concurrent
environment. Following Abadi and Plotkin [1], we investigated adding an addi-
tional unary operator 𝖸 for yielding control to the concurrent environment. It
is natural to interpret 𝖸 as adding a no-op transition ⟨𝜎, 𝜎⟩ before every trace
in its argument, modelling a possible interference by the environment. An alter-
native choice is to add such no-op transitions and also keep the original traces,
modelling a possibility for a yield in the previous sense. Both of these options
trivialise in Brookes’s model:

No-go 3. Consider the following interpretations of 𝖸 in Brookes’s model:

J𝖸K1
op 𝐾 ≔ {⟨𝜎, 𝜎⟩𝜏 | 𝜏 ∈ 𝐾} J𝖸K2

op 𝐾 ≔ 𝐾 ∪ J𝖸K1
op 𝐾

Then J𝖸K𝑖
op 𝐾 = 𝐾 for both 𝑖 ∈ {1, 2}, for any closed 𝐾.

Proof. 𝐾 is closed under stutter and hush.
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Even though Brookes’s model does not support this intuition, we explored
where the yield approach leads. With this yield operator, lookup and update
can represent interference-free memory-access as axiomatised in the global-state
theory, and surface-language level read and write can be modelled by some com-
bination of the algebraic operators. Formally, let Res be a presentation that
includes non-deterministic global state, and the yield operator 𝖸, which is Res-
provably strict and distributes over joins.

Option 1 (Dvir et al.’s presentation [12]). For a previous theory of ours,
we took a minimal Res satisfying our restrictions, and defined the algebraic
representation of read:

𝖱ℓ(𝑥𝟶, 𝑥𝟷) ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣRes
𝖫ℓ((𝑥𝟶 ∨ 𝖸 𝑥𝟶), (𝑥𝟷 ∨ 𝖸 𝑥𝟷)))

Reading may admit an interference point after looking the value up in memory.

Option 2 (Plotkin’s presentation [33]). Another natural option is to take
Res to also prove that 𝖸 is a closure operator, i.e. 𝑥 ⊢Res 𝖸 𝖸 𝑥 = 𝖸 𝑥 ≥ 𝑥. In
this option, the intuition is that 𝖸 potentially yields, and yielding successively is
immaterial. This theory allows the algebraic representation of read to be a bit
more natural:

𝖱ℓ(𝑥𝟶, 𝑥𝟷) ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣRes
𝖸 𝖫ℓ(𝖸 𝑥𝟶, 𝖸 𝑥𝟷))

Both options prove (Irrelevant Read Elim), but not (Irrelevant Read Intro):

𝑥 ⊢Res 𝖱ℓ(𝑥, 𝑥) ≥ 𝑥 (Irrelevant Read Elim)
𝑥 �⊢Res 𝖱ℓ(𝑥, 𝑥) ≤ 𝑥 (Irrelevant Read Intro)

Brookes’s model validates (Irrelevant Read Intro), so the proposed theories are
both not abstract enough. Adding (Irrelevant Read Intro) as an axiom in either
version is problematic, as it implies the following inequation:

𝑥 ⊢ΣRes
𝖱ℓ(𝖱ℓ(𝑥𝟶,𝟶, 𝑥𝟶,𝟷), 𝖱ℓ(𝑥𝟷,𝟶, 𝑥𝟷,𝟷)) ≤ 𝖱ℓ(𝑥𝟶,𝟶, 𝑥𝟷,𝟷) (Same Read Intro)

The corresponding program transformation is invalid in our setting because the
environment can interfere, mutating ℓ between the successive reads.

We summarise this intermediate result:

No-go 4. Let Res be either Dvir et al.’s or Plotkin’s presentation, and define
𝖱ℓ accordingly. If (Irrelevant Read Elim) and (Irrelevant Read Intro) are valid
in Res, then so is (Same Read Intro).

Another approach is to add unary operators ◁′ and ▷′ that delimit the mem-
ory accesses. Formally, let Del be a presentation that includes non-deterministic
global state, and the delimiting operators ◁′ and ▷′, which are Del-provably
strict and distribute over joins. Define the algebraic representation of read:

𝖱ℓ(𝑥𝟶, 𝑥𝟷) ≔ (𝑥𝟶, 𝑥𝟷 ⊢ΣRes
◁′ 𝖫ℓ(▷′ 𝑥𝟶,▷′ 𝑥𝟷)) (⋆)
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This approach subsumes the two Res options suggested above, by using the
axioms 𝑥 ⊢ ◁′ 𝑥 = 𝑥 and 𝑥 ⊢ ▷′ 𝑥 = 𝑥 ∨ 𝖸 𝑥 for Dvir et al.’s presentations; and
using 𝑥 ⊢ ◁′ 𝑥 = 𝖸 𝑥 and 𝑥 ⊢ ▷′ 𝑥 = 𝖸 𝑥 for Plotkin’s presentation. In both
cases, and more generally whenever ◁′ and ▷′ are given by a combination of
joins and yields, they commute:

Lemma 30. Let 𝑡1 and 𝑡2 be {∨, 𝖸}-term over {𝑥}. If 𝑥 ⊢Del ◁′ 𝑥 = 𝑡1 and
𝑥 ⊢Del ▷′ 𝑥 = 𝑡2, then 𝑥 ⊢Del ◁′ ▷′ 𝑥 = ▷′ ◁′ 𝑥.

