A DENOTATIONAL APPROACHTO
RELEASE/ACQUIRE CONCURRENCY

EEEEEEEEEEEEEE Yotam Dvir, Ohad Kammar, Ori Lahav PARC HOTEL (LUXEMBOURG)

GOAL

RELEASE/ACQUIRE

For weak,
shared-
memory model

Using Brookes-style [1996],
totally-ordered traces

Design a standard, monad-based
denotational semantics a la Moggi [1991]

WHY RELEASE/ACQUIRE?

C11, enables decentralized . .
(non-multi-copy-atomic)

E RA Is an important fragment of a Threads can disagree about the order of writes
architectures (POWER)

Supports flag-based synchronization

traces to arelaxed-memory (e.g. for signaling a data structure is ready)

software model

f First adaptation of Brookes'’s

Supports important transformations
(e.g. thread sequencing, write-read-reorder)

“' Intricate causal semantics, >
L0

not overwhelmingly detailed

Supports read-modify-write atomicity
(e.g. atomic compare-and-swap)

WHY MONAD-BASED?

* .
standard z z ﬂ Structural transformations
if K. then M; P, else M; P,
Program effects added O NS
modularly — M, if Kpure then Pl else P2
The core language remains }.{ Logical relations
exactly the same

“related inputs go to related outputs”
Higher-order programming

built-in m Substitution lemma
: Rich toolkit of definitions syntax substitution ~ semantic context
theorems, and techniques etc
etc

etc

DENOTATIONAL SEMANTICS

| — [] : Term — Deno

compose from subtermg’ denotations

For example:

Monadic bind

[letx =M, inM,]| = [M, [| Y= /x. | M,]]
1M, || Myl = M DM, |

A modular effect extension

ADEQUACY

Abstraction:
We want this to hold
as much as possible

| — [] : Term — Deno

| M|>[|Kl]] — M->K

K denotationally refines M K contextually refines M

safe to replace within any context

ADEQUACY

Abstraction: With non-determinism as sets

We want this to hold
as much as possible

Deno = &(Behavior)
IM|2[|K]] — M->»>K

Every possible behavior of K K contextually refines M

is a possible behavior of M safe to replace within any context

GOAL

RELEASE/ACQUIRE

For weak,
shared-
memory model

Using Brookes-style [1996],
totally-ordered traces

PR

Design a standard, monad-based

denotational semantics a la Moggi [1991]

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: . o
No interference Possible interference

) linearly-ordered traces L_‘ I
) of local state-transitions —A
<ﬂ19p1><ﬂ29p2> (ﬂn—lapn—1><ﬂn9pn>

) that sequence and interleave

<ﬂ19ﬂi> <ﬂ29ﬂé> (ﬂmﬂé) (plapD <ﬂ29ﬂé> <pn9pr,z>

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: . o
No interference Possible interference

) linearly-ordered traces L_‘ I
) of local state-transitions —A
<ﬂ19p1><ﬂ29p2> (ﬂn—lapn—1><ﬂn9pn>

) that sequence and interleave

<ﬂ19ﬂi> (ﬂbﬂé) (ﬂm”;;> <p19pi> <p29pé> <ﬂn,ﬂ,;>

SEQUENCE

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: . o
No interference Possible interference

) linearly-ordered traces L_‘ I
) of local state-transitions —A
<ﬂ19p1><ﬂ29p2> (ﬂn—lapn—1><ﬂn9pn>

) that sequence and interleave

(p1sP1) Bk Hasia) P2sP3) .. Bashy) PpsPr)

INTERLEAVE

10

CONTRIBUTION

) Standard denotational semantics
) Adequate for Release/Acquire

) Abstract enough to verify every known RA-valid transformation in the
literature (but no full-abstraction theorem)

) Subtlety: Rely/Guarantee interpretation of traces
(our traces do not correspond directly to interrupted executions)

~A ~A ~A ~—A
<ﬂ19p1><ﬂ29p2> (ﬂn—lapn—1><ﬂnapn>

1

RELEASE/ACQUIRE

INTUITION VIA LITMUS TESTS

_|Store Bufferin _|Messaqge Passing

x:=0;y:=0; I x:=0;y:=0; l
x=L1ly=0L1]|x=11 »y
y? x? | fy=1 x|

INTUITION VIA LITMUS TESTS

y‘7 //O x‘7 //O

INTUITION VIA LITMUS TESTS

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

9 Memory: Timeline per location X
) Populated with immutable messages holding values

) Each view points to msgs on each timeline

) Threads have views — cannot read from “the past”