Proof. Using the semilattice axioms and distributivity of 𝖸 over joins, every
{∨, 𝖸}-term 𝑡 over {𝑥} is Del-equal to a non-deterministic choice between terms
of the form 𝖸𝑛 𝑥 for 𝑛 ∈ 𝑁𝑡 ⊆ ℕ. Both terms above are equal to the same term
of this form, with 𝑁 = {𝑛1 + 𝑛2 | 𝑛1 ∈ 𝑁◁′ 𝑥, 𝑛2 ∈ 𝑁▷′ 𝑥}.

Any alternative of Del for which ◁′ and ▷′ commute is not satisfactory:

No-go 5. Let Del be a presentation that includes non-deterministic global state,
and the unary operators ◁′ and ▷′, which Del proves to be strict, distribute over
joins, and commute. With read from (⋆), if Del proves (Irrelevant Read Elim)
and (Irrelevant Read Intro), then it proves (Same Read Intro).

Proof. Combining (Irrelevant Read Elim) and (Irrelevant Read Intro), we have
𝑥 ⊢Del 𝖱ℓ(𝑥, 𝑥) = 𝑥. Using global-state, we have 𝑥 ⊢Del 𝖱ℓ(𝑥, 𝑥) = ◁′ ▷′ 𝑥.
Therefore, 𝑥 ⊢Del ◁′ ▷′ 𝑥 = 𝑥. They commute, so 𝑥 ⊢Del ▷′ ◁′ 𝑥 = 𝑥. Using
global-state, we prove (Same Read Intro) in Del.

Therefore, any such theory Del is either unsound, or it fails to validate a
transformation that Brookes’s model does. Thus, when picking Del, we need to
make sure that ◁′ and ▷′ do not commute.

As a final option we cover here, we could take the axioms 𝑥 ⊢ ◁′ ▷′ 𝑥 = 𝑥
and 𝑥 ⊢ ▷′ ◁′ 𝑥 ≥ 𝑥. These are like the closure pair axioms of our shared-
state presentation SS, but without the sort discipline. The single-sorted signature
allows ill-bracketed terms such as 𝑥 ⊢ ◁′ ◁′ 𝑥. Though it may be possible to
axiomatise that all such terms are equal to ⊥, a more principled way to avoid
such terms is to use a two-sorted theory as we have.

The analysis we offered in this section does not rule out the possibility of a
satisfactory single-sorted theory of shared-state. We hope that these considera-
tions could inform future pursuit of this theory, or a tighter no-go result.

B Distributivity

This section is devoted to the technical definition of distributivity.
Let Σ be a multi-sorted signature, (𝑃 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ be an operator, and

𝑖0 < 𝛼 be one of the positions in 𝑃 ’s scheme. Assume further such that both 𝑖0
and  have ‘single-sorted’ operators (𝑆 ∶ 𝑖0

(𝛽 ⋅ 𝑖0
)), (𝑆′ ∶ (𝛽 ⋅ )) ∈ Σ with

the same arity length 𝛽. We define the following distributivity axiom [18]:
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{𝑥𝑖 ∶ 𝑖 | 𝑖0 ≠ 𝑖 < 𝛼} ∪ {𝑦𝑗 ∶ 𝑖0
| 𝑗 < 𝛽} ⊢Σ

𝑃 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖
𝑖 = 𝑖0 ∶ 𝑆 ⟨𝑦𝑗⟩𝑗

⟩
𝑖

= 𝑆′ ⟨𝑃 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖
𝑖 = 𝑖0 ∶ 𝑦𝑗

⟩
𝑖

⟩
𝑗

∶ 

which we call the distributivity of 𝑃 over 𝑆, 𝑆′ in the 𝑖0-component.
Distributivity over binary joins implies monotonicity, in the following sense.

Let 𝔭 be a presentation, (𝑂 ∶  ⟨𝑖⟩𝑖<𝛼) ∈ Σ𝔭 be an operator, and 𝑖0 < 𝛼 an
index into its sorting scheme. Assume ,𝑖0

include the theory of semilattices,
and that 𝑂 distributes over the binary joins of 𝑖0

and  in the 𝑖th
0 component.

Then 𝑂 is monotone in this component w.r.t. the semilattice preorder, i.e., the
following deduction rule is admissible:

𝒀 ⊢𝔭 𝑙 ≤ 𝑟 ∶ 𝑖0

{𝑥𝑖 ∶ 𝑖 | 𝑖0 ≠ 𝑖 < 𝛼} ∪ 𝒀 ⊢𝔭 𝑂 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖
𝑖 = 𝑖0 ∶ 𝑙 ⟩

𝑖
≤ 𝑂 ⟨{𝑖 ≠ 𝑖0 ∶ 𝑥𝑖

𝑖 = 𝑖0 ∶ 𝑟 ⟩
𝑖

Specifically, if 𝔭 includes the theory of semilattices in all sorts, and every operator
distributes over binary joins, then the congruence rule for inequations is valid.

C Proof of the representation theorem

To start, we first prove proposition 23, soundness of encoded trace deductions:

Proof. First, standardly in G we have 𝑥 ∶ ⭒ ⊢G ⧙𝜎, 𝜌⧘ ⧙𝜌′, 𝜃⧘ 𝑥 ≥ ⧙𝜎, 𝜃⧘ 𝑥 ∶ ⭒ and
𝑥 ∶ ⭒ ⊢G ⧙𝜎, 𝜎⧘ 𝑥 ≥ 𝑥 ∶ ⭒, which are included in the ⦁ sort in SS.

– The former, combined with Fuse, leads to soundness of mumble.
– The latter, combined with Empty, leads to soundness of stutter.

That reification is indifferent to closure follows:

Proposition 31. For 𝐾 ∈ 𝒫ℵ0 (𝕋𝑿), 𝑿 ⊢SS reify 𝐾 = reify 𝐾† ∶ .

Proof. Follows from proposition 23 by inequational reasoning.

To prove the SS-Rep. Thm., let 𝑿 ∈ Set{⦁,⚬}. We start by giving alternative
formulas to the interpretations of the lock operators.

Lemma 32. Denote the set of sequences of transitions, where each transition
has equal components 𝕊∗

= ≔ {⟨𝜎, 𝜎⟩ | 𝜎 ∈ 𝕊}∗. The following hold:

R𝑿 J◁Kop 𝐾 = {⚬𝜉?
0𝜉𝑥 ∣ 𝜉?

0 ∈ 𝕊∗
=, ⦁𝜉𝑥 ∈ 𝐾}

R𝑿 J▷Kop 𝐾 = {⦁𝜉𝑥, ⦁⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}

Proof sketch. The fact that 𝐾 is closed means that most trace deductions af-
forded in the interpretations as defined in the SS-Rep. Thm. are redundant.
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– In R𝑿 J◁Kop 𝐾, the only application of a trace deduction that results in a
trace that would is not in the set before taking the closure is one of stutter
at the start of the trace.

– In R𝑿 J▷Kop 𝐾, the only application of a trace deduction that results in a
trace that would is not in the set before taking the closure is one of mumble
at the start of the trace.

Lemma 33. R𝑿 is an SS-model.

Proof. This amounts to showing that R𝑿 validates every SS-axiom.

– The countable-join semilattice ones follow standardly for sets and unions.
– Commutativity follows from the fact that interpretations are all defined by

direct images.
– The global state equations validate as they did in the model from Dvir

et al. [12], where they were interpreted in a similar manner.

This leaves Empty:

J◁K J▷K 𝐾 = J◁K {⦁𝜉𝑥, ⦁⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}
= {⚬𝜉?

0𝜉𝑥 ∣ 𝜉?
0 ∈ 𝕊∗

=, ⦁𝜉𝑥 ∈ 𝐾} = 𝐾

where the last step is due to 𝐾 being closed; and Fuse:

J▷K J◁K 𝐾 = J▷K {⚬𝜉?
0𝜉𝑥 ∣ 𝜉?

0 ∈ 𝕊∗
=, ⦁𝜉𝑥 ∈ 𝐾}

= {⦁𝜉?
0𝜉𝑥, ⦁⟨𝜎, 𝜎⟩𝜉?

0𝜉𝑥 ∣ 𝜉?
0 ∈ 𝕊∗

=, ⦁𝜉𝑥 ∈ 𝐾} ⊇ 𝐾

where the last step is by taking an empty 𝜉?
0 in the first element.

We mention some equations regarding open transitions provable in SS.