) Msgs have views for enforcing causal propagation

¢ $

Pro .
P?Qaﬂon ie Or OPagaﬁo n

RELEASE/ACQUIRE VIEW-BASED
OPERATIONAL SEMANTICS

Kang et al. [2017]

9 Memory: Timeline per location X
) Populated with immutable messages holding values

) Each view points to msgs on each timeline

) Threads have views — cannot read from “the past”

) Msgs have views for enforcing causal propagation

¢ $

Pro .
P?Qaﬂon ie Or OPagaﬁo n

SUPPORTING FIRST-CLASS PARALLELISM

In the operational semantics

Traditional op-sem: static view-array T
y/
Laws of Parallel Programming, e.g. Left Neutrality U'
[M= 1) |l M).snd] ’
Write-Read Deorder (Crucial RA refinement) L M ; R

[x:=1Ly?|2[|(x:=1][y?).snd]]

Extended op-sem: dynamic view-tree

RELEASE/ACQUIRE
TRACES

TRACE-BASED SEMANTICS IN RA

Initial View Final View

LI I
CHQLTK
G

3

—

a (g, P1)Has P2) - - - M 1s Pret) Mo Pp) @ - T

Sequence of Transitions Returns

TRACE-BASED SEMANTICS IN RA

Rely On Then Rely Ony, Then Guarantee to the
T B —— sequential environment to
To Guarantee p, To Guarantee p,
return r

After

Before or || /.II\ /. /'

o <ﬂ1aﬂ1><ﬂ2»ﬂ2> P15 Prue1) Moy Pp) @ . T

=

Initial View Sequence of Transitions Final View Returns

19

TRACE-BASED SEMANTICS IN RA

Rely on the Guarantee to the
sequential environment to sequential environment to
reveal messages reveal messages
Before o , , » After
l Avoid including whole state in transitions /v

s 21 > </42, P2> - < Mo 15 Prn—1 > <lun9 ~'= .

—
e @ ee— o] —

Initial View Sequence of Transitions Final View Returns

20

RA DENOTATIONS

| — [] : Term — Deno

MEMORY ACCESS

Read
fa(x)gt) VE E U B

[

Ka[{,u,pz)}ozl_lﬁ.‘.ve | x?] »

//JHWVV

Read the extended paper

Write
K

ax) <t p=ul

_

("8

~

/

)=

COMPOSITION

Sequential
/agk r €| M| K@a) D) EHMQI][X'_)’”I]\
B 0‘?15230) S €llletx =M, M, | y
Parallel
QiE{l,Z}. 05360-'- r, € | M;]] € 51“52\

_

ag
—_/

w .. (r,h) €M || M|l

/

REWRITE CLOSURE RULES

) Close denotations under
rewrite rules

/x- Rewrite Closure

r..r€||M]

t..re||M]|

ITr—>1

/

) Never introduced externally

observable behavior

aén
—

stutter
W —

Eu, p)n

Propagate Reliance

Brookes

Eu,p){p. O

ag a Guarantee

mumble
a) —m»

Rely on an

E(u, O

omitted Guarantee

24

REWRITE CLOSURE RULES

) Close denotations under

; , ~ rewind |
rewrite rules 104 S 04 04 5) — 04 5),
—/ N
/X- Rewrite Closure \ ‘ Relying on more
T e [IMI] RA being revealed

ITr—>1

forward
w — alw

t..re||M]|) w<d a

|
(Yw)

Guaranteeing less

) Never introduced externally being revealed

observable behavior

25

STRUCTURAL AND PARALLEL LAWS

Monad laws — structural equivalences for free, e.g. Hoisting

then M; P, else M; P, || = [| M;if K . then P, else P, ||

ure pure

lif K,

Interleaving — properties of parallel composition, e.g. generalized sequencing

| (M ;M) || (Ki; K5) [2 | (M || Ky); (M, || K5)]

26

ABSTRACTION

SOPHISTICATION REQUIRED

Some transformations are valid due to more complicated reasons, e.g.:

/Redundant Read Elimination\

ﬁOverwrltten Write Elimination ~

x=0x=1>x:=1
_ y

28

y7'M > M holds due to

delicate semantic invariants
_ W,

holds even though
state diverges

DELICATE

SEMANTIC
INVARIANTS
/Redundant Read Elimination\
v, M > M
_ J

we identify operational invariants

and impose them as denotational requirements

K[(,u,//t)JK.'. Oelol = 3V.K[<//t,//t>JK.'. vey?