Lemma 34. 𝑥 ∶ ⦁ ⊢SS ⋁𝜎∈𝕊 ⧙𝜎, 𝜎⧘ 𝑥 = 𝑥 ∶ ⦁

Proof. Follows from the global state validity: 𝑥 ∶ ⭒ ⊢G ⋁𝜎∈𝕊 ⧙𝜎, 𝜎⧘ 𝑥 = 𝑥 ∶ ⭒.

Lemma 35. 𝑥 ∶ ⚬ ⊢SS ⋁𝜎∈𝕊 ◁ ⧙𝜎, 𝜎⧘▷𝑥 = 𝑥 ∶ ⚬

Proof. Follows from ND-◁, lemma 34, and Empty.

Let’s turn to the extension of environments along return. Let A be an SS-
algebra, and let 𝑒 ∶ 𝑿 → A be an 𝑿-environment in A. Then:

Lemma 36. 𝑒# is homomorphic.

Proof. By evaluating both sides, it suffices to show that for every operator (𝑂 ∶
⟨1, … ,𝛼⟩) ∈ ΣSS, and all 𝐾𝑖 ∈ R𝑿𝑖

:

𝑿 ⊢SS reify(R𝑿 J𝑂Kop (𝐾1, … , 𝐾𝛼)) = 𝑂(reify𝐾1, … , reify𝐾𝛼) ∶ 
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As in the proof of lemma 33, most follow as in Dvir et al.’s model [12],
and we focus again on the interesting cases of ◁ and ▷. In both cases, we
use proposition 31 to simplify. For the treatment of the ▷ case below, we use
lemma 34 in the third equation:

𝑿 ⊢SS reify(R𝑿 J▷Kop 𝐾) = reify{⦁⟨𝜎, 𝜎⟩𝜉𝑥 | 𝜎 ∈ 𝕊, ⚬𝜉𝑥 ∈ 𝐾}
= ⋁𝜎∈𝕊,⚬𝜉𝑥∈𝐾 ⧙𝜎, 𝜎⧘▷⚬𝜉𝑥
= ⋁⚬𝜉𝑥∈𝐾 ▷⚬𝜉𝑥
= ▷⋁⚬𝜉𝑥∈𝐾⚬𝜉𝑥 = ▷(reify𝐾) ∶ ⦁

𝑿 ⊢SS reify(R𝑿 J◁Kop 𝐾) = reify{⚬𝜉𝑥 | ⦁𝜉𝑥 ∈ 𝐾}
= ⋁⦁𝜉𝑥∈𝐾 ◁⦁𝜉𝑥
= ◁⋁⦁𝜉𝑥∈𝐾⦁𝜉𝑥 = ◁(reify𝐾) ∶ ⚬

Lemma 37. 𝑒 = 𝑒# ∘ return for all 𝑥 ∈ 𝑿.

Proof. By evaluating in 𝑒 the equations 𝑥 ∶  ⊢SS reify(return 𝑥) = 𝑥 ∶ , which
are easily verified in light of proposition 31, using lemmas 34 and 35.

Lemma 38. return# ∶ R𝑿 → R𝑿 is the identity.

Proof sketch. Follows by calculation, mainly by showing that for any 𝐾 ∈ R𝑿⦁,
we have that R {𝑥 ∶ ⦁} J⧙𝜎, 𝜌⧘ 𝑥Kterm (𝑥 ↦ 𝐾) = (𝜎, 𝜌) 𝐾.

Finally, we show uniqueness. Let 𝑓 ∶ R𝑿 → A be a homomorphism. Then:

Lemma 39. If 𝑒 = 𝑓 ∘ return then 𝑓 = 𝑒#.

Proof. We use the following notation. For any SS-algebra B and ̃𝑒 ∶ 𝑿 → B, we
denote eval( ̃𝑒) ≔ BJ−Kterm ̃𝑒 ∶ TermΣSS𝑿 → B. Thus, ̃𝑒# = eval( ̃𝑒) ∘ reify.

Since eval(𝑓 ∘ return) ∶ TermΣSS𝑿 → A is the only homomorphic extension
of 𝑓 ∘ return ∶ 𝑿 → A along the inclusion 𝜄 ∶ 𝑿 ↪ TermΣSS𝑿, we have that
eval(𝑓 ∘ return) = 𝑓 ∘ eval(return). Using lemma 38:

𝑒# = eval(𝑒) ∘ reify = eval(𝑓 ∘ return) ∘ reify = 𝑓 ∘ eval(return) ∘ reify = 𝑓

Putting everything together, ⟨R𝑿, return⟩ is a SS-model over 𝑿 (lemma 33)
such that every environment homomorphically (lemma 36) extends along return
(lemma 37), and does so uniquely (lemma 39). So ⟨R𝑿, return⟩ is a free SS-model
over 𝑿, proving the SS-Rep. Thm.
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