29

ZO‘
Z

DIVERGING STATE

KOverwritten Write Elimination\
x=0x=1->>x:=1 0‘@/4,/4@{ 1|}>ja)-'-<>
- . W

[x =0:;x:=1]]| 2 [[x := 1]

DIVERGING STATE

KOverwritten Write Elimination\

x=0x=1->>x:=1 0‘@/4,/4@{ 1|}>ja)-'-<>
N\ Y, UJ

[x =0:;x:=1]]| 2 [[x := 1]

1)

ap, @ { B} (uw {®]}, pw {]) . ()

DIVERGING STATE

KOverwritten Write Elimination\

x=0x=1->>x:=1 0‘@/4,/4@{ 1|}>ja)-'-<>
g y UJ
[x =0:;x:=1]]| 2 [[x := 1]

7) al(u,pw { O Ho .)

DIVERGING STATE

KOverwritten Write Elimination\

x=0x=1->>x:=1 0‘@/4,/4@{ 1|}>ja)-'-<>
N o 0
[x :=0;x:= 1] D [[x := 1] absorb
7) al(u,pw { O Ho .)

NO CORRESPONDENCE
WITH INTERRUPTED
EXECUTIONS

17z

()

(Mo, —) My = (py, —) My -+ 0

a </’t19 p1><//l29 ,02> e </’tn—19 pn—1></’tn9 pn) @..r

T | —

Absorb : |

ALL REWRITE RULES

St

Rw

; Rewind «|éjlo — «a

|
Forward a.rc Yo«

Stutter a|én|w = a|é{u,p)nlw
Mumble a[E(u,p) (p,0) plo 2 a[E (s 0) n)w
Tighten a[f(up¥{v})n ¥ {v}w LN
Absorb a|lE{u, pW{v,e}) nW {v,e}w Ab,
Dilste (a[Epw (W1 (Ho) 1]

Elw a <k

Elw kK< w

w

0(§</1,DU{E}>17U{€}0) V Syw €

alE(ppwi{elnuwi{el}Howvce

04

EQu,pW{v,e})nW{v, e}

w V-GE€

NEW ADEQUACY PROOF IDEA

Traces are not operational — adequacy proof is significantly more challenging:

1. We first define a denotational semantics [| M || but without the abstract rules

2. We show itis adequate — easier: traces correspond to interrupted executions
(with an admissible view-advancing rule)

3. We show itis enough to apply the abstractclosure fontop [|[M| = [|M I]T

® This is the main technical challenge — complicated commutativity property @

4. We show that the abstract rewrites preserve observable results
(rather than interrupted executions)

33

Laws of Parallel Programming
Symmetry M| N — matchN || M with (y,z). (z,y)
;Generalized Sequencing :
| (letz = M, in M) || lety = N1inN;) — match M, || Ny with (z,y). M, || No

BLDEDAGIOIS oo
Trrelevant Read 070 — ()

§Write-Write Li=vili=w B f:=w

;Write-Read b:i=v;0? —» L:=v;v

‘Write-FAA {:=v;FAA (4, w) B e= (v4+w) ;v

;Read-Write letx =¢7inl:=(x+v);z — FAA (L, v)

Read-Read (£7,4?7) — letx =/¢7in (z,x)

Read-FAA (67, FAA (£,v)) — letz = FAA (¢,v) in (z, z)
FAA-Read (FAA (4,v),£7) — letxz=FAA (4,v) in (z,x + v) :
FAA-FAA (FAA (4,v) , FAA (f,w)) 5 letz = FAA (L v+w) in (2,0 +v)
IR e
Trrelevant Read Introduction O = L7

;Read to FAA (2 = FAA (4,0)

‘Write-Read Deorder (L:=0),07) B (L:=v)|£? (£#2)
‘Write-Read Reorder ((0:=v),0?) B letz=02in{l:=v);2 L#£L)

--

CONCLUSION OPPORTUNITIES

) Standard, adequate and fully-compositional) Language features (e.g. recursion)

denotational semantic for RA
) Type-and-effect system (e.g. regions)

) Sufficiently abstract: validates all RA

transformations that we know of) Algebraic presentation (refines monad approach)
(memory access, laws of parallel
programming, structural transformations) 2 Full C11 model (e.g. non-atomics)

) More nuanced, complicated traces) Full abstraction theorem (for first-order)?

) interpreted as Rely/Guarantee sequences
) denotations closed under 10 rewrite rules

) Extended RA view-based machine with
compositional (i.e. first-class) parallelism
(weak-memory models are usually studied
with top-level parallelism)

35

